2025年安徽省天長市中考數(shù)學(xué)通關(guān)考試題庫帶答案詳解(培優(yōu))_第1頁
2025年安徽省天長市中考數(shù)學(xué)通關(guān)考試題庫帶答案詳解(培優(yōu))_第2頁
2025年安徽省天長市中考數(shù)學(xué)通關(guān)考試題庫帶答案詳解(培優(yōu))_第3頁
2025年安徽省天長市中考數(shù)學(xué)通關(guān)考試題庫帶答案詳解(培優(yōu))_第4頁
2025年安徽省天長市中考數(shù)學(xué)通關(guān)考試題庫帶答案詳解(培優(yōu))_第5頁
已閱讀5頁,還剩38頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

安徽省天長市中考數(shù)學(xué)通關(guān)考試題庫考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計(jì)10分)1、如圖,在中,,,若以點(diǎn)為圓心,的長為半徑的圓恰好經(jīng)過的中點(diǎn),則的長等于()A. B. C. D.2、若關(guān)于x的二次函數(shù)y=ax2+bx的圖象經(jīng)過定點(diǎn)(1,1),且當(dāng)x<﹣1時(shí)y隨x的增大而減小,則a的取值范圍是()A. B. C. D.3、已知△ABC為等腰三角形,若BC=6,且AB,AC為方程x2﹣8x+m=0兩根,則m的值等于()A.12 B.16 C.﹣12或﹣16 D.12或164、如圖,將△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)80°得到△OCD,若∠A的度數(shù)為110°,∠D的度數(shù)為40°,則∠AOD的度數(shù)是()A.50° B.60° C.40° D.30°5、如圖,四邊形ABCD內(nèi)接于⊙O,若∠ADC=130°,則∠AOC的度數(shù)為()A.25° B.80° C.130° D.100°二、多選題(5小題,每小題3分,共計(jì)15分)1、已知拋物線(,,是常數(shù),)經(jīng)過點(diǎn),,當(dāng)時(shí),與其對應(yīng)的函數(shù)值.下列結(jié)論正確的是(

)A. B.C. D.關(guān)于的方程有兩個(gè)不等的實(shí)數(shù)根2、如圖,AB為的直徑,,BC交于點(diǎn)D,AC交于點(diǎn)E,.下列結(jié)論正確的是(

)A. B.C. D.劣弧是劣弧的2倍3、二次函數(shù)(a,b,c是常數(shù),)的自變量x與函數(shù)值y的部分對應(yīng)值如下表:x…-2-1012……tm22n…已知.則下列結(jié)論中,正確的是(

)A. B.和是方程的兩個(gè)根C. D.(s取任意實(shí)數(shù))4、二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(﹣1,0),對稱軸為直線x=2,下列結(jié)論中正確的有()A.4a+b=0B.9a+c>﹣3bC.7a﹣3b+2c>0D.若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(7,y3)在該函數(shù)圖象上,則y1<y3<y2E.若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x25、下列命題中,不正確的是(

)A.三點(diǎn)可確定一個(gè)圓B.三角形的外心是三角形三邊中線的交點(diǎn)C.一個(gè)三角形有且只有一個(gè)外接圓D.三角形的外心必在三角形的內(nèi)部或外部第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計(jì)15分)1、在菱形ABCD中,AB=6,E為AB的中點(diǎn),連結(jié)AC,DE交于點(diǎn)F,連結(jié)BF.記∠ABC=α(0°<α<180°).(1)當(dāng)α=60°時(shí),則AF的長是_____;(2)當(dāng)α在變化過程中,BF的取值范圍是_____.2、已知如圖,AB=8,AC=4,∠BAC=60°,BC所在圓的圓心是點(diǎn)O,∠BOC=60°,分別在、線段AB和AC上選取點(diǎn)P、E、F,則PE+EF+FP的最小值為____________.3、某射擊運(yùn)動員在同一條件下的射擊成績記錄如下:射擊次數(shù)20401002004001000“射中9環(huán)以上”的次數(shù)153378158321801“射中9環(huán)以下”的頻率通過計(jì)算頻率,估計(jì)這名運(yùn)動員射擊一次時(shí)“射中9環(huán)以上”的概率是______(結(jié)果保留小數(shù)點(diǎn)后一位).4、已知二次函數(shù)與x軸有兩個(gè)交點(diǎn),把當(dāng)k取最小整數(shù)時(shí)的二次函數(shù)的圖象在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個(gè)新圖象,若新圖象與直線有三個(gè)不同的公共點(diǎn),則m的值為______.5、若代數(shù)式有意義,則x的取值范圍是_____.四、簡答題(2小題,每小題10分,共計(jì)20分)1、已知拋物線c:y=-x2-2x+3和直線l:y=x+d。將拋物線c在x軸上方的部分沿x軸翻折180°,其余部分保持不變,翻折后的圖象與x軸下方的部分組成一個(gè)“M”型的新圖象(即新函數(shù)m:y=-|x2+2x-3|的圖象)。(1)當(dāng)直線l與這個(gè)新圖象有且只有一個(gè)公共點(diǎn)時(shí),d=;(2)當(dāng)直線l與這個(gè)新圖象有且只有三個(gè)公共點(diǎn)時(shí),求d的值;(3)當(dāng)直線l與這個(gè)新圖象有且只有兩個(gè)公共點(diǎn)時(shí),求d的取值范圍;(4)當(dāng)直線l與這個(gè)新圖象有四個(gè)公共點(diǎn)時(shí),直接寫出d的取值范圍.2、已知:如圖,二次函數(shù)y=ax2+bx+的圖象經(jīng)過點(diǎn)A(2,6)和B(4,4),直線l經(jīng)過點(diǎn)B并與x軸垂直,垂足為Q.(1)求二次函數(shù)的表達(dá)式;(2)如圖1,作AK⊥x軸,垂足為K,連接AO,點(diǎn)R是直線1上的點(diǎn),如果△AOK與以O(shè),Q,R為頂點(diǎn)的三角形相似,請直接寫出點(diǎn)R的縱坐標(biāo);(3)如圖2,正方形CDEF的頂點(diǎn)C是第二象限拋物線上的點(diǎn),點(diǎn)D,E在直線1上,以CF為底向右做等腰△CFM,直線l與CM,F(xiàn)M的交點(diǎn)分別是G,H,并且CG=GM,F(xiàn)H=HM,連接CE,與FM的交點(diǎn)為N,且點(diǎn)N的縱坐標(biāo)是﹣1.求:①tan∠DCG的值;②點(diǎn)C的坐標(biāo).五、解答題(4小題,每小題10分,共計(jì)40分)1、如圖,已知二次函數(shù)的圖象經(jīng)過點(diǎn).(1)求的值和圖象的頂點(diǎn)坐標(biāo).

(2)點(diǎn)在該二次函數(shù)圖象上.

①當(dāng)時(shí),求的值;②若到軸的距離小于2,請根據(jù)圖象直接寫出的取值范圍.2、在△ABC與△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.(1)如圖1,若點(diǎn)D與A重合,AC與EF交于P,且∠CAE=30°,CE,求EP的長;(2)如圖2,若點(diǎn)D與C重合,EF與BC交于點(diǎn)M,且BM=CM,連接AE,且∠CAE=∠MCE,求證:AE+MF=CE;(3)如圖3,若點(diǎn)D與A重合,連接BE,且∠ABE∠ABC,連接BF,CE,當(dāng)BF+CE最小時(shí),直接出的值.3、如圖,四邊形ABCD是正方形.△ABE是等邊三角形,M為對角線BD(不含B,D點(diǎn))上任意一點(diǎn),將線段BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接EN,AM、CM.請判斷線段AM和線段EN的數(shù)量關(guān)系,并說明理由.4、在平面直角坐標(biāo)系中,拋物線的對稱軸為.求的值及拋物線與軸的交點(diǎn)坐標(biāo);若拋物線與軸有交點(diǎn),且交點(diǎn)都在點(diǎn),之間,求的取值范圍.-參考答案-一、單選題1、D【分析】連接CD,由直角三角形斜邊中線定理可得CD=BD,然后可得△CDB是等邊三角形,則有BD=BC=5cm,進(jìn)而根據(jù)勾股定理可求解.【詳解】解:連接CD,如圖所示:∵點(diǎn)D是AB的中點(diǎn),,,∴,∵,∴,在Rt△ACB中,由勾股定理可得;故選D.【點(diǎn)睛】本題主要考查圓的基本性質(zhì)、直角三角形斜邊中線定理及勾股定理,熟練掌握圓的基本性質(zhì)、直角三角形斜邊中線定理及勾股定理是解題的關(guān)鍵.2、D【解析】【分析】根據(jù)題意開口向上,且對稱軸?≥?1,a+b=1,即可得到?≥?1,從而求解.【詳解】由二次函數(shù)y=ax2+bx可知拋物線過原點(diǎn),∵拋物線定點(diǎn)(1,1),且當(dāng)x<-1時(shí),y隨x的增大而減小,∴拋物線開口向上,且對稱軸?≥?1,a+b=1,∴a>0,b=1﹣a,∴﹣≥﹣1,∴,故選:D.【考點(diǎn)】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,根據(jù)題意得關(guān)于a的不等式組是解題的關(guān)鍵.3、D【解析】【分析】由△ABC為等腰三角形,BC=6,且AB,AC為方程x2﹣8x+m=0兩根,可得兩種情況:①BC=6=AB,把6代入方程得36﹣48+m=0②AB=AC,此時(shí)方程的判別式為0,分別求解即可.【詳解】解:∵△ABC為等腰三角形,若BC=6,且AB,AC為方程x2﹣8x+m=0兩根,則①BC=6=AB,把6代入方程得36﹣48+m=0,∴m=12;②AB=AC,此時(shí)方程的判別式為0,∴Δ=64﹣4m=0,∴m=16.故m的值等于12或16.故選:D.【考點(diǎn)】本題考查了一元二次方程的判別式和等腰三角形的性質(zhì),熟練掌握知識點(diǎn)是解題的關(guān)鍵.4、A【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)求解再利用三角形的內(nèi)角和定理求解再利用角的和差關(guān)系可得答案.【詳解】解:將△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)80°得到△OCD,∠A的度數(shù)為110°,∠D的度數(shù)為40°,故選A【點(diǎn)睛】本題考查的是三角形的內(nèi)角和定理的應(yīng)用,旋轉(zhuǎn)的性質(zhì),掌握“旋轉(zhuǎn)前后的對應(yīng)角相等”是解本題的關(guān)鍵.5、D【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠B的度數(shù),根據(jù)圓周角定理計(jì)算即可.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠B+∠ADC=180°,∵∠ADC=130°,∴∠B=50°,由圓周角定理得,∠AOC=2∠B=100°,故選:D.【點(diǎn)睛】本題考查的是圓內(nèi)接四邊形的性質(zhì)和圓周角定理,掌握圓內(nèi)接四邊形的對角互補(bǔ)是解題的關(guān)鍵.二、多選題1、BCD【解析】【分析】根據(jù)函數(shù)與點(diǎn)的關(guān)系,一元二次方程根的判別式,不等式的性質(zhì),逐一計(jì)算判斷即可.【詳解】∵拋物線(是常數(shù),)經(jīng)過點(diǎn)(-1,-1),,當(dāng)時(shí),與其對應(yīng)的函數(shù)值,∴c=1>0,a-b+c=-1,4a-2b+c>1,∴a-b=-2,2a-b>0,∴2a-a-2>0,∴a>2>0,∴b=a+2>0,∴abc>0,故A錯誤;∵b=a+2,a>2,c=1,,故B正確;∴a+b+c=a+a+2+1=2a+3,∵a>2,∴2a>4,∴2a+3>4+3>7,即,故C正確;∵,∴△==>0,∴有兩個(gè)不等的實(shí)數(shù)根,故D正確.故選:BCD.【考點(diǎn)】本題考查了二次函數(shù)的性質(zhì),一元二次方程根的判別式,不等式的基本性質(zhì),熟練掌握二次函數(shù)的性質(zhì),靈活使用根的判別式,準(zhǔn)確掌握不等式的基本性質(zhì)是解題的關(guān)鍵.2、ABD【解析】【分析】根據(jù)圓周角定理,等邊對等角,等腰三角形的性質(zhì),直徑所對圓周角是直角等知識即可解答【詳解】如圖,連接,,∵是的直徑,∴,又∵中,,∴點(diǎn)D是的中點(diǎn),即,故選項(xiàng)正確;由選項(xiàng)可知是的平分線,∴,由圓周角定理知,,故選項(xiàng)正確;∵是的直徑,∴,∵,∴,∴,∵,∴,∴,即,∴,故選項(xiàng)錯誤;∵,∴,∴,在中,∵,∴,∴,∴,∴劣弧是劣弧的2倍,故選項(xiàng)正確.綜上所述,正確的結(jié)論是:.故選:【考點(diǎn)】本題考查了圓周角定理,等邊對等角,等腰直角三角形的判定和性質(zhì),直徑所對圓周角是直角等知識,解題關(guān)鍵是求出相應(yīng)角的度數(shù)3、BC【解析】【分析】由表中數(shù)據(jù),結(jié)合二次函數(shù)的對稱性,可知,二次函數(shù)的對稱軸為,結(jié)合拋物線對稱軸為:,得出,由,,結(jié)合二次函數(shù)圖象性質(zhì),逐一分析各個(gè)選項(xiàng),即可作出相應(yīng)的判斷.【詳解】解:由表格數(shù)據(jù)可知,當(dāng)時(shí),,將點(diǎn)代入中,可得.由表格數(shù)據(jù)可知,當(dāng)時(shí),;當(dāng)時(shí),;即拋物線對稱軸為:,∵拋物線對稱軸為:,∴,化簡得,.∵,,∴拋物線解析式化為,.將點(diǎn)代入中,化簡得,,∵,∴,解得.∵,∴.∵,,,∴,故A選項(xiàng)說法錯誤,不符合題意;∵二次函數(shù)對稱軸為,∴和時(shí),對應(yīng)的函數(shù)值相等,∵時(shí),對應(yīng)函數(shù)值為,∴和是方程的兩個(gè)根,故B選項(xiàng)說法正確,符合題意;由表中數(shù)據(jù)可知,二次函數(shù)過點(diǎn)和,將點(diǎn)和分別代入二次函數(shù)解析式中,可得,,,故,C選項(xiàng)說法正確,符合題意;∵,∴,∵,∴,即,∵,∴,s取任意實(shí)數(shù),故D選項(xiàng)說法錯誤,不符合題意;故選:BC.【考點(diǎn)】本題考查了二次函數(shù)的圖象性質(zhì),二次函數(shù)與一元二次方程的關(guān)系,深入理解函數(shù)概念,熟練掌握二次函數(shù)圖象性質(zhì)是解題的關(guān)鍵.4、ABE【解析】【分析】根據(jù)拋物線的對稱軸為直線x=2,則有4a+b=0,可得A正確;根據(jù)二次函數(shù)的對稱性得到當(dāng)x=3時(shí),函數(shù)值大于0,則9a+3b+c>0,即9a+c>﹣3b,可得B正確;由于x=﹣1時(shí),y=0,則a﹣b+c=0,易得c=﹣5a,所以7a-3b+2c=9a,再根據(jù)拋物線開口向下得a<0,于是有7a﹣3b+2c<0,可得C錯誤;利用拋物線的對稱性得到(﹣3,)在拋物線上,然后利用二次函數(shù)的增減性可得D錯誤;作出直線y=﹣3,然后依據(jù)函數(shù)圖象進(jìn)行判斷可得E正確;綜上即可得答案.【詳解】A項(xiàng):∵x==2,∴4a+b=0,故A正確.B項(xiàng):∵拋物線與x軸的一個(gè)交點(diǎn)為(-1,0),對稱軸為直線x=2,∴另一個(gè)交點(diǎn)為(5,0),∵拋物線開口向下,∴當(dāng)x=3時(shí),y>0,即9a+3b+c>0,∴9a+c>﹣3b,故B正確.C項(xiàng):∵拋物線與x軸的一個(gè)交點(diǎn)為(﹣1,0),∴a﹣b+c=0∵b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴7a﹣3b+2c=7a+12a﹣10a=9a,∵拋物線開口向下,∴a<0,∴7a﹣3b+2c<0,故C錯誤;D項(xiàng):∵拋物線的對稱軸為x=2,C(7,)在拋物線上,∴點(diǎn)(﹣3,)與C(7,)關(guān)于對稱軸x=2對稱,∵A(﹣3,)在拋物線上,∴=,∵﹣3<﹣12,在對稱軸的左側(cè),拋物線開口向下,∴y隨x的增大而增大,∴=<,故D錯誤.E項(xiàng):方程a(x+1)(x﹣5)=0的兩根為x=﹣1或x=5,過y=﹣3作x軸的平行線,直線y=﹣3與拋物線的交點(diǎn)的橫坐標(biāo)為方程的兩根,∵<,拋物線與x軸交點(diǎn)為(-1,0),(5,0),∴依據(jù)函數(shù)圖象可知:<﹣1<5<,故E正確.故答案為:ABE【考點(diǎn)】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次函數(shù)y=ax2+bx+c(a≠0),二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小,當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口;一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對稱軸的位置,當(dāng)a與b同號時(shí)(即ab>0),對稱軸在y軸左;當(dāng)a與b異號時(shí)(即ab<0),對稱軸在y軸右;常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn).拋物線與y軸交于(0,c);拋物線與x軸交點(diǎn)個(gè)數(shù)由△決定,△=b2﹣4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn);△=b2﹣4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn);△=b2﹣4ac<0時(shí),拋物線與x軸沒有交點(diǎn).5、ABD【解析】【分析】根據(jù)圓的性質(zhì)定理逐項(xiàng)排查即可.【詳解】解:A.不在同一條直線上的三點(diǎn)確定一個(gè)圓,故本選項(xiàng)錯誤;B.三角形的外心是三角形三邊垂直平分線的交點(diǎn),所以本選項(xiàng)是錯誤;C.三角形的外接圓是三條垂直平分線的交點(diǎn),有且只有一個(gè)交點(diǎn),所以任意三角形一定有一個(gè)外接圓,并且只有一個(gè)外接圓,所以本選項(xiàng)是正確的;D.直角三角形的外心在斜邊中點(diǎn)處,故本選項(xiàng)錯誤.故選:ABD.【考點(diǎn)】考查確定圓的條件以及三角形外接圓的知識,掌握三角形的外接圓是三條垂直平分線的交點(diǎn)是解題的關(guān)鍵.三、填空題1、2【分析】(1)證明是等邊三角形,,進(jìn)而即可求得;(2)過點(diǎn)作,交于點(diǎn),以為圓心長度為半徑作半圓,交的延長延長線于點(diǎn),證明在半圓上,進(jìn)而即可求得范圍.【詳解】(1)如圖,四邊形是菱形,是等邊三角形是的中點(diǎn)即故答案為:2(2)如圖,過點(diǎn)作,交于點(diǎn),以為圓心長度為半徑作半圓,交的延長延長線于點(diǎn),四邊形是菱形,在以為圓心長度為半徑的圓上,又∠ABC=α(0°<α<180°)在半圓上,最小值為最大值為故答案為:【點(diǎn)睛】本題考查了相似三角形的性質(zhì)與判定,點(diǎn)與圓的位置關(guān)系求最值問題,掌握相似三角形的性質(zhì)與判定是解題的關(guān)鍵.2、12【分析】如圖,連接BC,AO,作點(diǎn)P關(guān)于AB的對稱點(diǎn)M,作點(diǎn)P關(guān)于AC的對稱點(diǎn)N,連接MN交AB于E,交AC于F,此時(shí)△PEF的周長=PE+PF+EF=EM+EF+FM=MN,想辦法求出MN的最小值即可解決問題.【詳解】解:如圖,連接BC,AO,作點(diǎn)P關(guān)于AB的對稱點(diǎn)M,作點(diǎn)P關(guān)于AC的對稱點(diǎn)N,連接MN交AB于E,交AC于F,此時(shí)△PEF的周長=PE+PF+EF=EM+EF+FM=MN,∴當(dāng)MN的值最小時(shí),△PEF的值最小,∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,∴∠MAN=120°,∴MN=AM=PA,∴當(dāng)PA的值最小時(shí),MN的值最小,取AB的中點(diǎn)J,連接CJ.∵AB=8,AC=4,∴AJ=JB=AC=4,∵∠JAC=60°,∴△JAC是等邊三角形,∴JC=JA=JB,∴∠ACB=90°,∴BC=,∵∠BOC=60°,OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=4,∠BCO=60°,∴∠ACH=30°,∵AH⊥OH,AH=AC=2,CH=AH=2,∴OH=6,∴OA==4,∵當(dāng)點(diǎn)P在直線OA上時(shí),PA的值最小,最小值為-,∴MN的最小值為?(-)=-12.故答案:-12.【點(diǎn)睛】本題考查了圓周角定理,垂徑定理,軸對稱-最短問題等知識,解題的關(guān)鍵是學(xué)會利用軸對稱解決最短問題,屬于中考填空題中的壓軸題.3、0.8【分析】重復(fù)試驗(yàn)次數(shù)越多,其頻率越能估計(jì)概率,求出射擊1000次時(shí)的頻率即可.【詳解】解:由題意可知射擊1000次時(shí),運(yùn)動員射擊一次時(shí)“射中9環(huán)以上”的頻率為∴用頻率估計(jì)概率為0.801,保留小數(shù)點(diǎn)后一位可知概率值為0.8故答案為:0.8.【點(diǎn)睛】本題考查了概率.解題的關(guān)鍵在于明確頻率估計(jì)概率時(shí)要在重復(fù)試驗(yàn)次數(shù)盡可能多的情況下.4、1或【解析】【分析】先運(yùn)用根的判別式求得k的取值范圍,進(jìn)而確定k的值,得到拋物線的解析式,再根據(jù)折疊得到新圖像的解析式,可求出函數(shù)圖象與x軸的交點(diǎn)坐標(biāo),畫出函數(shù)圖象,可發(fā)現(xiàn),若直線與新函數(shù)有3個(gè)交點(diǎn),可以有兩種情況:①過交點(diǎn)(-1,0),根據(jù)待定系數(shù)法可得m的值;②不過點(diǎn)(一1,0),與相切時(shí),根據(jù)判別式解答即可.【詳解】解:∵函數(shù)與x軸有兩個(gè)交點(diǎn),∴,解得,當(dāng)k取最小整數(shù)時(shí),,∴拋物線為,將該二次函數(shù)圖象在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個(gè)新圖象,所以新圖象的解析式為(或)

:①因?yàn)闉榈?,所以它的圖象從左到右是上升的,當(dāng)它與新圖象有3個(gè)交點(diǎn)時(shí)它一定過,把代入得所以,②與相切時(shí),圖象有三個(gè)交點(diǎn),,,解得.故答案為:1或.【考點(diǎn)】本題主要考查了二次函數(shù)圖象與幾何變換、待定系數(shù)法求函數(shù)解析式等知識點(diǎn),掌握分類討論和直線與拋物線相切時(shí)判別式等于零是解答本題的關(guān)鍵.5、﹣3≤x≤且x≠.【解析】【分析】根據(jù)二次根式的性質(zhì),被開方數(shù)大于等于0;分母中有字母,分母不為0.【詳解】解:若代數(shù)式有意義,必有,解①得解②移項(xiàng)得兩邊平方得整理得解得③∴解集為﹣3≤x≤且x≠.故答案為:﹣3≤x≤且x≠.【考點(diǎn)】本題考查了二次根式的概念:式子(a≥0)叫二次根式,(a≥0)是一個(gè)非負(fù)數(shù).注意:二次根式中的被開方數(shù)必須是非負(fù)數(shù),否則二次根式無意義;當(dāng)二次根式在分母上時(shí)還要考慮分母不等于零,此時(shí)被開方數(shù)大于0.四、簡答題1、(1)d=;(2)d=或d=(3)<d<或d<;(4)<d<?!窘馕觥俊痉治觥浚?)令-x2-2x+3=x+d求解即可;(2)設(shè)拋物線c:y=-x2-2x+3與x軸交于點(diǎn)A(-3,0),點(diǎn)B(1,0),則根據(jù)方程有兩個(gè)相等的實(shí)根求出P的坐標(biāo),然后求解即可;(3)(4)根據(jù)(2)求出的P點(diǎn)坐標(biāo)進(jìn)行數(shù)形結(jié)合畫圖找出d的取值范圍即可.【詳解】解:(1)當(dāng)直線l經(jīng)過點(diǎn)A(-3,0)時(shí),d=;(2)設(shè)拋物線c:y=-x2-2x+3與x軸交于點(diǎn)A(-3,0),點(diǎn)B(1,0),直線l:y=x+d與拋物線c:y=x2+2x-3(-3<x<1)相切于點(diǎn)P,則點(diǎn)P的橫坐標(biāo)恰好是方程x+d=x2+2x-3,即2x2+3x-2d-6=0(-3<x<1)的兩個(gè)相等實(shí)數(shù)根,解△=9+8(2d+6)=0得d=,∴點(diǎn)P的坐標(biāo)為().①當(dāng)直線l經(jīng)過點(diǎn)B(1,0)時(shí),直線l與這個(gè)新圖象有且只有三個(gè)公共點(diǎn),解得d=;②當(dāng)直線l經(jīng)過點(diǎn)P()時(shí),直線l與這個(gè)新圖象有且只有三個(gè)公共點(diǎn),解得d=;

∴綜合①、②得:d=或d=(3)①由平移直線l可得:直線l從經(jīng)過點(diǎn)A(-3,0)開始向下平移到直線l經(jīng)過點(diǎn)P()的過程中,直線l與這個(gè)新圖象有且只有兩個(gè)公共點(diǎn),可得<d<②直線l從經(jīng)過點(diǎn)P()繼續(xù)向下平移的過程中,直線l與這個(gè)新圖象有且只有兩個(gè)公共點(diǎn),可得d<;∴綜合①、②得:<d<或d<;(4)如圖:當(dāng)直線l經(jīng)過點(diǎn)B(1,0)時(shí),直線l與這個(gè)新圖象有且只有三個(gè)公共點(diǎn),解得d=;當(dāng)直線l繼續(xù)向下平移的過程中經(jīng)過點(diǎn)P(),直線l與這個(gè)新圖象有且只有三個(gè)公共點(diǎn),可得d=;∴要使直線l與這個(gè)新圖象有四個(gè)公共點(diǎn)則d的取值范圍是<d<.【考點(diǎn)】本題考查的是二次函數(shù)綜合運(yùn)用,關(guān)鍵是通過數(shù)形變換,確定變換后圖形與直線的位置關(guān)系.2、(1)y=﹣;(2)點(diǎn)R的縱坐標(biāo)為12,﹣12,或﹣;(3)①tan∠DCG的值是,②點(diǎn)C坐標(biāo)為(﹣1,3).【解析】【分析】(1)將點(diǎn)A(2,6)和B(4,4)代入拋物線解析式,得方程組,解得a和b,再代回原解析式即可;(2)設(shè)點(diǎn)R的縱坐標(biāo)為n,則QN=|n|,分兩種情況,根據(jù)相似關(guān)系列比例式即可解得;(3)①由三角形的中位線,及證Rt△CDG≌Rt△FEH(HL)可解;②先根據(jù)點(diǎn)C在拋物線上,設(shè)其橫坐標(biāo)為m,然后用其分別表示出相關(guān)點(diǎn)的坐標(biāo),并表示出直線CE,再根據(jù)△CFN∽△EHN,及相似三角形對應(yīng)邊上的高之比也等于相似比,從而建立關(guān)于m的方程,解之,然后代回點(diǎn)C即可.【詳解】(1)將點(diǎn)A(2,6)和B(4,4)代入y=ax2+bx+得:,解得∴二次函數(shù)的表達(dá)式為y=.(2)∵A(2,6),AK⊥x軸,∴K(2,0),△AOK中,OK=2,AK=6,OA=,△OQR中,OQ=4,設(shè)點(diǎn)R的縱坐標(biāo)為n,則QN=|n|,如果△AOK與以O(shè),Q,R為頂點(diǎn)的三角形相似,有兩種情況:①,則n=±12;②,則,從而n=±.答:點(diǎn)R的縱坐標(biāo)為,12,﹣12,或﹣.(3)①∵CG=GM,F(xiàn)H=HM,∴GH∥CF,GH=CF,∵等腰△CFM,∴CG=FH,∵CDEF為正方形,∴CD=EF,∠CDG=∠FEH=90°,∴Rt△CDG≌Rt△FEH(HL),∴DG=EH,∵GH=CF,∴DG=EH=CF=CD,∴tan∠DCG==,答:tan∠DCG的值是.②∵C是第二象限拋物線y=上的點(diǎn),∴設(shè)點(diǎn)C坐標(biāo)為(m,),則DC=4﹣m,∴F(m,﹣4+m),即F(m,),∴E(4,),∵CDEF為正方形,∴∠DEC=45°,故可設(shè)CE解析式為:y=﹣x+b,將點(diǎn)E坐標(biāo)代入得b=.∴CE解析式為:y=﹣x﹣,∵點(diǎn)N的縱坐標(biāo)是﹣1,∴﹣1=﹣x﹣,x=﹣,∴點(diǎn)N坐標(biāo)為(﹣,﹣1),∵CDEF為正方形,∴CF∥EH,∴△CFN∽△EHN,∵tan∠DCG==,DG=EH,CD=CF,∴,則EH邊上的高與CF邊上的高的比值也為,∴,化簡得:﹣2m2+11m+13=0,解得m=(舍)或m=﹣1,∴點(diǎn)C坐標(biāo)為(﹣1,3).答:點(diǎn)C坐標(biāo)為(﹣1,3).【考點(diǎn)】本題是二次函數(shù)的綜合題,涉及到待定系數(shù)法求解析式,相似三角形,一次函數(shù),三角函數(shù),解方程等多項(xiàng)知識點(diǎn)與能力,難度較大.五、解答題1、(1);(2)①11;②.【解析】【分析】(1)把點(diǎn)P(-2,3)代入y=x2+ax+3中,即可求出a;(2)①把m=2代入解析式即可求n的值;②由點(diǎn)Q到y(tǒng)軸的距離小于2,可得-2<m<2,在此范圍內(nèi)求n即可.【詳解】(1)解:把代入,得,解得.∵,∴頂點(diǎn)坐標(biāo)為.(2)①當(dāng)m=2時(shí),n=11,②點(diǎn)Q到y(tǒng)軸的距離小于2,∴|m|<2,∴-2<m<2,∴2≤n<11.【考點(diǎn)】本題考查二次函數(shù)的圖象及性質(zhì);熟練掌握二次函數(shù)圖象上點(diǎn)的特征是解題的關(guān)鍵.2、(1);(2)證明見詳解;(3).【分析】(1)過點(diǎn)P作PG⊥EC于G,根據(jù)等腰直角三角形得出∠B=∠C=45°,根據(jù)PG⊥EC,可取∠GPC=90°-∠C=45°,可得PG=GC,根據(jù)三角形外角性質(zhì)∠EPC=75°,可求∠EPG=30°,根據(jù)30°直角三角形性質(zhì)得出EP=2EG,根據(jù)勾股定理根據(jù)EC=EG+GC=EG+,可求EG=即可;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,根據(jù)∠MAH=45°=∠HEC,可得點(diǎn)A、M、C、E四點(diǎn)共圓,得出∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,可得△AEJ為等腰直角三角形,根據(jù)根據(jù)勾股定理AJ=,得出∠CAE=∠MCE,可證∠JAC=∠JCA,可得AJ=JC=,先證△CHM∽△ECM,再證△AEM≌△HEC(AAS),得出EM=EC,再證△AME≌△MCF(AAS),得出AE=MF即可;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時(shí),與BE在△ABC外部時(shí),當(dāng)BE在∠ABC的平分線上時(shí),作∠ABC的平分線交AC于O,將△AEC逆時(shí)針旋轉(zhuǎn)90°得到△AFC′,過點(diǎn)O作OP⊥BC于P,則點(diǎn)E在BO上,有∠ABE=∠ABC,先證B、A、C′三點(diǎn)共線,根據(jù)兩點(diǎn)之交線段最短可得BF+CE=BF+C′F≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,此時(shí)點(diǎn)E在AC上與點(diǎn)O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF在Rt△ABE中,根據(jù)勾股定理,當(dāng)BE在△ABC外部時(shí),∠EBA=,將△EAC逆時(shí)針旋轉(zhuǎn)90°得到△FAC′,先證B、A、C′三點(diǎn)共線,根據(jù)兩點(diǎn)之間線段最短可得BF+CE=BF+FC′≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,再證EF=BF,然后根據(jù)勾股定理BF=CE=AE+AC=AF+AB=在Rt△EAB中,根據(jù)勾股定理即可.【詳解】解:(1)過點(diǎn)P作PG⊥EC于G,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵PG⊥EC,∴∠GPC=90°-∠C=45°,∴PG=GC,∵∠EAC=30°,∠EDF=90°,DE=DF,∴∠DEF=∠F=45°,∴∠EPC=∠AEF+∠EAC=30°+45°=75°,∴∠EPG=∠EPC-∠GPC=75°-45°=30°,∴EP=2EG,在Rt△EPG中,根據(jù)勾股定理∴GC=PG=∴EC=EG+GC=EG+,∴EG=,∴EP=2EG=;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,∵BM=CM,AB=AC,∠BAC=90°,∴AM⊥BC,AM=BM=CM,∴∠MAH=45°=∠HEC,∴點(diǎn)A、M、C、E四點(diǎn)共圓,∴∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,∴∠AEJ=∠AEM+∠HEC=45°+45°=90°,∵AE=JE,∴∠EAJ=∠EJA=45°,在Rt△AEJ中,根據(jù)勾股定理AJ=,∵∠CAE=∠MCE,∴∠JAC+45°=∠JCA+45°,∴∠JAC=∠JCA,∴AJ=JC=,∵∠HCM=∠CEM=45°,∠HMC=∠CME,∴△CHM∽△ECM,∴∠MHC=∠MCE,∵∠EHA=∠MHC=∠MCE=∠EAH∴AE=HE,在△AEM和△HEC中,,∴△AEM≌△HEC(AAS),∴EM=EC,∴∠EMC=∠ECM,∵∠AME+∠EMC=∠ECM+∠MCF=90°,∴∠AME=∠MCF,在△AME和△MCF中,∴△AME≌△MCF(AAS),∴AE=MF,∴CE=EJ+JC=MF+AE;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時(shí),與BE在△ABC外部時(shí),當(dāng)當(dāng)BE在∠ABC的平分線上時(shí),作∠ABC的平分線交AC于O,將△AEC逆時(shí)針旋轉(zhuǎn)90°得到△AFC′,過點(diǎn)O作OP⊥BC于P,則點(diǎn)E在BO上,有∠ABE=∠ABC,∵△AEC≌△AFC′,∴∠CAE=∠C′AF,∵∠BAC′=∠BAC+∠OAC′=∠BAC+∠FAC′+∠OAF=∠BAC+∠EAC+∠OAF=∠BAC+∠EAF=180°,∴B、A、C′三點(diǎn)共線,∴BF+CE=BF+C′F≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,此時(shí)點(diǎn)E在AC上與點(diǎn)O重合,∵BO為∠ABC的平分線,OA⊥AB,OP⊥BC,∴OP=AO=AF,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠PEC=180°-∠EPC-∠C=45°,∴PC=EP=AF,∴EC=,∴AC=AE+EC=AF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論