難點解析人教版8年級數(shù)學下冊《平行四邊形》同步測評練習題(含答案詳解)_第1頁
難點解析人教版8年級數(shù)學下冊《平行四邊形》同步測評練習題(含答案詳解)_第2頁
難點解析人教版8年級數(shù)學下冊《平行四邊形》同步測評練習題(含答案詳解)_第3頁
難點解析人教版8年級數(shù)學下冊《平行四邊形》同步測評練習題(含答案詳解)_第4頁
難點解析人教版8年級數(shù)學下冊《平行四邊形》同步測評練習題(含答案詳解)_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學下冊《平行四邊形》同步測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,已知是平分線上的一點,,,是的中點,,如果是上一個動點,則的最小值為()A. B. C. D.2、如圖,四邊形和四邊形都是矩形.若,則等于()A. B. C. D.3、如圖,菱形ABCD的邊長為6cm,∠BAD=60°,將該菱形沿AC方向平移2cm得到四邊形A′B′C′D′,A′D′交CD于點E,則點E到AC的距離為()A.1 B. C..2 D.24、已知,四邊形ABCD的對角線AC和BD相交于點O.設(shè)有以下條件:①AB=AD;②AC=BD;③AO=CO,BO=DO;④四邊形ABCD是矩形;⑤四邊形ABCD是菱形;⑥四邊形ABCD是正方形.那么,下列推理不成立的是()A.①④?⑥ B.①③?⑤ C.①②?⑥ D.②③?④5、如圖,在長方形ABCD中,AB=10cm,點E在線段AD上,且AE=6cm,動點P在線段AB上,從點A出發(fā)以2cm/s的速度向點B運動,同時點Q在線段BC上.以vcm/s的速度由點B向點C運動,當△EAP與△PBQ全等時,v的值為()A.2 B.4 C.4或 D.2或6、在□ABCD中,AC=24,BD=38,AB=m,則m的取值范圍是()A.24<m<39 B.14<m<62 C.7<m<31 D.7<m<127、如圖,點E是△ABC內(nèi)一點,∠AEB=90°,D是邊AB的中點,延長線段DE交邊BC于點F,點F是邊BC的中點.若AB=6,EF=1,則線段AC的長為()A.7 B. C.8 D.98、如圖,四邊形ABCD是平行四邊形,下列結(jié)論中錯誤的是()A.當?ABCD是矩形時,∠ABC=90° B.當?ABCD是菱形時,AC⊥BDC.當?ABCD是正方形時,AC=BD D.當?ABCD是菱形時,AB=AC9、在平面直角坐標系中,平行四邊形ABCD的頂點A、B、D的坐標分別是(0,0),(5,0),(2,3),則頂點C的坐標是()A.(7,3) B.(8,2) C.(3,7) D.(5,3)10、如圖,已知在正方形ABCD中,厘米,,點E在邊AB上,且厘米,如果點P在線段BC上以2厘米/秒的速度由B點向C點運動,同時,點Q在線段CD上以a厘米/秒的速度由C點向D點運動,設(shè)運動時間為t秒.若存在a與t的值,使與全等時,則t的值為()A.2 B.2或1.5 C.2.5 D.2.5或2第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,△ABC中,D、E分別是AB、AC的中點,若DE=4cm,則BC=_____cm.2、如圖,在△ABC中,D,E分別是邊AB,AC的中點,∠B=50°.現(xiàn)將△ADE沿DE折疊點A落在三角形所在平面內(nèi)的點為A1,則∠BDA1的度數(shù)為_____.3、如圖,在平面直角坐標系中,O是菱形ABCD對角線BD的中點,AD∥x軸,AD=4,∠A=60°.將菱形ABCD繞點O旋轉(zhuǎn),使點D落在x軸上,則旋轉(zhuǎn)后點C的對應(yīng)點的坐標是_____________.4、如圖,正方形紙片ABCD的邊長為12,E是邊CD上一點,連接AE.折疊該紙片,使點A落在AE上的G點,并使折痕經(jīng)過點B,得到折痕BF,點F在AD上.若,則GE的長為__________.5、已知正方形ABCD的一條對角線長為2,則它的面積是______.6、如圖,正方形ABCD中,BD為對角線,且BE為∠ABD的角平分線,并交CD延長線于點E,則∠E=______°.7、如圖,△ABC中,AC=BC=3,AB=2,將它沿AB翻折得到△ABD,點P、E、F分別為線段AB、AD、DB上的動點,則PE+PF的最小值是_____.8、如圖,在矩形ABCD中,對角線AC、BD相交于點O,點E、F分別是AO、AD的中點,若AB=6cm,BC=8cm,則EF=_____cm.9、如圖,在中,,,,為上的兩個動點,且,則的最小值是________.10、正方形ABCD的邊長為4,則圖中陰影部分的面積為___.三、解答題(5小題,每小題6分,共計30分)1、如圖,平行四邊形ABCD中,對角線AC、BD相交于點O,AB⊥AC,AB=3,AD=5,求BD的長.2、如圖,中,對角線AC、BD相交于點O,點E,F(xiàn),G,H分別是OA、OB、OC、OD的中點,順次連接EFGH.(1)求證:四邊形EFGH是平行四邊形(2)若的周長為2(AB+BC)=32,則四邊形EFGH的周長為__________3、如圖,已知四邊形ABCD是正方形,點E是AD邊上的一點(不與點A,D重合),連接CE,以CE為一邊作正方形CEFG,使點F,G與點A,B在CE的兩側(cè),連接BE并延長,交GD延長線于點H.(1)如圖1,請判斷線段BE與GD的數(shù)量關(guān)系和位置關(guān)系,并說明理由;(2)如圖2,連接BG,若AB=2,CE=,請你直接寫出的值.4、在△ABC中,AB=AC=x,BC=12,點D,E分別為BC,AC的中點,線段BE的垂直平分線交邊BC于點F,(1)當x=10時,求線段AD的長.(2)x取何值時,點F與點D重合.(3)當DF=1時,求x2的值.5、如圖,平行四邊形ABCD中,點E、F分別在CD、BC的延長線上,.

(1)求證:D是EC中點;(2)若,于點F,直接寫出圖中與CF相等的線段.-參考答案-一、單選題1、C【解析】【分析】根據(jù)題意由角平分線先得到是含有角的直角三角形,結(jié)合直角三角形斜邊上中線的性質(zhì)進而得到OP,DP的值,再根據(jù)角平分線的性質(zhì)以及垂線段最短等相關(guān)內(nèi)容即可得到PC的最小值.【詳解】解:∵點P是∠AOB平分線上的一點,,∴,∵PD⊥OA,M是OP的中點,∴,∴∵點C是OB上一個動點∴當時,PC的值最小,∵OP平分∠AOB,PD⊥OA,∴最小值,故選C.【點睛】本題主要考查了角平分線的性質(zhì)、含有角的直角三角形的選擇,直角三角形斜邊上中線的性質(zhì)、垂線段最短等相關(guān)內(nèi)容,熟練掌握相關(guān)性質(zhì)定理是解決本題的關(guān)鍵.2、A【解析】【分析】由題意可得∠AGF=∠DAB=90°,由平行線的性質(zhì)可得,即可得∠DGF=70°.【詳解】解:∵四邊形ABCD和四邊形AEFG都是矩形∴∠AGF=∠DAB=90°,DC//AB∴∴故選:A.【點睛】本題考查了矩形的性質(zhì),熟練掌握矩形的性質(zhì)是本題的關(guān)鍵.3、C【解析】【分析】根據(jù)題意連接BD,過點E作EF⊥AC于點F,根據(jù)菱形的性質(zhì)可以證明三角形ABD是等邊三角形,根據(jù)平移的性質(zhì)可得AD∥A′E,可得,,進而求出A′E,再利用30度角所對直角邊等于斜邊的一半即可得出結(jié)論.【詳解】解:如圖,連接BD,過點E作EF⊥AC于點F,∵四邊形ABCD是菱形,∴AD=AB,BD⊥AC,∵∠BAD=60°,∴三角形ABD是等邊三角形,∵菱形ABCD的邊長為6cm,∴AD=AB=BD=6cm,∴AG=GC=3(cm),∴AC=6(cm),∵AA′=2(cm),∴A′C=4(cm),∵AD∥A′E,∴,∴,∴A′E=4(cm),∵∠EA′F=∠DAC=∠DAB=30°,∴EF=A′E=2(cm).故選:C.【點睛】本題考查菱形的性質(zhì)以及等邊三角形的判定與性質(zhì)和平移的性質(zhì),解決本題的關(guān)鍵是掌握菱形的性質(zhì).4、C【解析】【分析】根據(jù)已知條件以及正方形、菱形、矩形、平行四邊形的判定條件,對選項進行分析判斷即可.【詳解】解:A、①④可以說明,一組鄰邊相等的矩形是正方形,故A正確.B、③可以說明四邊形是平行四邊形,再由①,一組臨邊相等的平行四邊形是菱形,故B正確.C、①②,只能說明兩組鄰邊分別相等,可能是菱形,但菱形不一定是正方形,故C錯誤.D、③可以說明四邊形是平行四邊形,再由②可得:對角線相等的平行四邊形為矩形,故D正確.故選:C.【點睛】本題主要是考查了特殊四邊形的判定,熟練掌握各類四邊形的判定條件,是解決本題的關(guān)鍵.5、D【解析】【分析】根據(jù)題意可知當△EAP與△PBQ全等時,有兩種情況:①當EA=PB時,△APE≌△BQP,②當AP=BP時,△AEP≌△BQP,分別按照全等三角形的性質(zhì)及行程問題的基本數(shù)量關(guān)系求解即可.【詳解】解:當△EAP與△PBQ全等時,有兩種情況:①當EA=PB時,△APE≌△BQP(SAS),∵AB=10cm,AE=6cm,∴BP=AE=6cm,AP=4cm,∴BQ=AP=4cm;∵動點P在線段AB上,從點A出發(fā)以2cm/s的速度向點B運動,∴點P和點Q的運動時間為:4÷2=2s,∴v的值為:4÷2=2cm/s;②當AP=BP時,△AEP≌△BQP(SAS),∵AB=10cm,AE=6cm,∴AP=BP=5cm,BQ=AE=6cm,∵5÷2=2.5s,∴2.5v=6,∴v=.故選:D.【點睛】本題考查矩形的性質(zhì)及全等三角形的判定與性質(zhì)等知識點,注意數(shù)形結(jié)合和分類討論并熟練掌握相關(guān)性質(zhì)及定理是解題的關(guān)鍵.6、C【解析】【分析】作出平行四邊形,根據(jù)平行四邊形的性質(zhì)可得,,然后在中,利用三角形三邊的關(guān)系即可確定m的取值范圍.【詳解】解:如圖所示:∵四邊形ABCD為平行四邊形,∴,,在中,,∴,即,故選:C.【點睛】題目主要考查平行四邊形的性質(zhì)及三角形三邊的關(guān)系,熟練掌握平行四邊形的性質(zhì)及三角形三邊關(guān)系是解題關(guān)鍵.7、C【解析】【分析】根據(jù)直角三角形的性質(zhì)求出DE,由EF=1,得到DF,再根據(jù)三角形中位線定理即可求出線段AC的長.【詳解】解:∵∠AEB=90,D是邊AB的中點,AB=6,∴DE=AB=3,∵EF=1,∴DF=DE+EF=3+1=4.∵D是邊AB的中點,點F是邊BC的中點,∴DF是ABC的中位線,∴AC=2DF=8.故選:C.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),三角形中位線定理,求出DF的長是解題的關(guān)鍵.8、D【解析】【分析】由矩形的四個角是直角可判斷A,由菱形的對角線互相垂直可判斷B,由正方形的對角線相等可判斷C,由菱形的四條邊相等可判斷D,從而可得答案.【詳解】解:當?ABCD是矩形時,∠ABC=90°,正確,故A不符合題意;當?ABCD是菱形時,AC⊥BD,正確,故B不符合題意;當?ABCD是正方形時,AC=BD,正確,故C不符合題意;當?ABCD是菱形時,AB=BC,故D符合題意;故選D【點睛】本題考查的是矩形,菱形,正方形的性質(zhì),熟練的記憶矩形,菱形,正方形的性質(zhì)是解本題的關(guān)鍵.9、A【解析】【分析】利用平行四邊形的對邊平行且相等的性質(zhì),先利用對邊平行,得到D點和C點的縱坐標相等,再求出CD=AB=5,得到C點橫坐標,最后得到C點的坐標.【詳解】解:四邊形ABCD為平行四邊形。且。C點和D的縱坐標相等,都為3.A點坐標為(0,0),B點坐標為(5,0),.D點坐標為(2,3),C點橫坐標為,點坐標為(7,3).故選:A.【點睛】本題主要是考察了平行四邊形的性質(zhì)、利用線段長求點坐標,其中,熟練應(yīng)用平行四邊形對邊平行且相等的性質(zhì),是解決與平行四邊形有關(guān)的坐標題的關(guān)鍵.10、D【解析】【分析】根據(jù)題意分兩種情況討論若△BPE≌△CQP,則BP=CQ,BE=CP;若△BPE≌△CPQ,則BP=CP=5厘米,BE=CQ=6厘米進行求解即可.【詳解】解:當,即點Q的運動速度與點P的運動速度都是2厘米/秒,若△BPE≌△CQP,則BP=CQ,BE=CP,∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∴BP=10-6=4厘米,∴運動時間t=4÷2=2(秒);當,即點Q的運動速度與點P的運動速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE與△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.∴點P,Q運動的時間t=(秒).綜上t的值為2.5或2.故選:D.【點睛】本題主要考查正方形的性質(zhì)以及全等三角形的判定,解決問題的關(guān)鍵是掌握正方形的四條邊都相等,四個角都是直角;兩邊及其夾角分別對應(yīng)相等的兩個三角形全等.同時要注意分類思想的運用.二、填空題1、8【解析】【分析】運用三角形的中位線的知識解答即可.【詳解】解:∵△ABC中,D、E分別是AB、AC的中點∴DE是△ABC的中位線,∴BC=2DE=8cm.故答案是8.【點睛】本題主要考查了三角形的中位線,掌握三角形的中位線等于底邊的一半成為解答本題的關(guān)鍵.2、80°【解析】【分析】由翻折的性質(zhì)得∠ADE=∠A1DE,由中位線的性質(zhì)得DE//BC,由平行線的性質(zhì)得∠ADE=∠B=50°,即可解決問題.【詳解】解:由題意得:∠ADE=∠A1DE;∵D、E分別是邊AB、AC的中點,∴DE//BC,∴∠ADE=∠B=∠A1DE=50°,∴∠A1DA=100°,∴∠BDA1=180°?100°=80°.故答案為:80°.【點睛】本題主要考查了翻折變換及其應(yīng)用問題;同時還考查了三角形的中位線定理等幾何知識點.熟練掌握各性質(zhì)是解題的關(guān)鍵.3、或##或【解析】【分析】分當D落在x軸正半軸時和當D落在x軸負半軸時,兩種情況討論求解即可.【詳解】解:如圖1所示,當D落在x軸正半軸時,∵O是菱形ABCD對角線BD的中點,∴AO⊥DO,∴當D落在x軸正半軸時,A點在y軸正半軸,∴同理可得A、B、C三點均在坐標軸上,且點C在y軸負半軸,∵∠BAD=60°,∴∠OAD=30°,∴,∴,∴點C的坐標為(0,);如圖2所示,當D落在x軸負半軸時,同理可得,∴點C的坐標為(0,);∴綜上所述,點C的坐標為(0,)或(0,),故答案為:(0,)或(0,).【點睛】本題主要考查了菱形的性質(zhì),坐標與圖形,含30度角的直角三角形的性質(zhì),勾股定理,熟練掌握菱形的性質(zhì)是解題的關(guān)鍵.4、##【解析】【分析】由折疊及軸對稱的性質(zhì)可知,△ABF≌△GBF,BF垂直平分AG,先證△ABF≌△DAE,推出AF的長,再利用勾股定理求出BF的長,最后在Rt△ABF中利用面積法可求出AH的長,可進一步求出AG的長,GE的長.【詳解】解:∵四邊形ABCD為正方形,∴AB=AD=12,∠BAD=∠D=90°,由折疊及軸對稱的性質(zhì)可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠BAH+∠ABH=90°,又∵∠FAH+∠BAH=90°,∴∠ABH=∠FAH,∴△ABF≌△DAE(ASA),∴AF=DE=5,在Rt△ABF中,BF==13,S△ABF=AB?AF=BF?AH,∴12×5=13AH,∴AH=,∴AG=2AH=,∵AE=BF=13,∴GE=AE-AG=13-=,故答案為:.【點睛】本題考查了正方形的性質(zhì),軸對稱的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,面積法求線段的長度等,解題關(guān)鍵是能夠靈活運用正方形的性質(zhì)和軸對稱的性質(zhì).5、6【解析】【分析】正方形的面積:邊長的平方或兩條對角線之積的一半,根據(jù)公式直接計算即可.【詳解】解:正方形ABCD的一條對角線長為2,故答案為:【點睛】本題考查的是正方形的性質(zhì),掌握“正方形的面積等于兩條對角線之積的一半”是解題的關(guān)鍵.6、22.5【解析】【分析】由平行線的性質(zhì)可知,由角平分線的定義得,進而可求∠E的度數(shù).【詳解】解:為正方形,,,,平分,,又,,故答案為:22.5.【點睛】本題考查了正方形的性質(zhì),平行線的性質(zhì),角平分線的定義,熟練掌握正方形的性質(zhì)是解答本題的關(guān)鍵.7、##【解析】【分析】首先證明四邊四邊形ABCD是菱形,作出F關(guān)于AB的對稱點M,再過M作ME′⊥AD,交AB于點P′,此時P′E′+P′F最小,求出ME即可.【詳解】解:作出F關(guān)于AB的對稱點M,再過M作ME′⊥AD,交AB于點P′,此時P′E′+P′F最小,此時P′E′+P′F=ME′,過點A作AN⊥BC,CH⊥AB于H,∵△ABC沿AB翻折得到△ABD,∴AC=AD,BC=BD,∵AC=BC,∴AC=AD=BC=BD,∴四邊形ADBC是菱形,∵AD∥BC,∴ME′=AN,∵AC=BC,∴AH=AB=1,由勾股定理可得,CH=,∵×AB×CH=×BC×AN,可得AN=,∴ME′=AN=,∴PE+PF最小為.故答案為:.【點睛】本題考查翻折變換,等腰三角形的性質(zhì),軸對稱?最短問題等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,屬于中考常考題型.8、####【解析】【分析】根據(jù)勾股定理求出AC,根據(jù)矩形性質(zhì)得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根據(jù)三角形中位線求出即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:(cm),∴DO=5cm,∵點E、F分別是AO、AD的中點,∴EF=OD=2.5cm,故答案為:2.5.【點睛】本題考查了矩形的性質(zhì)的應(yīng)用,勾股定理,三角形中位線的應(yīng)用,解本題的關(guān)鍵是求出OD長及證明EF=OD.9、【解析】【分析】過點A作AD//BC,且AD=MN,連接MD,則四邊形ADMN是平行四邊形,作點A關(guān)于BC的對稱點A′,連接AA′交BC于點O,連接A′M,三點D、M、A′共線時,最小為A′D的長,利用勾股定理求A′D的長度即可解決問題.【詳解】解:過點A作AD//BC,且AD=MN,連接MD,則四邊形ADMN是平行四邊形,∴MD=AN,AD=MN,作點A關(guān)于BC的對稱點A′,連接AA′交BC于點O,連接A′M,則AM=A′M,∴AM+AN=A′M+DM,∴三點D、M、A′共線時,A′M+DM最小為A′D的長,∵AD//BC,AO⊥BC,∴∠DA=90°,∵,,,∴BC=BO=CO=AO=,∴,在Rt△AD中,由勾股定理得:D=∴的最小是值為:,故答案為:【點睛】本題主要考查了等腰三角形的性質(zhì),平行四邊形的判定與性質(zhì),勾股定理等知識,構(gòu)造平行四邊形將AN轉(zhuǎn)化為DM是解題的關(guān)鍵.10、8【解析】【分析】根據(jù)正方形的軸對稱的性質(zhì)可得陰影部分的面積等于正方形的面積的一半,然后列式進行計算即可得解.【詳解】解:×4×4=8.故答案為:8.【點睛】本題考查正方形的性質(zhì),軸對稱的性質(zhì),將陰影面積轉(zhuǎn)化為三角形面積是解題的關(guān)鍵,學會于轉(zhuǎn)化的思想思考問題.三、解答題1、【分析】根據(jù)平行四邊形的性質(zhì)可得,,勾股定理求得,,進而求得【詳解】解:四邊形是平行四邊形AB⊥AC,在中,在中,【點睛】本題考查了平行四邊形的性質(zhì),勾股定理,熟練掌握平行四邊形的性質(zhì)是解題的關(guān)鍵.2、(1)見解析;(2)16【分析】(1)根據(jù)平行四邊形的性質(zhì),可得OA=OC,OB=OD,從而得到OE=OG,OF=OH,即可求證;(2)根據(jù)三角形中位線定理,可得,從而得到,再由(1)四邊形EFGH是平行四邊形,即可求解.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∵點E、F、G、H分別是OA、OB、OC、OD的中點,∴,∴OE=OG,OF=OH,∴四邊形EFGH是平行四邊形;(2)∵點E、F、G、H分別是OA、OB、OC、OD的中點,∴,∴,∵的周長為2(AB+BC)=32,∴,∴,由(1)知:四邊形EFGH是平行四邊形,∴四邊形EFGH的周長為.【點睛】本題主要考查了平行四邊形的判定和性質(zhì),三角形的中位線定理,熟練掌握平行四邊形的判定和性質(zhì)定理,三角形的中位線定理是解題的關(guān)鍵.3、(1)BE=DG,BE⊥DG,理由見解析;(2).【分析】(1)由“SAS”證得△GCD≌△ECB;再由全等三角形的性質(zhì)和平行線的性質(zhì)可得∠EBC=∠HED=∠GDC,由余角的性質(zhì)可得答案;(2)連接BD,EG,由①知∠BHD=∠EHG=90°,根據(jù)勾股定理可得出答案.【詳解】證明:(1)BE=DG,BE⊥DG,理由如下:∵四邊形ABCD是正方形,四邊形FGCE是正方形,∴CD=CB,CG=CE,∠GCE=∠DCB=90°,∴∠GCD=∠ECB,且CD=CB,CG=CE,∴△GCD≌△ECB(SAS),∴BE=DG,∠GDC=∠EBC,∵AD∥BC,∴∠EBC=∠HED=∠GDC,∵∠GDC+∠HDE=90°,∴∠HED+∠HDE=90°,∴∠DHE=90°,∴BE⊥DG;(2)連接BD,EG,如圖所示,由(1)知∠BHD=∠EHG=90°,∴DH2+BH2=BD2=AB2+AD2=22+22=8,EH2+HG2=EG2=CG2+CE2=()2+()2=5+5=10,在Rt△BGH中,BH2+HG2=BG2,在Rt△EDH中,EH2+DH2=DE2,∴BG2+DE2=BH2+HG2+EH2+DH2=8+10=18.∴.【點睛】本題考查了正方形的判定與性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是靈活運用全等三角形的性質(zhì)解決問題,靈活運用條件解決問題.4、(1)8;(2)12;(3)72或216【分析】(1)根據(jù)等腰三角形的性質(zhì)以及勾股定理即可解決問題.

(2)如圖2中,當點F與D重合時,連接DE.求出此時x的值即可判斷.

(3)分兩種情形分別求解即可解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論