版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專(zhuān)題13立體幾何初步一、知識(shí)速覽二、考點(diǎn)速覽知識(shí)點(diǎn)1空間幾何體的結(jié)構(gòu)特征1、多面體的結(jié)構(gòu)特征名稱(chēng)棱柱棱錐棱臺(tái)圖形底面互相平行且全等多邊形互相平行且相似側(cè)棱平行且相等相交于一點(diǎn),但不一定相等延長(zhǎng)線交于一點(diǎn),但不一定相等側(cè)面形狀平行四邊形三角形梯形2、特殊的棱柱和棱錐(1)側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形.(2)底面是正多邊形,頂點(diǎn)在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱長(zhǎng)均相等的正三棱錐叫做正四面體.反過(guò)來(lái),正棱錐的底面是正多邊形,且頂點(diǎn)在底面的射影是底面正多邊形的中心.【注意】(1)棱柱的所有側(cè)面都是平行四邊形,但側(cè)面都是平行四邊形的幾何體卻不一定是棱柱.(2)棱臺(tái)的所有側(cè)面都是梯形,但側(cè)面都是梯形的幾何體卻不一定是棱臺(tái).(3)注意棱臺(tái)的所有側(cè)棱相交于一點(diǎn).3、旋轉(zhuǎn)體的結(jié)構(gòu)特征名稱(chēng)圓柱圓錐圓臺(tái)球圖形旋轉(zhuǎn)圖形矩形直角三角形直角梯形半圓形旋轉(zhuǎn)軸任一邊所在的直線任一直角邊所在的直線垂直于底邊的腰所在的直線直徑所在的直線母線互相平行且相等,垂直于底面相交于一點(diǎn)延長(zhǎng)線交于一點(diǎn)軸截面全等的矩形全等的等腰三角形全等的等腰梯形圓側(cè)面展開(kāi)圖矩形扇形扇環(huán)4、空間幾何體的直觀圖(1)畫(huà)法:常用斜二測(cè)畫(huà)法.(2)規(guī)則:①原圖形中x軸、y軸、z軸兩兩垂直,直觀圖中,x′軸、y′軸的夾角為45°(或135°),z′軸與x′軸和y′軸所在平面垂直.②原圖形中平行于坐標(biāo)軸的線段,直觀圖中仍平行于坐標(biāo)軸;平行于x軸和z軸的線段在直觀圖中保持原長(zhǎng)度不變;平行于y軸的線段長(zhǎng)度在直觀圖中變?yōu)樵瓉?lái)的一半.(3)直觀圖與原圖形面積的關(guān)系按照斜二測(cè)畫(huà)法得到的平面圖形的直觀圖與原圖形面積的關(guān)系:S直觀圖=eq\f(\r(2),4)S原圖形;S原圖形=2eq\r(2)S直觀圖.知識(shí)點(diǎn)2空間幾何體的表面積和體積1、空間幾何體的表面積和體積公式名稱(chēng)幾何體表面積體積柱體(棱柱和圓柱)S表面積=S側(cè)+2S底V=S底h錐體(棱錐和圓錐)S表面積=S側(cè)+S底V=eq\f(1,3)S底h臺(tái)體(棱臺(tái)和圓臺(tái))S表面積=S側(cè)+S上+S下V=eq\f(1,3)(S上+S下+eq\r(S上S下))h球S=4πR2V=eq\f(4,3)πR3幾何體的表面積和側(cè)面積的注意點(diǎn)=1\*GB3①幾何體的側(cè)面積是指(各個(gè))側(cè)面面積之和,而表面積是側(cè)面積與所有底面面積之和.=2\*GB3②組合體的表面積應(yīng)注意重合部分的處理.2、柱體、錐體、臺(tái)體側(cè)面積間的關(guān)系(1)當(dāng)正棱臺(tái)的上底面與下底面全等時(shí),得到正棱柱;當(dāng)正棱臺(tái)的上底面縮為一個(gè)點(diǎn)時(shí),得到正棱錐,則S正棱柱側(cè)=ch′eq\o(←,\s\up7(c′=c))S正棱臺(tái)側(cè)=eq\f(1,2)(c+c′)h′eq\o(→,\s\up7(c′=0))S正棱錐側(cè)=eq\f(1,2)ch′.(2)當(dāng)圓臺(tái)的上底面半徑與下底面半徑相等時(shí),得到圓柱;當(dāng)圓臺(tái)的上底面半徑為零時(shí),得到圓錐,則S圓柱側(cè)=2πrleq\o(←,\s\up7(r′=r))S圓臺(tái)側(cè)=π(r+r′)leq\o(→,\s\up7(r′=0))S圓錐側(cè)=πrl.3、柱體、錐體、臺(tái)體體積間的關(guān)系知識(shí)點(diǎn)3點(diǎn)、直線、平面之間的位置關(guān)系1、四個(gè)公理(1)公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi).作用:判斷一條直線是否在某個(gè)平面內(nèi)的依據(jù)(2)公理2:過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面.【拓展】公理2的三個(gè)推論推論1:經(jīng)過(guò)一條直線和這條直線外一點(diǎn)有且只有一個(gè)平面.推論2:經(jīng)過(guò)兩條相交直線有且只有一個(gè)平面.推論3:經(jīng)過(guò)兩條平行直線有且只有一個(gè)平面.作用:公理2及其推論是判斷或證明點(diǎn)、線共面的依據(jù)(3)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),則它們有且只有一條過(guò)該點(diǎn)的公共直線.作用:公理3是證明三線共點(diǎn)或三點(diǎn)共線的依據(jù)(4)公理4:平行于同一條直線的兩條直線互相平行.2、等角定理:空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ).3、直線與直線的位置關(guān)系(1)空間兩條直線的位置關(guān)系位置關(guān)系特點(diǎn)相交同一平面內(nèi),有且只有一個(gè)公共點(diǎn)平行同一平面內(nèi),沒(méi)有公共點(diǎn)異面直線不同在任何一個(gè)平面內(nèi),沒(méi)有公共點(diǎn)(2)異面直線所成的角①定義:設(shè)a,b是兩條異面直線,經(jīng)過(guò)空間任一點(diǎn)O作直線a′∥a,b′∥b,把a(bǔ)′與b′所成的銳角(或直角)叫做異面直線a與b所成的角(或夾角).②范圍:(0°,90°].4、直線與平面的位置關(guān)系位置關(guān)系直線a在平面α內(nèi)直線a在平面α外直線a與平面α相交直線a與平面α平行公共點(diǎn)無(wú)數(shù)個(gè)公共點(diǎn)一個(gè)公共點(diǎn)沒(méi)有公共點(diǎn)符號(hào)表示a?αa∩α=Aa∥α圖形表示5、兩個(gè)平面的位置關(guān)系位置關(guān)系兩平面平行兩平面相交公共點(diǎn)沒(méi)有公共點(diǎn)有無(wú)數(shù)個(gè)公共點(diǎn)(在一條直線上)符號(hào)表示α∥βα∩β=l圖形表示知識(shí)點(diǎn)4直線、平面平行的判定與性質(zhì)1、直線與平面平行(1)直線與平面平行的定義:直線l與平面α沒(méi)有公共點(diǎn),則稱(chēng)直線l與平面α平行.(2)判定定理與性質(zhì)定理文字語(yǔ)言圖形表示符號(hào)表示判定定理平面外一條直線與此平面內(nèi)的一條直線平行,則該直線平行于此平面a?α,b?α,a∥b?a∥α性質(zhì)定理一條直線和一個(gè)平面平行,則過(guò)這條直線的任一平面與此平面的交線與該直線平行a∥α,a?β,α∩β=b?a∥b2、平面與平面平行(1)平面與平面平行的定義:沒(méi)有公共點(diǎn)的兩個(gè)平面叫做平行平面.(2)判定定理與性質(zhì)定理文字語(yǔ)言圖形表示符號(hào)表示判定定理一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面平行,則這兩個(gè)平面平行a?α,b?α,a∩b=P,a∥β,b∥β?α∥β性質(zhì)定理兩個(gè)平面平行,則其中一個(gè)平面內(nèi)的直線平行于另一個(gè)平面α∥β,a?α?a∥β如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行α∥β,α∩γ=a,β∩γ=b?a∥b3、平行關(guān)系之間的轉(zhuǎn)化在證明線面、面面平行時(shí),一般遵循從“低維”到“高維”的轉(zhuǎn)化,即從“線線平行”到“線面平行”,再到“面面平行”;而在應(yīng)用性質(zhì)定理時(shí),其順序恰好相反,但也要注意,轉(zhuǎn)化的方向是由題目的具體條件而定的,不可過(guò)于“模式化”.知識(shí)點(diǎn)5直線、平面垂直的判定與性質(zhì)1、直線與平面垂直(1)定義:直線l與平面α內(nèi)的任意一條直線都垂直,就說(shuō)直線l與平面α互相垂直.(2)判定定理與性質(zhì)定理文字語(yǔ)言圖形語(yǔ)言符號(hào)語(yǔ)言判定定理一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直eq\b\lc\\rc\}(\a\vs4\al\co1(a,b?α,a∩b=O,l⊥a,l⊥b))?l⊥α性質(zhì)定理垂直于同一個(gè)平面的兩條直線平行eq\b\lc\\rc\}(\a\vs4\al\co1(a⊥α,b⊥α))?a∥b2、直線和平面所成的角(1)定義:平面的一條斜線和它在平面上的射影所成的銳角叫做這條直線和這個(gè)平面所成的角,一條直線垂直于平面,則它們所成的角是直角;一條直線和平面平行或在平面內(nèi),則它們所成的角是eq\a\vs4\al(0).(2)范圍:eq\b\lc\[\rc\](\a\vs4\al\co1(0,\f(π,2))).3、平面與平面垂直(1)二面角的有關(guān)概念①二面角:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角.②二面角的平面角:在二面角的棱上任取一點(diǎn),以該點(diǎn)為垂足,在兩個(gè)半平面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所構(gòu)成的角叫做二面角的平面角.(2)平面和平面垂直的定義兩個(gè)平面相交,如果所成的二面角是直二面角,就說(shuō)這兩個(gè)平面互相垂直.(3)平面與平面垂直的判定定理與性質(zhì)定理文字語(yǔ)言圖形語(yǔ)言符號(hào)語(yǔ)言判定定理一個(gè)平面過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面垂直eq\b\lc\\rc\}(\a\vs4\al\co1(l⊥α,l?β))?α⊥β性質(zhì)定理兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直eq\b\lc\\rc\}(\a\vs4\al\co1(α⊥β,l?β,α∩β=a,l⊥a))?l⊥α謹(jǐn)記五個(gè)結(jié)論(1)若兩平行線中的一條垂直于一個(gè)平面,則另一條也垂直于這個(gè)平面.(2)若一條直線垂直于一個(gè)平面,則它垂直于這個(gè)平面內(nèi)的任何一條直線(證明線線垂直的一個(gè)重要方法).(3)垂直于同一條直線的兩個(gè)平面平行.(4)一條直線垂直于兩平行平面中的一個(gè),則這一條直線與另一個(gè)平面也垂直.(5)兩個(gè)相交平面同時(shí)垂直于第三個(gè)平面,它們的交線也垂直于第三個(gè)平面.4、垂直關(guān)系之間的轉(zhuǎn)化在證明線面垂直、面面垂直時(shí),一定要注意判定定理成立的條件.同時(shí)抓住線線、線面、面面垂直的轉(zhuǎn)化關(guān)系,即:在證明兩平面垂直時(shí),一般先從現(xiàn)有的直線中尋找平面的垂線,若這樣的直線在圖中不存在,則可通過(guò)作輔助線來(lái)解決.一、求空間幾何體表面積的常見(jiàn)類(lèi)型及思路1、求多面體的表面積:只需將它們沿著棱“剪開(kāi)”展成平面圖形,利用求平面圖形面積的方法求多面體的表面積;2、求旋轉(zhuǎn)體的表面積:可以從旋轉(zhuǎn)體的形成過(guò)程及其幾何特征入手,將其展開(kāi)后求表面積,但要搞清它們的底面半徑、母線長(zhǎng)與對(duì)應(yīng)側(cè)面展開(kāi)圖中的邊長(zhǎng)關(guān)系3、求不規(guī)則幾何體的表面積:通常將所給幾何體分割成基本的柱體、錐體、臺(tái)體,先求出這些基本的柱體、錐體、臺(tái)體的表面積,再通過(guò)求和或作差,求出所給幾何體的表面積;【注意】在求解組合題的表面積時(shí),注意幾何體表面的構(gòu)成,尤其是重合部分,面積不要多加或少加【典例2】(2023春·海南??凇じ呷y(tǒng)考期中)如圖是一個(gè)圓臺(tái)形的水杯,圓臺(tái)的母線長(zhǎng)為12,上?下底面的半徑分別為4和2.為了防燙和防滑,該水杯配有一個(gè)皮革杯套,包裹住水杯高度以下的外壁和杯底,水杯和杯套的厚度忽略不計(jì),則此杯套使用的皮革的面積為()【答案】C【解析】由題意可知杯套部分依然是圓臺(tái),則此杯套使用的皮革的面積即為對(duì)應(yīng)圓臺(tái)的側(cè)面積加上較小底面面積;【答案】A過(guò)點(diǎn)作⊥于點(diǎn),連接,則為正六棱臺(tái)的斜高,所以正六棱臺(tái)的斜高為,二、空間幾何體的體積1、處理空間幾何體體積的基本思路(1)轉(zhuǎn):轉(zhuǎn)換底面與高,將原本不容易求面積的底面轉(zhuǎn)換為容易求面積的底面,或?qū)⒃瓉?lái)不容易看出的高轉(zhuǎn)換為容易看出并容易求解的高;(2)拆:將一個(gè)不規(guī)則的幾何體拆成幾個(gè)規(guī)則的幾何體,便于計(jì)算;(3)拼:將小幾何體嵌入一個(gè)大幾何體中,如有時(shí)將一個(gè)三棱錐復(fù)原成一個(gè)三棱柱,將一個(gè)三棱柱復(fù)原乘一個(gè)四棱柱,還臺(tái)位錐,這些都是拼補(bǔ)的方法。2、求體積的常用方法(1)直接法:對(duì)于規(guī)則的幾何體,利用相關(guān)公式直接計(jì)算;(2)割補(bǔ)法:把不規(guī)則的幾何體分割成規(guī)則的幾何體,然后進(jìn)行體積計(jì)算;或者把不規(guī)則的幾何體補(bǔ)成規(guī)則的幾何體,不熟悉的幾何體補(bǔ)成熟悉的幾何體,便于計(jì)算;(3)等體積法:選擇合適的底面來(lái)求幾何體的體積,常用于求三棱錐的體積,即利用三棱錐的任一個(gè)面作為三棱錐的底面進(jìn)行等體積變換【答案】A【解析】圓臺(tái)的側(cè)面展開(kāi)圖是一扇環(huán),設(shè)該扇環(huán)的圓心角為,設(shè)圓臺(tái)上下底面的半徑分別為,高為,作出圓臺(tái)的軸截面,如圖所示:【答案】故答案為:A.B.37C.D.47【答案】C三、共線共點(diǎn)共面證明方法1、證明點(diǎn)或線共面問(wèn)題的2種方法(1)首先由所給條件中的部分線(或點(diǎn))確定一個(gè)平面,然后再證其余的線(或點(diǎn))在這個(gè)平面內(nèi);(2)將所有條件分為兩部分,然后分別確定平面,再證兩平面重合.2、證明點(diǎn)共線問(wèn)題的2種方法(1)先由兩點(diǎn)確定一條直線,再證其他各點(diǎn)都在這條直線上;(2)直接證明這些點(diǎn)都在同一條特定直線(如某兩個(gè)平面的交線)上.3、證明線共點(diǎn)問(wèn)題的常用方法先證其中兩條直線交于一點(diǎn),再證其他直線經(jīng)過(guò)該點(diǎn).【答案】ABC【解析】連接,,,因?yàn)?,,三點(diǎn)共線,所以,,,四點(diǎn)共面,,,,四點(diǎn)共面,故BC正確;取中點(diǎn),連接交于點(diǎn),【答案】證明見(jiàn)解析【答案】證明見(jiàn)解析所以與必交于一點(diǎn),四、平移法求異面直線所成角的步驟第一步平移:平移的方法一般有三種類(lèi)型:(1)利用圖中已有的平行線平移;(2)利用特殊點(diǎn)(線段的端點(diǎn)或中點(diǎn))作平行線平移;(3)補(bǔ)形平移第二步證明:證明所作的角是異面直線所成的角或其補(bǔ)角第三步尋找:在立體圖形中,尋找或作出含有此角的三角形,并解之第四步取舍:因?yàn)楫惷嬷本€所成角θ的取值范圍是0°<θ≤90°,所以所作的角為鈍角時(shí),應(yīng)取它的補(bǔ)角作為異面直線所成的角【答案】DA.B.C.D.【答案】A所以與所成角的余弦值為.故選:A.A.B.C.D.【答案】A所以異面直線與所成角的余弦值為.故選:A五、證明直線與平面平行的方法1、線面平行的定義:一條直線與一個(gè)平面無(wú)公共點(diǎn)(不相交).2、線面平行的判定定理:關(guān)鍵是找到平面內(nèi)與已知直線平行的直線.常利用三角形的中位線、平行四邊形的對(duì)邊、成比例線段出現(xiàn)平行線或過(guò)已知直線作一平面找其交線.3、面面平行的性質(zhì):①兩個(gè)平面平行,在一個(gè)平面內(nèi)的任意一條直線平行于另外一個(gè)平面,即α∥β,a?α?a∥β;②兩個(gè)平面平行,不在兩個(gè)平面內(nèi)的一條直線與其中一個(gè)平面平行,則這條直線與另一平面也平行,即α∥β,a?α,a?β,a∥α?a∥β.【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析又為中點(diǎn),根據(jù)三角形的中位線可得,//,【答案】證明見(jiàn)解析【答案】證明見(jiàn)解析六、證明面面平行的常用方法1、利用面面平行的定義.2、利用面面平行的判定定理:如果一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行.3、利用“垂直于同一條直線的兩個(gè)平面平行”.4、利用“如果兩個(gè)平面同時(shí)平行于第三個(gè)平面,那么這兩個(gè)平面平行”.5、利用“線線平行”“線面平行”“面面平行”的相互轉(zhuǎn)化.【答案】證明見(jiàn)解析【解析】如下圖所示:【答案】證明見(jiàn)解析【答案】證明見(jiàn)解析七、證明線面垂直的方法1、線面垂直的判定定理:l⊥a,l⊥b,a?α,b?α,a∩b=P?l⊥α.2、面面垂直的性質(zhì)定理:α⊥β,α∩β=l,a?α,a⊥l?a⊥β.3、性質(zhì):①a∥b,b⊥α?a⊥α;②α∥β,a⊥β?a⊥α.4、α⊥γ,β⊥γ,α∩β=l?l⊥γ.(客觀題可用)【答案】證明見(jiàn)解析又M為AC的中點(diǎn),AC=2,【答案】證明見(jiàn)解析【答案】證明見(jiàn)解析因?yàn)?、分別是、中點(diǎn),八、證明面面垂直的兩種方法法1:利用面面垂直的定義,即判定兩平面所成的二面角為直二面角,將證明面面垂直問(wèn)題轉(zhuǎn)化為證明平面角為直角問(wèn)題;法2:利用面面垂直的判定定理,即證明其中一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,把問(wèn)題轉(zhuǎn)化為證明線線垂直加以解決。【答案】證明見(jiàn)解析【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析【解析】(1)取AB中點(diǎn)O,連接PO、OE,【答案】(1)證明見(jiàn)解析;(2).九、外接球和內(nèi)切球的解題思路1、求解幾何體外接球的半徑的思路(1)根據(jù)球的截面的性質(zhì),利用球的半徑R、截面圓的半徑r及球心到截面圓的距離d三者的關(guān)系R2=r2+d2求解,其中,確定球心的位置是關(guān)鍵;(2)將幾何體補(bǔ)成長(zhǎng)方體,如本例(2),利用該幾何體與長(zhǎng)方體共有外接球的特征,由外接球的直徑等于長(zhǎng)方體的體對(duì)角線長(zhǎng)求解.2、解決與球有關(guān)的切、接問(wèn)題,其通法是作截面,將空間幾何問(wèn)題轉(zhuǎn)化為平面幾何問(wèn)題求解,其解題的思維流程是:第一步定球心:如果是內(nèi)切球,則球心到切點(diǎn)的距離相等且為半徑;如果是外接球,則球心到接點(diǎn)的距離相等且為半徑;第二步作截面:選準(zhǔn)最佳角度作截面(要使這個(gè)截面盡可能多的包含球、幾何體的各種元素以及體現(xiàn)這些元素間的關(guān)系),達(dá)到空間問(wèn)題平面化的目的;第三步求半徑、下結(jié)論:根據(jù)作出的截面中的幾何元素,建立關(guān)于球半徑的方程,并求解。所以將三棱錐補(bǔ)成如圖所示的長(zhǎng)方體,則長(zhǎng)方體的體對(duì)角線等于三棱錐外接球的直徑,因?yàn)槿忮F外接球的表面積為,A.或B.C.2或4D.4【答案】AA.B.C.D.【答案】B易錯(cuò)點(diǎn)1對(duì)斜二測(cè)法規(guī)則掌握不牢點(diǎn)撥:由斜二測(cè)法畫(huà)直觀圖步驟如下:①建立坐標(biāo)系;②“位置規(guī)則”——與坐標(biāo)軸的平行的線段平行關(guān)系不變;③“長(zhǎng)度規(guī)則”——圖形中平行于x軸的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 采購(gòu)信息管理與統(tǒng)計(jì)分析制度
- 濟(jì)南高新區(qū)培訓(xùn)
- 濟(jì)南醫(yī)保政策培訓(xùn)
- 梧州(粵桂界)至樂(lè)業(yè)(黔桂界)公路(宜州至東蘭段)環(huán)境影響報(bào)告書(shū)
- 樹(shù)葉印畫(huà)課件
- 津巴布韋通貨膨脹課件
- 2023-2024學(xué)年云南省曲靖市高一下學(xué)期期末地理試題(解析版)
- 2024-2025學(xué)年遼寧省重點(diǎn)高中聯(lián)合體高二下學(xué)期期末檢測(cè)歷史試題(解析版)
- 2024-2025學(xué)年江蘇省徐州市六區(qū)縣高二下學(xué)期期中考試歷史試題(解析版)
- 2026年汽車(chē)維修工程師試題庫(kù)汽車(chē)維修與保養(yǎng)技術(shù)
- 信息化培訓(xùn)考核管理制度
- 體育培訓(xùn)教練員制度
- GB/T 46918.1-2025微細(xì)氣泡技術(shù)水中微細(xì)氣泡分散體系氣體含量的測(cè)量方法第1部分:氧氣含量
- 縣醫(yī)院醫(yī)?;鸸芾碇贫?3篇)
- 2025年天津市高考英語(yǔ)真題卷含答案解析
- 建筑鋼結(jié)構(gòu)防火技術(shù)規(guī)范
- 護(hù)坡施工方案審查(3篇)
- 汽車(chē)車(chē)架號(hào)培訓(xùn)課件
- 2026年湖南單招工業(yè)機(jī)器人專(zhuān)業(yè)中職生技能經(jīng)典題含編程基礎(chǔ)
- 2026年化工廠的工作計(jì)劃
- 便道移交協(xié)議書(shū)
評(píng)論
0/150
提交評(píng)論