版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》單元測(cè)評(píng)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,在矩形ABCD中,AB=1,BC=2,將其折疊,使AB邊落在對(duì)角線AC上,得到折痕AE,則點(diǎn)E到點(diǎn)B的距離為()A. B. C. D.2、如圖,已知平行四邊形ABCD的面積為8,E、F分別是BC、CD的中點(diǎn),則△AEF的面積為()A.2 B.3 C.4 D.53、將一張長(zhǎng)方形紙片ABCD按如圖所示的方式折疊,AE、AF為折痕,點(diǎn)B、D折疊后的對(duì)應(yīng)點(diǎn)分別為、,若=10°,則∠EAF的度數(shù)為()A.40° B.45° C.50° D.55°4、如圖,正方形ABCD中,AB=12,點(diǎn)E在邊BC上,BE=EC,將△DCE沿DE對(duì)折至△DFE,延長(zhǎng)EF交邊AB于點(diǎn)G,連接DG、BF,給出以下結(jié)論:①△DAG≌△DFG;②BG=2AG;③BF//DE;④S△BEF=.其中所有正確結(jié)論的個(gè)數(shù)是()A.1 B.2 C.3 D.45、如圖,四邊形和四邊形都是矩形.若,則等于()A. B. C. D.6、如圖,把一張長(zhǎng)方形紙片ABCD沿對(duì)角線AC折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)B′,AB′與DC相交于點(diǎn)E,則下列結(jié)論正確的是()A.∠DAB′=∠CAB′ B.∠ACD=∠B′CDC.AD=AE D.AE=CE7、下列測(cè)量方案中,能確定四邊形門框?yàn)榫匦蔚氖牵ǎ〢.測(cè)量對(duì)角線是否互相平分 B.測(cè)量?jī)山M對(duì)邊是否分別相等C.測(cè)量對(duì)角線是否相等 D.測(cè)量對(duì)角線交點(diǎn)到四個(gè)頂點(diǎn)的距離是否都相等8、在□ABCD中,AC=24,BD=38,AB=m,則m的取值范圍是()A.24<m<39 B.14<m<62 C.7<m<31 D.7<m<129、已知三角形三邊長(zhǎng)分別為7cm,8cm,9cm,作三條中位線組成一個(gè)新的三角形,同樣方法作下去,一共做了五個(gè)新的三角形,則這五個(gè)新三角形的周長(zhǎng)之和為()A.46.5cm B.22.5cm C.23.25cm D.以上都不對(duì)10、在平行四邊形ABCD中,∠A=30°,那么∠B與∠A的度數(shù)之比為()A.4:1 B.5:1 C.6:1 D.7:1第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AB=6,∠DAC=60°,點(diǎn)F在線段AO上從點(diǎn)A至點(diǎn)O運(yùn)動(dòng),連接DF,以DF為邊作等邊三角形DFE,點(diǎn)E和點(diǎn)A分別位于DF兩側(cè),下列結(jié)論:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④點(diǎn)E運(yùn)動(dòng)的路程是2,其中正確結(jié)論的序號(hào)為_____.2、正方形的對(duì)角線長(zhǎng)為cm,則它的周長(zhǎng)為__________cm.3、如果一個(gè)矩形較短的邊長(zhǎng)為5cm,兩條對(duì)角線的夾角為60°,則這個(gè)矩形的對(duì)角線長(zhǎng)是_________cm.4、如圖,點(diǎn)P是矩形ABCD的對(duì)角線AC上一點(diǎn),過點(diǎn)P作EF∥BC,分別交AB,CD于點(diǎn)E、F,連接PB、PD,若AE=2,PF=9,則圖中陰影面積為______;5、如圖中,分別是由個(gè)、個(gè)、個(gè)正方形連接成的圖形,在圖中,;在圖中,;通過以上計(jì)算,請(qǐng)寫出圖中______(用含的式子表示)6、在菱形ABCD中,∠B=60°,BC=2cm,M為AB的中點(diǎn),N為BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),將△BMN沿直線MN折疊,使點(diǎn)B落在點(diǎn)E處,連接DE,CE,當(dāng)△CDE為等腰三角形時(shí),線段BN的長(zhǎng)為_____.7、一個(gè)三角形三邊長(zhǎng)之比為4∶5∶6,三邊中點(diǎn)連線組成的三角形的周長(zhǎng)為30cm,則原三角形最大邊長(zhǎng)為_________cm.8、如圖,正方形的邊長(zhǎng)為4,它的兩條對(duì)角線交于點(diǎn),過點(diǎn)作邊的垂線,垂足為,的面積為,過點(diǎn)作的垂線,垂足為,△的面積為,過點(diǎn)作的垂線,垂足為,△的面積為,△的面積為,那么__,則__.9、如圖,矩形ABCD中,AB=9,AD=12,點(diǎn)M在對(duì)角線BD上,點(diǎn)N為射線BC上一動(dòng)點(diǎn),連接MN,DN,且∠DNM=∠DBC,當(dāng)DMN是等腰三角形時(shí),線段BN的長(zhǎng)為___.10、如圖,在矩形ABCD中,AB=2,AD=2,E為BC邊上一動(dòng)點(diǎn),F(xiàn)、G為AD邊上兩個(gè)動(dòng)點(diǎn),且∠FEG=30°,則線段FG的長(zhǎng)度最大值為_____.三、解答題(5小題,每小題6分,共計(jì)30分)1、在長(zhǎng)方形紙片ABCD中,點(diǎn)E是邊CD上的一點(diǎn),將△AED沿AE所在的直線折疊,使點(diǎn)D落在點(diǎn)F處.
(1)如圖1,若點(diǎn)F落在對(duì)角線AC上,且∠BAC=54°,則∠DAE的度數(shù)為________°.(2)如圖2,若點(diǎn)F落在邊BC上,且AB=CD=6,AD=BC=10,求CE的長(zhǎng).(3)如圖3,若點(diǎn)E是CD的中點(diǎn),AF的延長(zhǎng)線交BC于點(diǎn)G,且AB=CD=6,AD=BC=10,求CG的長(zhǎng).2、△ABC為等邊三角形,AB=4,AD⊥BC于點(diǎn)D,E為線段AD上一點(diǎn),AE=.以AE為邊在直線AD右側(cè)構(gòu)造等邊△AEF.連結(jié)CE,N為CE的中點(diǎn).
(1)如圖1,EF與AC交于點(diǎn)G,①連結(jié)NG,求線段NG的長(zhǎng);②連結(jié)ND,求∠DNG的大?。?)如圖2,將△AEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α.M為線段EF的中點(diǎn).連結(jié)DN、MN.當(dāng)30°<α<120°時(shí),猜想∠DNM的大小是否為定值,并證明你的結(jié)論.3、如圖,?ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,點(diǎn)F在線段BD上,且DE=BF.求證:AE∥CF.4、如圖所示,在△ABC中,AD是邊BC上的高,CE是邊AB上的中線,G是CE的中點(diǎn),AB=2CD,求證:DG⊥CE.
5、如圖,四邊形ABCD是平行四邊形,∠BAC=90°.(1)尺規(guī)作圖:在BC上截取CE,使CE=CD,連接DE與AC交于點(diǎn)F,過點(diǎn)F作線段AD的垂線交AD于點(diǎn)M;(不寫作法,保留作圖痕跡)(2)在(1)的條件下,猜想線段FM和CF的數(shù)量關(guān)系,并證明你的結(jié)論.-參考答案-一、單選題1、C【解析】【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解設(shè)BE=x,在Rt△EFC中利用勾股定理列出方程,通過解方程可得答案.【詳解】解:矩形ABCD,設(shè)BE=x,∵AE為折痕,∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,∴Rt△EFC中,,EC=2-x,∴,解得:,則點(diǎn)E到點(diǎn)B的距離為:.故選:C.【點(diǎn)睛】本題考查了勾股定理和矩形與折疊問題;二次根式的乘法運(yùn)算,利用對(duì)折得到,再利用勾股定理列方程是解本題的關(guān)鍵.2、B【解析】【分析】連接AC,由平行四邊形的性質(zhì)可得,再由E、F分別是BC,CD的中點(diǎn),即可得到,,,由此求解即可.【詳解】解:如圖所示,連接AC,∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,AB=CD,AB∥CD,∴∵E、F分別是BC,CD的中點(diǎn),∴,,,∴,故選B.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),與三角形中線有關(guān)的面積問題,解題的關(guān)鍵在于能夠熟練掌握平行四邊形的性質(zhì).3、A【解析】【分析】可以設(shè)∠EAD′=α,∠FAB′=β,根據(jù)折疊可得∠DAF=∠D′AF,∠BAE=∠B′AE,用α,β表示∠DAF=10°+β,∠BAE=10°+α,根據(jù)四邊形ABCD是矩形,利用∠DAB=90°,列方程10°+β+β+10°+10°+α+α=90°,求出α+β=30°即可求解.【詳解】解:設(shè)∠EAD′=α,∠FAB′=β,根據(jù)折疊性質(zhì)可知:∠DAF=∠D′AF,∠BAE=∠B′AE,∵∠B′AD′=10°,∴∠DAF=10°+β,∠BAE=10°+α,∵四邊形ABCD是矩形∴∠DAB=90°,∴10°+β+β+10°+10°+α+α=90°,∴α+β=30°,∴∠EAF=∠B′AD′+∠D′AE+∠FAB′,=10°+α+β,=10°+30°,=40°.則∠EAF的度數(shù)為40°.故選:A.【點(diǎn)睛】本題通過折疊變換考查學(xué)生的邏輯思維能力,解決此類問題,應(yīng)結(jié)合題意,最好實(shí)際操作圖形的折疊,易于找到圖形間的關(guān)系.4、D【解析】【分析】根據(jù)正方形的性質(zhì)和折疊的性質(zhì)可得AD=DF,∠A=∠GFD=90°,于是根據(jù)“HL”判定Rt△ADG≌Rt△FDG;②再由GF+GB=GA+GB=12,EB=EF,△BGE為直角三角形,可通過勾股定理列方程求出AG=4,BG=8,即可判斷;③由△BEF是等腰三角形,證明∠EBF=∠DEC,;④結(jié)合①可得AG=GF,根據(jù)等高的兩個(gè)三角形的面積的比等于底與底的比即可求出三角形BEF的面積.【詳解】解:①由折疊可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,在Rt△ADG和Rt△FDG中,∴Rt△ADG≌Rt△FDG(HL),故①正確;②∵正方形邊長(zhǎng)是12,∴BE=EC=EF=6,設(shè)AG=FG=x,則EG=x+6,BG=12?x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12?x)2,解得:x=4,∴AG=GF=4,BG=8,BG=2AG,故②正確;③∵EF=EC=EB,∴∠EFB=∠EBF,∵∠DEC=∠DEF,∠CEF=∠EFB+∠EBF,∴∠DEC=∠EBF,∴BF//DE,故③正確;④∵S△GBE=BE?BG=×6×8=24,∵GF=AG=4,EF=BE=6,∴,∴S△BEF=S△GBE=×24=,故④正確.綜上可知正確的結(jié)論的是4個(gè).故選:D.【點(diǎn)睛】本題考查了圖形的翻折變換的性質(zhì)和正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,平行線的判定,三角形的面積計(jì)算,有一定的難度.5、A【解析】【分析】由題意可得∠AGF=∠DAB=90°,由平行線的性質(zhì)可得,即可得∠DGF=70°.【詳解】解:∵四邊形ABCD和四邊形AEFG都是矩形∴∠AGF=∠DAB=90°,DC//AB∴∴故選:A.【點(diǎn)睛】本題考查了矩形的性質(zhì),熟練掌握矩形的性質(zhì)是本題的關(guān)鍵.6、D【解析】【分析】根據(jù)翻折變換的性質(zhì)可得∠BAC=∠CAB′,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠BAC=∠ACD,從而得到∠ACD=∠CAB′,然后根據(jù)等角對(duì)等邊可得AE=CE,從而得解.【詳解】解:∵矩形紙片ABCD沿對(duì)角線AC折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,∴結(jié)論正確的是D選項(xiàng).故選D.【點(diǎn)睛】本題考查了翻折變換的性質(zhì),平行線的性質(zhì),矩形的對(duì)邊互相平行,等角對(duì)等邊的性質(zhì),熟記各性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.7、D【解析】【分析】由平行四邊形的判定與性質(zhì)、矩形的判定分別對(duì)各個(gè)選項(xiàng)進(jìn)行判斷即可.【詳解】解:A、∵對(duì)角線互相平分的四邊形是平行四邊形,∴對(duì)角線互相平分且相等的四邊形才是矩形,∴選項(xiàng)A不符合題意;B、∵兩組對(duì)邊分別相等是平行四邊形,∴選項(xiàng)B不符合題意;C、∵對(duì)角線互相平分且相等的四邊形才是矩形,∴對(duì)角線相等的四邊形不是矩形,∴選項(xiàng)C不符合題意;D、∵對(duì)角線交點(diǎn)到四個(gè)頂點(diǎn)的距離都相等,∴對(duì)角線互相平分且相等,∵對(duì)角線互相平分且相等的四邊形是矩形,∴選項(xiàng)D符合題意;故選:D.【點(diǎn)睛】本題考查了矩形的判定、平行四邊形的判定與性質(zhì)、解題的關(guān)鍵是熟記矩形的判定定理.8、C【解析】【分析】作出平行四邊形,根據(jù)平行四邊形的性質(zhì)可得,,然后在中,利用三角形三邊的關(guān)系即可確定m的取值范圍.【詳解】解:如圖所示:∵四邊形ABCD為平行四邊形,∴,,在中,,∴,即,故選:C.【點(diǎn)睛】題目主要考查平行四邊形的性質(zhì)及三角形三邊的關(guān)系,熟練掌握平行四邊形的性質(zhì)及三角形三邊關(guān)系是解題關(guān)鍵.9、C【解析】【分析】如圖所示,,,,DE,DF,EF分別是三角形ABC的中位線,GH,GI,HI分別是△DEF的中位線,則,,,即可得到△DEF的周長(zhǎng),由此即可求出其他四個(gè)新三角形的周長(zhǎng),最后求和即可.【詳解】解:如圖所示,,,,DE,DF,EF分別是三角形ABC的中位線,GH,GI,HI分別是△DEF的中位線,∴,,,∴△DEF的周長(zhǎng),同理可得:△GHI的周長(zhǎng),∴第三次作中位線得到的三角形周長(zhǎng)為,∴第四次作中位線得到的三角形周長(zhǎng)為∴第三次作中位線得到的三角形周長(zhǎng)為∴這五個(gè)新三角形的周長(zhǎng)之和為,故選C.【點(diǎn)睛】本題主要考查了三角形中位線定理,解題的關(guān)鍵在于能夠熟練掌握三角形中位線定理.10、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)先求出∠B的度數(shù),即可得到答案.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠B=180°-∠A=150°,∴∠B:∠A=5:1,故選B.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握平行四邊形鄰角互補(bǔ).二、填空題1、①②③④【解析】【分析】①根據(jù)∠DAC=60°,OD=OA,得出△OAD為等邊三角形,再由△DFE為等邊三角形,得∠DOA=∠DEF=60°,再利用角的等量代換,即可得出結(jié)論①正確;②連接OE,利用SAS證明△DAF≌△DOE,再證明△ODE≌△OCE,即可得出結(jié)論②正確;③通過等量代換即可得出結(jié)論③正確;④延長(zhǎng)OE至,使=OD,連接,通過△DAF≌△DOE,∠DOE=60°,可分析得出點(diǎn)F在線段AO上從點(diǎn)A至點(diǎn)O運(yùn)動(dòng)時(shí),點(diǎn)E從點(diǎn)O沿線段運(yùn)動(dòng)到,從而得出結(jié)論④正確;【詳解】解:①設(shè)與的交點(diǎn)為如圖所示:∵∠DAC=60°,OD=OA,∴△OAD為等邊三角形,∴∠DOA=∠DAO=∠ADO=60°,∵△DFE為等邊三角形,∴∠DEF=60°,∴∠DOA=∠DEF=60°,∴,∴故結(jié)論①正確;②如圖,連接OE,在△DAF和△DOE中,,∴△DAF≌△DOE(SAS),∴∠DOE=∠DAF=60°,∵∠COD=180°﹣∠AOD=120°,∴∠COE=∠COD﹣∠DOE=120°﹣60°=60°,∴∠COE=∠DOE,在△ODE和△OCE中,,∴△ODE≌△OCE(SAS),∴ED=EC,∠OCE=∠ODE,故結(jié)論②正確;③∵∠ODE=∠ADF,∴∠ADF=∠OCE,即∠ADF=∠ECF,故結(jié)論③正確;④如圖,延長(zhǎng)OE至,使=OD,連接,∵△DAF≌△DOE,∠DOE=60°,∴點(diǎn)F在線段AO上從點(diǎn)A至點(diǎn)O運(yùn)動(dòng)時(shí),點(diǎn)E從點(diǎn)O沿線段運(yùn)動(dòng)到,∵∴設(shè),則∴在中,即解得:∴=OD=AD=,∴點(diǎn)E運(yùn)動(dòng)的路程是,故結(jié)論④正確;故答案為:①②③④.【點(diǎn)睛】本題主要考查了幾何綜合,其中涉及到了等邊三角形判定及性質(zhì),相似三角形的判定及性質(zhì),全等三角形的性質(zhì)及判定,三角函數(shù)的比值關(guān)系,矩形的性質(zhì)等知識(shí)點(diǎn),熟悉掌握幾何圖形的性質(zhì)合理做出輔助線是解題的關(guān)鍵.2、16【解析】【分析】根據(jù)正方形對(duì)角線的長(zhǎng),可將正方形的邊長(zhǎng)求出,進(jìn)而可將正方形的周長(zhǎng)求出.【詳解】解:設(shè)正方形的邊長(zhǎng)為x,∵正方形的對(duì)角線長(zhǎng)為cm,∴,解得:x=4,∴正方形的邊長(zhǎng)為:4(cm),∴正方形的周長(zhǎng)為4×4=16(cm).故答案為:16.【點(diǎn)睛】本題考查了正方形的性質(zhì),勾股定理,解決本題的關(guān)鍵是掌握正方形的性質(zhì).3、10【解析】【分析】如圖,由題意得:四邊形為矩形,證明是等邊三角形,結(jié)合矩形的性質(zhì)可得答案.【詳解】解:如圖,由題意得:四邊形為矩形,是等邊三角形,故答案為:【點(diǎn)睛】本題考查的是等邊三角形的判定與性質(zhì),矩形的性質(zhì),掌握“矩形的對(duì)角線相等且互相平分”是解本題的關(guān)鍵.4、【解析】【分析】作PM⊥AD于M,交BC于N,根據(jù)矩形的性質(zhì)可得S△PEB=S△PFD即可求解.【詳解】解:作PM⊥AD于M,交BC于N.則有四邊形AEPM,四邊形DFPM,四邊形CFPN,四邊形BEPN都是矩形,,∴,,∴S陰=9+9=18,故答案為:18.【點(diǎn)睛】本題考查矩形的性質(zhì)、三角形的面積等知識(shí),解題的關(guān)鍵是證明.5、90n【解析】【分析】連接各小正方形的對(duì)角線,由圖1中四邊形內(nèi)角和定理化簡(jiǎn)可得:;由圖2中四邊形內(nèi)角和定理化簡(jiǎn)可得:;結(jié)合圖形即可發(fā)現(xiàn)規(guī)律,求得結(jié)果.【詳解】解:連接各小正方形的對(duì)角線,如下圖:圖中,,即,圖中,,即,,以此類推,,故答案為:.【點(diǎn)睛】題目主要考查根據(jù)規(guī)律列出相應(yīng)代數(shù)式,正方形性質(zhì)等,理解題意,探索發(fā)現(xiàn)規(guī)律是解題關(guān)鍵.6、cm或2cm【解析】【分析】分兩種情況:①如圖1,當(dāng)DE=DC時(shí),連接DM,作DG⊥BC于G,由菱形的性質(zhì)得出AB=CD=BC=2,AD∥BC,AB∥CD,得出∠DCG=∠B=60°,∠A=120°,DE=AD=2,求出DG=,CG=1,BG=BC+CG=3,由折疊的性質(zhì)得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,證明△ADM≌△EDM,得出∠A=∠DEM=120°,證出D、E、N三點(diǎn)共線,設(shè)BN=EN=x,則GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得出方程,解方程即可;②如圖2,當(dāng)CE=CD上,CE=CD=AD,此時(shí)點(diǎn)E與A重合,N與點(diǎn)C重合,CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=2(含CE=DE這種情況).【詳解】解:分兩種情況,①如圖1,當(dāng)DE=DC時(shí),連接DM,作DG⊥BC于G,∵四邊形ABCD是菱形,∴AB=CD=BC=2,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=120°,∴DE=AD=2,∵DG⊥BC,∴∠CDG=90°-60°=30°,∴CG=CD=1,∴DG=CG=,BG=BC+CG=3,∵M(jìn)為AB的中點(diǎn),∴AM=BM=1,由折疊的性質(zhì)得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,AD=ED,AM=EM,DM=DM,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=120°,∴∠MEN+∠DEM=180°,∴D、E、N三點(diǎn)共線,設(shè)BN=EN=x,則GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得:,解得:x=,即BN=cm;②當(dāng)CE=CD時(shí),CE=CD=AD,此時(shí)點(diǎn)E與A重合,N與點(diǎn)C重合,如圖2所示:CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=2cm(符合題干要求);綜上所述,當(dāng)△CDE為等腰三角形時(shí),線段BN的長(zhǎng)為cm或2cm;故答案為cm或2cm.【點(diǎn)睛】本題考查了折疊變換的性質(zhì)、菱形的性質(zhì)、全等三角形的判定與性質(zhì)、三點(diǎn)共線、勾股定理、直角三角形的性質(zhì)、等腰三角形的性質(zhì)等知識(shí),熟練掌握并靈活運(yùn)用是解題的關(guān)鍵.7、24【解析】【分析】由三邊長(zhǎng)之比得到三角形的三條中位線之比,再由這三條中位線組成的三角形周長(zhǎng)求出三中位線長(zhǎng),推出邊長(zhǎng),再比大小判斷即可.【詳解】∵如圖,H、I、J分別為BC,AC,AB的中點(diǎn)∴,,又∵∴∵AB:AC:BC=4:5:6,即BC邊最長(zhǎng)∴故填24.【點(diǎn)睛】本題考查了三角形中位線的性質(zhì),即三角形的中位線平行于第三邊且等于第三邊的一半.8、【解析】【分析】由正方形的性質(zhì)得出、、、、,,得出規(guī)律,再求出它們的和即可.【詳解】解:四邊形是正方形,,,,,,,,,,,;故答案為:;.【點(diǎn)睛】本題是圖形的變化題,考查了正方形的性質(zhì)、三角形面積的計(jì)算,解題的關(guān)鍵是通過計(jì)算三角形的面積得出規(guī)律.9、15或24或【解析】【分析】分三種情形討論求解即可.【詳解】解:①如圖1中,當(dāng)NM=ND時(shí),∴∠NDM=∠NMD,∵∠MND=∠CBD,∴∠BDN=∠BND,∴BD=BN==15;②如圖2中,當(dāng)DM=DN時(shí),此時(shí)M與B重合,∴BC=CN=12,∴BN=24;③如圖3中,當(dāng)MN=MD時(shí),∴∠NDM=∠MND,∵∠MND=∠CBD,∴∠NDM=∠MND=∠CBD,∴BN=DN,設(shè)BN=DN=x,在Rt△DNC中,∵DN2=CN2+CD2,∴x2=(12-x)2+92,∴x=,綜上,當(dāng)DMN是等腰三角形時(shí),線段BN的長(zhǎng)為15或24或.故答案為:15或24或.【點(diǎn)睛】本題考查了矩形的性質(zhì)、等腰三角形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用分類討論的思想思考問題,注意不能漏解.10、【解析】【分析】如圖所示,在中,F(xiàn)G邊的高為AB=2,∠FEG=30°,為定角定高的三角形,故當(dāng)E與B點(diǎn)或C點(diǎn)重合,G與D點(diǎn)重合或F與A點(diǎn)重合時(shí),F(xiàn)G的長(zhǎng)度最大,則由矩形ABCD中,AB=2,AD=2可知,∠ABD=60°,故∠ABF=60°-30°=30°,則AF=,則FG=AD-AF=.【詳解】如圖所示,在中,F(xiàn)G邊的高為AB=2,∠FEG=30°,為定角定高的三角形故當(dāng)E與B點(diǎn)或C點(diǎn)重合,G與D點(diǎn)重合或F與A點(diǎn)重合時(shí),F(xiàn)G的長(zhǎng)度最大∵矩形ABCD中,AB=2,AD=2∴∠ABD=60°∴∠ABF=60°-30°=30°∴AF=∴FG=AD-AF=.故答案為:.【點(diǎn)睛】本題考查了四邊形中動(dòng)點(diǎn)問題,圖解法數(shù)學(xué)思想依據(jù)是數(shù)形結(jié)合思想.它的應(yīng)用能使復(fù)雜問題簡(jiǎn)單化、抽象問題具體化.特殊四邊形的幾何問題,很多困難源于問題中的可動(dòng)點(diǎn).如何合理運(yùn)用各動(dòng)點(diǎn)之間的關(guān)系,同學(xué)們往往缺乏思路,常常導(dǎo)致思維混亂.實(shí)際上求解特殊四邊形的動(dòng)點(diǎn)問題,關(guān)鍵是是利用圖解法抓住它運(yùn)動(dòng)中的某一瞬間,尋找合理的代數(shù)關(guān)系式,確定運(yùn)動(dòng)變化過程中的數(shù)量關(guān)系,圖形位置關(guān)系,分類畫出符合題設(shè)條件的圖形進(jìn)行討論,就能找到解決的途徑,有效避免思維混亂.三、解答題1、(1)18;(2)CE的長(zhǎng)為;(3)CG的長(zhǎng)為.【分析】(1)根據(jù)矩形的性質(zhì)得∠DAC=36°,根據(jù)折疊的性質(zhì)得∠DAE=18°;(2)根據(jù)矩形性質(zhì)得∠B=∠C=90°,BC=AD=10,CD=AB=6,根據(jù)折疊的性質(zhì)得AF=AD=10,EF=ED,根據(jù)勾股定理得BF=8,則CF=2,設(shè)CE=x,則EF=ED=6﹣x,根據(jù)勾股定理得,解得:,即CE的長(zhǎng)為;(3)連接EG,,由題意得DE=CE,由折疊的性質(zhì)得:AF=AD=10,∠AFE=∠D=90°,F(xiàn)E=DE,則∠EFG=∠C=90°,由HL得Rt△CEG≌Rt△FEG,則CG=FG,設(shè)CG=FG=y(tǒng),則AG=10+y,BG=10﹣y,在Rt△ABG中,由勾股定理得,解得,即CG的長(zhǎng)為.【詳解】解:(1)∵四邊形ABCD是矩形,∴∠DAB=90°,∴∠DAC=90°-∠BAC=90°-54°=36°,∵△AED沿AE所在的直線折疊,使點(diǎn)D落在點(diǎn)F處,∴∠DAE=∠EAC=∠DAC=×36°=18°,故答案為:18;(2)∵四邊形ABCD是長(zhǎng)方形,∴∠B=∠C=90°,BC=AD=10,CD=AB=6,由折疊的性質(zhì)得:AF=AD=10,EF=ED,∴,∴CF=BC﹣BF=10﹣8=2,設(shè)CE=x,則EF=ED=6﹣x,在Rt△CEF中,由勾股定理得:,解得:,即CE的長(zhǎng)為;(3)解:如圖所示,連接EG,∵點(diǎn)E是CD的中點(diǎn),∴DE=CE,由折疊的性質(zhì)得:AF=AD=10,∠AFE=∠D=90°,F(xiàn)E=DE,∴∠EFG=∠C=90°,在Rt△CEG和Rt△FEG中,,∴Rt△CEG≌Rt△FEG(HL),∴CG=FG,設(shè)CG=FG=y(tǒng),則AG=AF+FG=10+y,BG=BC﹣CG=10﹣y,在Rt△ABG中,由勾股定理得:,解得:,即CG的長(zhǎng)為.【點(diǎn)睛】本題考查了矩形的性質(zhì),折疊的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,解題的關(guān)鍵是掌握并靈活運(yùn)用這些知識(shí)點(diǎn).2、(1)①;②;(2)的大小是定值,證明見解析.【分析】(1)①先根據(jù)等邊三角形的性質(zhì)、勾股定理可得,從而可得,再利用勾股定理可得,然后根據(jù)等邊三角形的性質(zhì)可得,最后根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可得;②先根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,再根據(jù)等腰三角形的性質(zhì)可得,從而可得,然后根據(jù)四邊形的內(nèi)角和
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026福建兆佳貿(mào)易有限公司招聘項(xiàng)目制工作人員補(bǔ)充備考考試試題及答案解析
- 2026北京積水潭醫(yī)院聊城醫(yī)院博士研究生引進(jìn)22人考試參考試題及答案解析
- 普外科引流管護(hù)理的跨學(xué)科合作模式
- 2026年安徽潁濱市政工程有限公司公開招聘4名備考考試題庫(kù)及答案解析
- 2026湖南長(zhǎng)沙市長(zhǎng)郡芙蓉中學(xué)春季物理學(xué)科教師招聘?jìng)淇伎荚囶}庫(kù)及答案解析
- 2026浙江寧波市升力同創(chuàng)科技咨詢服務(wù)有限公司招聘1人考試備考題庫(kù)及答案解析
- 2026湖北省奕派科技高級(jí)管理崗位招聘筆試參考題庫(kù)及答案解析
- 樂山修路施工方案(3篇)
- 保溫罐施工方案(3篇)
- 2026遼寧省文物考古研究院招聘3人備考考試題庫(kù)及答案解析
- 非遺技藝傳承活動(dòng)策劃與實(shí)施
- 足浴店老板與技師免責(zé)協(xié)議
- GB/T 45494-2025項(xiàng)目、項(xiàng)目群和項(xiàng)目組合管理背景和概念
- 票務(wù)服務(wù)合同協(xié)議
- 二零二五版醫(yī)院物業(yè)管理服務(wù)合同標(biāo)準(zhǔn)范例
- 2025下半年中學(xué)教師資格證英語(yǔ)《學(xué)科知識(shí)與教學(xué)能力》真題卷(帶答案)
- 漁獲物船上保鮮技術(shù)規(guī)范(DB3309-T 2004-2024)
- 東北大學(xué)2015年招生簡(jiǎn)章
- 資金管理辦法實(shí)施細(xì)則模版(2篇)
- IATF16949-質(zhì)量手冊(cè)(過程方法無(wú)刪減版)
- 河南省安陽(yáng)市滑縣2024-2025學(xué)年高二數(shù)學(xué)上學(xué)期期末考試試題文
評(píng)論
0/150
提交評(píng)論