2025-2026學(xué)年高一數(shù)學(xué)(人教A版)導(dǎo)學(xué)案必修一課時(shí)跟蹤檢測(cè)(十四)初中知識(shí)銜接一元二次函數(shù)與方程_第1頁(yè)
2025-2026學(xué)年高一數(shù)學(xué)(人教A版)導(dǎo)學(xué)案必修一課時(shí)跟蹤檢測(cè)(十四)初中知識(shí)銜接一元二次函數(shù)與方程_第2頁(yè)
2025-2026學(xué)年高一數(shù)學(xué)(人教A版)導(dǎo)學(xué)案必修一課時(shí)跟蹤檢測(cè)(十四)初中知識(shí)銜接一元二次函數(shù)與方程_第3頁(yè)
2025-2026學(xué)年高一數(shù)學(xué)(人教A版)導(dǎo)學(xué)案必修一課時(shí)跟蹤檢測(cè)(十四)初中知識(shí)銜接一元二次函數(shù)與方程_第4頁(yè)
2025-2026學(xué)年高一數(shù)學(xué)(人教A版)導(dǎo)學(xué)案必修一課時(shí)跟蹤檢測(cè)(十四)初中知識(shí)銜接一元二次函數(shù)與方程_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

課時(shí)跟蹤檢測(cè)(十四)初中知識(shí)銜接:一元二次函數(shù)與方程(滿分100分,選填小題每題5分)1.一元二次方程2x2+px+q=0的兩根為-1和2,那么二次三項(xiàng)式2x2+px+q可分解為()A.(x+1)(x-2) B.(2x+1)(x-2)C.2(x-1)(x+2) D.2(x+1)(x-2)2.從-1,0,3,5,7五個(gè)數(shù)中任意選取一個(gè)數(shù),記為m,則使二次函數(shù)y=mx2+6x+2與x軸有交點(diǎn)時(shí)的m的值有()A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)3.不解方程,判斷關(guān)于x的方程2x2-(2m+1)x+(m2+1)=0的解集情況是()A.? B.非空集C.單元素集合 D.二元集4.若非零實(shí)數(shù)a,b,c滿足9a-3b+c=0,則關(guān)于x的一元二次方程ax2+bx+c=0有一個(gè)根為()A.3 B.-3C.0 D.無(wú)法確定5.若關(guān)于x的方程mx2+(2m+1)x+m=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是()A.eq\b\lc\{\rc\}(\a\vs4\al\co1(m\b\lc\|\rc\(\a\vs4\al\co1(m<\f(1,4))))) B.eq\b\lc\{\rc\}(\a\vs4\al\co1(m\b\lc\|\rc\(\a\vs4\al\co1(m>-\f(1,4)))))C.eq\b\lc\{\rc\}(\a\vs4\al\co1(m\b\lc\|\rc\(\a\vs4\al\co1(m<\f(1,4)且m≠0)))) D.eq\b\lc\{\rc\}(\a\vs4\al\co1(m\b\lc\|\rc\(\a\vs4\al\co1(m>-\f(1,4)且m≠0))))6.已知α,β是方程x2-2x-4=0的兩個(gè)實(shí)數(shù)根,則α3+8β+6的值為()A.-1 B.2C.22 D.307.(多選)如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且對(duì)稱軸為x=1,點(diǎn)B的坐標(biāo)為(-1,0),則下面結(jié)論正確的是()A.2a+b=0B.4a-2b+c<0C.b2-4ac>0D.當(dāng)y<0時(shí),x<-1或x>48.定義:如果一元二次方程ax2+bx+c=0(a≠0)滿足a+b+c=0,那么我們稱這個(gè)方程為“鳳凰”方程.已知ax2+bx+c=0(a≠0)是“鳳凰”方程,且有兩個(gè)相等的實(shí)數(shù)根,則下列結(jié)論正確的是()A.a(chǎn)=c B.a(chǎn)=bC.b=c D.a(chǎn)=b=c9.設(shè)A(-2,y1),B(1,y2),C(2,y3)是拋物線y=3(x+1)2+4m(m為常數(shù))上的三點(diǎn),則y1,y2,y3的大小關(guān)系為()A.y1<y2<y3 B.y2<y1<y3C.y3<y1<y2 D.y3<y2<y110.若把多項(xiàng)式x2+mx+14分解因式后含有因式x+7,則m=________.11.已知二次函數(shù)y=x2+(2a+1)x+a2-1的頂點(diǎn)在x軸上,則a=________.12.已知方程3x2-18x+m=0的一個(gè)根是1,那么它的另一個(gè)根是________,m=________.13.若二次函數(shù)y=x2+mx的對(duì)稱軸是x=1,則關(guān)于x的方程x2+mx=3的解為________.14.當(dāng)a-1≤x≤a時(shí),二次函數(shù)y=x2-4x+3的最小值為8,則a的值為________.15.(13分)已知關(guān)于x的方程(k-1)x2+(2k-3)x+k+1=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2.(1)求k的取值范圍;(2)是否存在實(shí)數(shù)k,使方程的兩實(shí)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請(qǐng)說(shuō)明理由.16.(17分)如圖,拋物線y=ax2+bx-3與x軸交于點(diǎn)A(-3,0),B(1,0),與y軸相交于點(diǎn)C.(1)求拋物線的函數(shù)表達(dá)式;(2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使得以點(diǎn)A,C,P為頂點(diǎn)的三角形是直角三角形?若存在,求出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.課時(shí)跟蹤檢測(cè)(十四)1.選D∵一元二次方程2x2+px+q=0的兩根為-1和2,∴2(x+1)(x-2)=0,∴2x2+px+q可分解為2(x+1)(x-2).故選D.2.選B因?yàn)槭嵌魏瘮?shù),所以m≠0.又因?yàn)槎魏瘮?shù)圖象與x軸有交點(diǎn),故Δ=36-8m≥0,即m≤eq\f(9,2),且m≠0.所以滿足要求的m的值有2個(gè).3.選A由判別式Δ=(2m+1)2-8(m2+1)=-4m2+4m-7=-(2m-1)2-6<0得方程的解集為空集.故選A.4.選B把x=-3代入方程ax2+bx+c=0,得9a-3b+c=0,即方程一定有一個(gè)根為x=-3.5.選D若滿足題意,則需m≠0,且Δ=(2m+1)2-4m2=4m2+4m+1-4m2=4m+1>0,解得m>-eq\f(1,4),且m≠0.6.選D∵α是方程x2-2x-4=0的實(shí)根,∴α2-2α-4=0,即α2=2α+4,∴α3=2α2+4α=2(2α+4)+4α=8α+8,∴原式=8α+8+8β+6=8(α+β)+14,∵α,β是方程x2-2x-4=0的兩實(shí)根,∴α+β=2,∴原式=8×2+14=30,故選D.7.選ABC因?yàn)槎魏瘮?shù)y=ax2+bx+c(a≠0)的圖象的對(duì)稱軸為x=1,所以x=-eq\f(b,2a)=1,即2a+b=0,故A正確;當(dāng)x=-2時(shí),y=4a-2b+c<0,故B正確;該函數(shù)圖象與x軸有兩個(gè)交點(diǎn),則b2-4ac>0,故C正確;因?yàn)槎魏瘮?shù)y=ax2+bx+c(a≠0)的圖象的對(duì)稱軸為x=1,點(diǎn)B的坐標(biāo)為(-1,0),所以點(diǎn)A的坐標(biāo)為(3,0).所以當(dāng)y<0時(shí),x<-1或x>3,故D錯(cuò)誤.8.選A∵一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)相等的實(shí)數(shù)根,∴Δ=b2-4ac=0.又a+b+c=0,即b=-a-c,代入b2-4ac=0得(-a-c)2-4ac=0,化簡(jiǎn)得(a-c)2=0,所以a=c.9.選A∵拋物線y=3(x+1)2+4m(m為常數(shù))的開口向上,對(duì)稱軸為直線x=-1,而點(diǎn)C(2,y3)離直線x=-1的距離最遠(yuǎn),點(diǎn)A(-2,y1)離直線x=-1最近,∴y1<y2<y3.10.解析:設(shè)x2+mx+14=(x+7)(x+n),即x2+mx+14=(x+7)(x+n)=x2+(7+n)x+7n,所以7n=14,7+n=m,所以m=9.答案:911.解析:由題意可知Δ=(2a+1)2-4a2+4=0,解得a=-eq\f(5,4).答案:-eq\f(5,4)12.解析:將x=1代入原方程,得3×12-18×1+m=0,解得m=15.由根與系數(shù)的關(guān)系可得方程的另一根為eq\f(m,3)=5.答案:51513.解析:由題意可知-eq\f(m,2)=1,解得m=-2,所以方程x2-2x=3的解為-1和3.答案:-1和314.解析:當(dāng)y=8時(shí),有x2-4x+3=8,解得x1=-1,x2=5.∵當(dāng)a-1≤x≤a時(shí),函數(shù)有最小值8,∴a-1=5或a=-1,∴a=6或a=-1.答案:-1或615.解:(1)由題知,eq\b\lc\{\rc\(\a\vs4\al\co1(k-1≠0,,Δ=2k-32-4k-1k+1>0))?eq\b\lc\{\rc\(\a\vs4\al\co1(k≠1,,k<\f(13,12),))∴k<eq\f(13,12)且k≠1,故k的取值范圍為(-∞,1)∪eq\b\lc\(\rc\)(\a\vs4\al\co1(1,\f(13,12))).(2)若x1+x2=0,即-eq\f(2k-3,k-1)=0,k=eq\f(3,2).由(1)可知,這樣的k不存在.16.解:(1)由題意得eq\b\lc\{\rc\(\a\vs4\al\co1(a+b-3=0,,9a-3b-3=0,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(a=1,,b=2,))故拋物線的表達(dá)式為y=x2+2x-3.(2)存在.對(duì)于y=x2+2x-3,令x=0,則y=-3,即點(diǎn)C(0,-3),拋物線的對(duì)稱軸為直線x=-1,設(shè)點(diǎn)P(-1,m),由勾股定理得AC2=32+32=18,AP2=22+m2,PC2=1+(m+3)2,當(dāng)AC是斜邊時(shí),則18=AP2+PC2=22+m2+1+(m+3)2,解得m=eq\f(-3±\r(17),2);當(dāng)AP是斜邊時(shí),

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論