版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
中考數(shù)學總復習《圓》能力檢測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、已知一個三角形的三邊長分別為5、7、8,則其內(nèi)切圓的半徑為()A. B. C. D.2、如圖,⊙O是Rt△ABC的外接圓,∠ACB=90°,過點C作⊙O的切線,交AB的延長線于點D.設∠A=α,∠D=β,則()A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°3、如圖,AB是半圓的直徑,點D是弧AC的中點,∠ABC=50°,則∠BCD=()A.105° B.110° C.115° D.120°4、如圖,公園內(nèi)有一個半徑為18米的圓形草坪,從地走到地有觀賞路(劣?。┖捅忝衤罚ň€段).已知、是圓上的點,為圓心,,小強從走到,走便民路比走觀賞路少走(
)米.A. B.C. D.5、如圖,AB是⊙O的直徑,BC與⊙O相切于點B,AC交⊙O于點D,若∠ACB=50°,則∠BOD等于()A.40° B.50° C.60° D.80°第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,一下水管道橫截面為圓形,直徑為100cm,下雨前水面寬為60cm,一場大雨過后,水面寬為80cm,則水位上升______cm.2、如圖,矩形ABCD的對角線AC,BD交于點O,分別以點A,C為圓心,AO長為半徑畫弧,分別交AB,CD于點E,F(xiàn).若BD=4,∠CAB=36°,則圖中陰影部分的面積為___________.(結果保留π).3、如圖,在中,半徑,是半徑上一點,且.,是上的兩個動點,,是的中點,則的長的最大值等于__________.4、如圖,是的外接圓的直徑,若,則______.5、在⊙O中,若弦垂直平分半徑,則弦所對的圓周角等于_________°.三、解答題(5小題,每小題10分,共計50分)1、如圖,在中,,以為直徑的⊙O與相交于點,過點作⊙O的切線交于點.(1)求證:;(2)若⊙O的半徑為,,求的長.2、如圖,已知的直徑為,于點,與相交于點,在上取一點,使得.(1)求證:是的切線;(2)填空:①當,時,則___________.②連接,當?shù)亩葦?shù)為________時,四邊形為正方形.3、已知圓弧的半徑為15厘米,圓弧的長度為,求圓心角的度數(shù).4、如圖,,比較與的長度,并證明你的結論.5、如圖,在中,∠=45°,,以為直徑的⊙與邊交于點.(1)判斷直線與⊙的位置關系,并說明理由;(2)若,求圖中陰影部分的面積.-參考答案-一、單選題1、C【解析】【分析】先依據(jù)題意畫出圖形,如圖(見解析),過點A作于D,利用勾股定理可求出AD的長,再根據(jù)三角形內(nèi)切圓的性質(zhì)、三角形的面積公式即可得出答案.【詳解】解:如圖,,內(nèi)切圓O的半徑為,切點為,則過點A作于D,設,則由勾股定理得:則,即解得,即又即解得則內(nèi)切圓的半徑為故選:C.【考點】本題考查了三角形內(nèi)切圓的性質(zhì)、勾股定理等知識點,讀懂題意,正確畫出圖形,并求出AD的長是解題關鍵.2、C【解析】【分析】連接OC,由∠BOC是△AOC的外角,可得∠BOC=2∠A=2α,由CD是⊙O的切線,可求∠OCD=90°,可得∠D=90°﹣2α=β即可.【詳解】連接OC,如圖,∵⊙O是Rt△ABC的外接圓,∠ACB=90°,∴AB是直徑,∵∠A=α,OA=OC,∠BOC是△AOC的外角,∴∠A=∠ACO,∴∠BOC=∠A+∠ACO=2∠A=2α,∵CD是⊙O的切線,∴OC⊥CD,∴∠OCD=90°,∴∠D=90°﹣∠BOC=90°﹣2α=β,∴2α+β=90°.故選:C.【考點】本題考查圓的半徑相等,三角形外角性質(zhì),切線性質(zhì),直角三角形兩銳角互余性質(zhì),掌握圓的半徑相等,三角形外角性質(zhì),切線性質(zhì),直角三角形兩銳角互余性質(zhì).3、C【解析】【分析】連接AC,然后根據(jù)圓內(nèi)接四邊形的性質(zhì),可以得到∠ADC的度數(shù),再根據(jù)點D是弧AC的中點,可以得到∠DCA的度數(shù),直徑所對的圓周角是90°,從而可以求得∠BCD的度數(shù).【詳解】解:連接AC,∵∠ABC=50°,四邊形ABCD是圓內(nèi)接四邊形,∴∠ADC=130°,∵點D是弧AC的中點,∴CD=AC,∴∠DCA=∠DAC=25°,∵AB是直徑,∴∠BCA=90°,∴∠BCD=∠BCA+∠DCA=115°,故選:C.【考點】本題考查圓周角定理、圓心角、弧、弦的關系,解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.4、D【解析】【分析】作OC⊥AB于C,如圖,根據(jù)垂徑定理得到AC=BC,再利用等腰三角形的性質(zhì)和三角形內(nèi)角和計算出∠A,從而得到OC和AC,可得AB,然后利用弧長公式計算出的長,最后求它們的差即可.【詳解】解:作OC⊥AB于C,如圖,則AC=BC,∵OA=OB,∴∠A=∠B=(180°-∠AOB)=30°,在Rt△AOC中,OC=OA=9,AC=,∴AB=2AC=,又∵=,∴走便民路比走觀賞路少走米,故選D.【考點】本題考查了垂徑定理:垂徑定理和勾股定理相結合,構造直角三角形,可解決計算弦長、半徑、弦心距等問題.5、D【解析】【分析】根據(jù)切線的性質(zhì)得到∠ABC=90°,根據(jù)直角三角形的性質(zhì)求出∠A,根據(jù)圓周角定理計算即可.【詳解】∵BC是⊙O的切線,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圓周角定理得,∠BOD=2∠A=80°,故選D.【考點】本題考查的是切線的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關鍵.二、填空題1、10或70【解析】【分析】分水位在圓心下以及圓心上兩種情況,畫出符合題意的圖形進行求解即可得.【詳解】如圖,作半徑于C,連接OB,由垂徑定理得:=AB=×60=30cm,在中,,當水位上升到圓心以下時
水面寬80cm時,則,水面上升的高度為:;當水位上升到圓心以上時,水面上升的高度為:,綜上可得,水面上升的高度為30cm或70cm,故答案為:10或70.【考點】本題考查了垂徑定理的應用,掌握垂徑定理、靈活運用分類討論的思想是解題的關鍵.2、【解析】【分析】利用矩形的性質(zhì)求得OA=OC=OB=OD=2,再利用扇形的面積公式求解即可.【詳解】解:∵矩形ABCD的對角線AC,BD交于點O,且BD=4,∴AC=BD=4,OA=OC=OB=OD=2,∴,故答案為:.【考點】本題考查了矩形的性質(zhì),扇形的面積等知識,正確的識別圖形是解題的關鍵.3、【解析】【分析】當點F與點D運動至共線時,OF長度最大,此時F是AB的中點,則OF⊥AB,設OF為x,則DF=x﹣4,在Rt△BOF中,利用勾股定理進行求解即可.【詳解】∵當點F與點D運動至共線時,OF長度最大,如圖所示,∵F是AB的中點,∴OC⊥AB,設OF為x,則DF=x﹣4,∵△ABD是等腰直角三角形,∴DF=AB=BF=x﹣4,在Rt△BOF中,OB2=OF2+BF2,∵OB=OC=6,∴,解得,或(舍去),∴OF的長的最大值等于,故答案為:.【考點】本題考查了垂徑定理,直角三角形斜邊中線的性質(zhì),勾股定理等知識,確定點F與點D運動至共線時,OF長度最大是解題的關鍵.4、【解析】【分析】連接BD,如圖,根據(jù)圓周角定理得到∠ABD=90°,則利用互余計算出∠D=50°,然后再利用圓周角定理得到∠ACB的度數(shù).【詳解】連接BD,如圖,∵AD為△ABC的外接圓⊙O的直徑,∴∠ABD=90°,∴∠D=90°-∠BAD=90°-40°=50°,∴∠ACB=∠D=50°.故答案為:50.【考點】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.5、120°或60°【解析】【分析】根據(jù)弦垂直平分半徑及OB=OC證明四邊形OBAC是矩形,再根據(jù)OB=OA,OE=求出∠BOE=60°,即可求出答案.【詳解】設弦垂直平分半徑于點E,連接OB、OC、AB、AC,且在優(yōu)弧BC上取點F,連接BF、CF,∴OB=AB,OC=AC,∵OB=OC,∴四邊形OBAC是菱形,∴∠BOC=2∠BOE,∵OB=OA,OE=,∴cos∠BOE=,∴∠BOE=60°,∴∠BOC=∠BAC=120°,∴∠BFC=∠BOC=60°,∴弦所對的圓周角為120°或60°,故答案為:120°或60°.【考點】此題考查圓的基本知識點:圓的垂徑定理,同圓的半徑相等的性質(zhì),圓周角定理,菱形的判定定理及性質(zhì)定理,銳角三角函數(shù),熟練掌握圓的各性質(zhì)定理是解題的關鍵.三、解答題1、(1)見詳解;(2)4.8.【解析】【分析】(1)連接OD,由AB=AC,OB=OD,則∠B=∠ODB=∠C,則OD∥AC,由DE為切線,即可得到結論成立;(2)連接AD,則有AD⊥BC,得到BD=CD=8,求出AD=6,利用三角形的面積公式,即可求出DE的長度.【詳解】解:連接OD,如圖:∵AB=AC,∴∠B=∠C,∵OB=OD,∴∠B=∠ODB,∴∠B=∠ODB=∠C,∴OD∥AC,∵DE是切線,∴OD⊥DE,∴AC⊥DE;(2)連接AD,如(1)圖,∵AB為直徑,AB=AC,∴AD是等腰三角形ABC的高,也是中線,∴CD=BD=,∠ADC=90°,∵AB=AC=,由勾股定理,得:,∵,∴;【考點】本題主要考查的是切線的性質(zhì)、等腰三角形的性質(zhì)、平行線的性質(zhì)、勾股定理,解題的關鍵是熟練掌握所學的性質(zhì)定理,正確的求出邊的長度.2、(1)詳見解析;(2)①10;②【解析】【分析】(1)連接OD,證明,得到,根據(jù)切線的判定定理證明;(2)①利用等腰三角形的性質(zhì)證明E是AC中點,再利用中位線定理得到,再用勾股定理求出OE,從而得到BC;②添加條件,先通過四個邊相等的四邊形是菱形,證明四邊形AODE是菱形,再加上一個直角就是正方形了.【詳解】解:(1)證明:如圖,連接,在和中,,∴,∴,∵,∴,∵,OD是半徑,∴DE是的切線;(2)①證明:∵,∴,∵,∴,∵,∴,∴,∴,∵,∴,即E是AC中點,∵O是AB中點,∴,在中,,∴BC=2OE=10,故答案是:10;②當時,四邊形AODE為正方形,證明:∵,,∴是等腰直角三角形,∴AB=AC,由(2)得AO=AE,∵AO=DO=AE=DE,∴四邊形AODE是菱形,∵,∴四邊形AODE是正方形,故答案是:.【考點】本題考查切線的證明,三角形中位線定理,正方形的證明,解題的關鍵是熟練掌握這些幾何的性質(zhì)定理并結合題目條件進行證明.3、【解析】【分析】根據(jù)弧長的計算公式計算即可.【詳解】解:圓心角的度數(shù).【考點】本題考查弧長的計算,掌握弧長公式是解題的關鍵.4、=,見解析.【解析】【分析】根據(jù)圓心角、弧、弦的關系,由AD=BC解得=,繼而得到=.【詳解】解:=,證明如下:∵AD=BC,∴=,∴+=+,即=.【考點】本題考查圓心角、弧、弦的關系,在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應的其余各組量都分別相等.5、(1)證明見解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職第一學年(園林工程技術)植物造景設計試題及答案
- 2026年計算機應用(辦公自動化)試題及答案
- 2025年中職(烹飪工藝與營養(yǎng))中式熱菜制作試題及答案
- 道路圍墻大門施工組織設計
- 貴州省貴陽市南明區(qū)2025年八年級上學期期末測試物理試題附答案
- 2026年部分大專可報不限專業(yè)武漢大學人民醫(yī)院招聘7人備考題庫參考答案詳解
- 軟件框架開發(fā)技術(SSM)期末考試試卷(6)及答案
- 2025 小學四年級思想品德下冊傳統(tǒng)節(jié)日習俗優(yōu)化調(diào)查課件
- 養(yǎng)老院老人生活照顧人員行為規(guī)范制度
- 養(yǎng)老院老人健康飲食營養(yǎng)師職業(yè)發(fā)展規(guī)劃制度
- 車輛日常安全檢查課件
- 成立合資公司合同范本
- 比亞迪索賠培訓課件
- 學堂在線 雨課堂 學堂云 研究生素養(yǎng)課-積極心理與情緒智慧 章節(jié)測試答案
- TCAMET 《城市軌道交通 車輛表面貼膜》編制說明(征求意見稿)
- 醫(yī)療衛(wèi)生機構網(wǎng)絡安全管理辦法
- 《保健食品標識培訓》課件
- 2023年非標自動化機械設計工程師年度總結及來年計劃
- 股骨頸骨折圍手術期護理
- 蜂窩煤成型機設計課程設計
- 民間個人借款擔保書
評論
0/150
提交評論