版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
天津霍元甲文武學(xué)校七年級(jí)下冊(cè)數(shù)學(xué)期末試卷專題練習(xí)(解析版)一、解答題1.(1)如圖①,若∠B+∠D=∠E,則直線AB與CD有什么位置關(guān)系?請(qǐng)證明(不需要注明理由).(2)如圖②中,AB//CD,又能得出什么結(jié)論?請(qǐng)直接寫出結(jié)論.(3)如圖③,已知AB//CD,則∠1+∠2+…+∠n-1+∠n的度數(shù)為.2.已知,定點(diǎn),分別在直線,上,在平行線,之間有一動(dòng)點(diǎn).(1)如圖1所示時(shí),試問,,滿足怎樣的數(shù)量關(guān)系?并說明理由.(2)除了(1)的結(jié)論外,試問,,還可能滿足怎樣的數(shù)量關(guān)系?請(qǐng)畫圖并證明(3)當(dāng)滿足,且,分別平分和,①若,則__________°.②猜想與的數(shù)量關(guān)系.(直接寫出結(jié)論)3.已知:直線AB∥CD,M,N分別在直線AB,CD上,H為平面內(nèi)一點(diǎn),連HM,HN.(1)如圖1,延長(zhǎng)HN至G,∠BMH和∠GND的角平分線相交于點(diǎn)E.求證:2∠MEN﹣∠MHN=180°;(2)如圖2,∠BMH和∠HND的角平分線相交于點(diǎn)E.①請(qǐng)直接寫出∠MEN與∠MHN的數(shù)量關(guān)系:;②作MP平分∠AMH,NQ∥MP交ME的延長(zhǎng)線于點(diǎn)Q,若∠H=140°,求∠ENQ的度數(shù).(可直接運(yùn)用①中的結(jié)論)4.汛期即將來臨,防汛指揮部在某水域一危險(xiǎn)地帶兩岸各安置了一探照燈,便于夜間查看河水及兩岸河堤的情況.如圖1,燈射出的光束自順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),燈射出的光束自順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈射出的光束轉(zhuǎn)動(dòng)的速度是/秒,燈射出的光束轉(zhuǎn)動(dòng)的速度是/秒,且、滿足.假定這一帶水域兩岸河堤是平行的,即,且.(1)求、的值;(2)如圖2,兩燈同時(shí)轉(zhuǎn)動(dòng),在燈射出的光束到達(dá)之前,若兩燈射出的光束交于點(diǎn),過作交于點(diǎn),若,求的度數(shù);(3)若燈射線先轉(zhuǎn)動(dòng)30秒,燈射出的光束才開始轉(zhuǎn)動(dòng),在燈射出的光束到達(dá)之前,燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?5.已知:AB∥CD,截線MN分別交AB、CD于點(diǎn)M、N.(1)如圖①,點(diǎn)B在線段MN上,設(shè)∠EBM=α°,∠DNM=β°,且滿足+(β﹣60)2=0,求∠BEM的度數(shù);(2)如圖②,在(1)的條件下,射線DF平分∠CDE,且交線段BE的延長(zhǎng)線于點(diǎn)F;請(qǐng)寫出∠DEF與∠CDF之間的數(shù)量關(guān)系,并說明理由;(3)如圖③,當(dāng)點(diǎn)P在射線NT上運(yùn)動(dòng)時(shí),∠DCP與∠BMT的平分線交于點(diǎn)Q,則∠Q與∠CPM的比值為(直接寫出答案).二、解答題6.如圖1,由線段組成的圖形像英文字母,稱為“形”.(1)如圖1,形中,若,則______;(2)如圖2,連接形中兩點(diǎn),若,試探求與的數(shù)量關(guān)系,并說明理由;(3)如圖3,在(2)的條件下,且的延長(zhǎng)線與的延長(zhǎng)線有交點(diǎn),當(dāng)點(diǎn)在線段的延長(zhǎng)線上從左向右移動(dòng)的過程中,直接寫出與所有可能的數(shù)量關(guān)系.7.如圖1,點(diǎn)O在上,,射線交于點(diǎn)C,已知m,n滿足:.(1)試說明//的理由;(2)如圖2,平分,平分,直線、交于點(diǎn)E,則______;(3)若將繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),其余條件都不變,在旋轉(zhuǎn)過程中,的度數(shù)是否發(fā)生變化?請(qǐng)說明你的結(jié)論.8.問題情境(1)如圖1,已知,求的度數(shù).佩佩同學(xué)的思路:過點(diǎn)作,進(jìn)而,由平行線的性質(zhì)來求,求得;問題遷移(2)圖2,圖3均是由一塊三角板和一把直尺拼成的圖形,三角板的兩直角邊與直尺的兩邊重合與相交于點(diǎn),有一動(dòng)點(diǎn)在邊上運(yùn)動(dòng),連接,記.①如圖2,當(dāng)點(diǎn)在兩點(diǎn)之間運(yùn)動(dòng)時(shí),請(qǐng)直接寫出與之間的數(shù)量關(guān)系;②如圖3,當(dāng)點(diǎn)在兩點(diǎn)之間運(yùn)動(dòng)時(shí),與之間有何數(shù)量關(guān)系?請(qǐng)判斷并說明理由.9.如圖1,,E是、之間的一點(diǎn).(1)判定,與之間的數(shù)量關(guān)系,并證明你的結(jié)論;(2)如圖2,若、的兩條平分線交于點(diǎn)F.直接寫出與之間的數(shù)量關(guān)系;(3)將圖2中的射線沿翻折交于點(diǎn)G得圖3,若的余角等于的補(bǔ)角,求的大小.10.如圖,兩個(gè)形狀,大小完全相同的含有30°、60°的三角板如圖放置,PA、PB與直線MN重合,且三角板PAC,三角板PBD均可以繞點(diǎn)P逆時(shí)針旋轉(zhuǎn).(1)①如圖1,∠DPC=度.②我們規(guī)定,如果兩個(gè)三角形只要有一組邊平行,我們就稱這兩個(gè)三角形為“孿生三角形”,如圖1,三角板BPD不動(dòng),三角板PAC從圖示位置開始每秒10°逆時(shí)針旋轉(zhuǎn)一周(0°旋轉(zhuǎn)360°),問旋轉(zhuǎn)時(shí)間t為多少時(shí),這兩個(gè)三角形是“孿生三角形”.(2)如圖3,若三角板PAC的邊PA從PN處開始繞點(diǎn)P逆時(shí)針旋轉(zhuǎn),轉(zhuǎn)速3°/秒,同時(shí)三角板PBD的邊PB從PM處開始繞點(diǎn)P逆時(shí)針旋轉(zhuǎn),轉(zhuǎn)速2°/秒,在兩個(gè)三角板旋轉(zhuǎn)過程中,(PC轉(zhuǎn)到與PM重合時(shí),兩三角板都停止轉(zhuǎn)動(dòng)).設(shè)兩個(gè)三角板旋轉(zhuǎn)時(shí)間為t秒,以下兩個(gè)結(jié)論:①為定值;②∠BPN+∠CPD為定值,請(qǐng)選擇你認(rèn)為對(duì)的結(jié)論加以證明.三、解答題11.問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度數(shù).小明的思路是:如圖2,過P作PE∥AB,通過平行線性質(zhì),可得∠APC=50°+60°=110°.問題遷移:(1)如圖3,AD∥BC,點(diǎn)P在射線OM上運(yùn)動(dòng),當(dāng)點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之間有何數(shù)量關(guān)系?請(qǐng)說明理由;(2)在(1)的條件下,如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請(qǐng)你直接寫出∠CPD、∠α、∠β間的數(shù)量關(guān)系.12.如圖,在中,與的角平分線交于點(diǎn).(1)若,則;(2)若,則;(3)若,與的角平分線交于點(diǎn),的平分線與的平分線交于點(diǎn),,的平分線與的平分線交于點(diǎn),則.13.如圖,△ABC和△ADE有公共頂點(diǎn)A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,則∠EAC=;(2)如圖1,過AC上一點(diǎn)O作OG⊥AC,分別交AB、AD、AE于點(diǎn)G、H、F.①若AO=2,S△AGH=4,S△AHF=1,求線段OF的長(zhǎng);②如圖2,∠AFO的平分線和∠AOF的平分線交于點(diǎn)M,∠FHD的平分線和∠OGB的平分線交于點(diǎn)N,∠N+∠M的度數(shù)是否發(fā)生變化?若不變,求出其度數(shù);若改變,請(qǐng)說明理由.14.如圖①所示,在三角形紙片中,,,將紙片的一角折疊,使點(diǎn)落在內(nèi)的點(diǎn)處.(1)若,________.(2)如圖①,若各個(gè)角度不確定,試猜想,,之間的數(shù)量關(guān)系,直接寫出結(jié)論.②當(dāng)點(diǎn)落在四邊形外部時(shí)(如圖②),(1)中的猜想是否仍然成立?若成立,請(qǐng)說明理由,若不成立,,,之間又存在什么關(guān)系?請(qǐng)說明.(3)應(yīng)用:如圖③:把一個(gè)三角形的三個(gè)角向內(nèi)折疊之后,且三個(gè)頂點(diǎn)不重合,那么圖中的和是________.15.已知,如圖1,直線l2⊥l1,垂足為A,點(diǎn)B在A點(diǎn)下方,點(diǎn)C在射線AM上,點(diǎn)B、C不與點(diǎn)A重合,點(diǎn)D在直線11上,點(diǎn)A的右側(cè),過D作l3⊥l1,點(diǎn)E在直線l3上,點(diǎn)D的下方.(1)l2與l3的位置關(guān)系是;(2)如圖1,若CE平分∠BCD,且∠BCD=70°,則∠CED=°,∠ADC=°;(3)如圖2,若CD⊥BD于D,作∠BCD的角平分線,交BD于F,交AD于G.試說明:∠DGF=∠DFG;(4)如圖3,若∠DBE=∠DEB,點(diǎn)C在射線AM上運(yùn)動(dòng),∠BDC的角平分線交EB的延長(zhǎng)線于點(diǎn)N,在點(diǎn)C的運(yùn)動(dòng)過程中,探索∠N:∠BCD的值是否變化,若變化,請(qǐng)說明理由;若不變化,請(qǐng)直接寫出比值.【參考答案】一、解答題1.(1)AB//CD,證明見解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)(n-1)?180°【分析】(1)過點(diǎn)E作EF//AB,利用平行線的性質(zhì)則可得出解析:(1)AB//CD,證明見解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)(n-1)?180°【分析】(1)過點(diǎn)E作EF//AB,利用平行線的性質(zhì)則可得出∠B=∠BEF,再由已知及平行線的判定即可得出AB∥CD;(2)如圖,過點(diǎn)E作EM∥AB,過點(diǎn)F作FN∥AB,過點(diǎn)G作GH∥AB,根據(jù)探究(1)的證明過程及方法,可推出∠E+∠G=∠B+∠F+∠D,則可由此得出規(guī)律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)如圖,過點(diǎn)M作EF∥AB,過點(diǎn)N作GH∥AB,則可由平行線的性質(zhì)得出∠1+∠2+∠MNG=180°×2,依此即可得出此題結(jié)論.【詳解】解:(1)過點(diǎn)E作EF//AB,∴∠B=∠BEF.∵∠BEF+∠FED=∠BED,∴∠B+∠FED=∠BED.∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(內(nèi)錯(cuò)角相等,兩直線平行).∴AB//CD.(2)過點(diǎn)E作EM∥AB,過點(diǎn)F作FN∥AB,過點(diǎn)G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,即∠E+∠G=∠B+∠F+∠D.由此可得:開口朝左的所有角度之和與開口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.故答案為:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.(3)如圖,過點(diǎn)M作EF∥AB,過點(diǎn)N作GH∥AB,∴∠APM+∠PME=180°,∵EF∥AB,GH∥AB,∴EF∥GH,∴∠EMN+∠MNG=180°,∴∠1+∠2+∠MNG=180°×2,依次類推:∠1+∠2+…+∠n-1+∠n=(n-1)?180°.故答案為:(n-1)?180°.【點(diǎn)睛】本題考查了平行線的性質(zhì)與判定,屬于基礎(chǔ)題,關(guān)鍵是過E點(diǎn)作AB(或CD)的平行線,把復(fù)雜的圖形化歸為基本圖形.2.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點(diǎn)是平行線,之間解析:(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點(diǎn)是平行線,之間有一動(dòng)點(diǎn),因此需要對(duì)點(diǎn)的位置進(jìn)行分類討論:如圖1,當(dāng)點(diǎn)在的左側(cè)時(shí),,,滿足數(shù)量關(guān)系為:;(2)當(dāng)點(diǎn)在的右側(cè)時(shí),,,滿足數(shù)量關(guān)系為:;(3)①若當(dāng)點(diǎn)在的左側(cè)時(shí),;當(dāng)點(diǎn)在的右側(cè)時(shí),可求得;②結(jié)合①可得,由,得出;可得,由,得出.【詳解】解:(1)如圖1,過點(diǎn)作,,,,,,;(2)如圖2,當(dāng)點(diǎn)在的右側(cè)時(shí),,,滿足數(shù)量關(guān)系為:;過點(diǎn)作,,,,,,;(3)①如圖3,若當(dāng)點(diǎn)在的左側(cè)時(shí),,,,分別平分和,,,;如圖4,當(dāng)點(diǎn)在的右側(cè)時(shí),,,;故答案為:或30;②由①可知:,;,.綜合以上可得與的數(shù)量關(guān)系為:或.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),平行公理和及推論等知識(shí)點(diǎn),作輔助線后能求出各個(gè)角的度數(shù),是解此題的關(guān)鍵.3.(1)見解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)過點(diǎn)E作EP∥AB交MH于點(diǎn)Q,利用平行線的性質(zhì)、角平分線性質(zhì)、鄰補(bǔ)角和為180°,角與角之間的基本運(yùn)算、等量代換等即解析:(1)見解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)過點(diǎn)E作EP∥AB交MH于點(diǎn)Q,利用平行線的性質(zhì)、角平分線性質(zhì)、鄰補(bǔ)角和為180°,角與角之間的基本運(yùn)算、等量代換等即可得證.(2)①過點(diǎn)H作GI∥AB,利用(1)中結(jié)論2∠MEN﹣∠MHN=180°,利用平行線的性質(zhì)、角平分線性質(zhì)、鄰補(bǔ)角和為180°,角與角之間的基本運(yùn)算、等量代換等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),進(jìn)而用等量代換得出2∠MEN+∠MHN=360°.②過點(diǎn)H作HT∥MP,由①的結(jié)論得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行線性質(zhì)得∠ENQ+∠ENH+∠NHT=180°,由角平分線性質(zhì)及鄰補(bǔ)角可得∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.繼續(xù)使用等量代換可得∠ENQ度數(shù).【詳解】解:(1)證明:過點(diǎn)E作EP∥AB交MH于點(diǎn)Q.如答圖1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=∠GND.(兩直線平行,內(nèi)錯(cuò)角相等)∴∠MEN=∠MEQ+∠QEN=∠BMH+∠GND=(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:過點(diǎn)H作GI∥AB.如答圖2由(1)可得∠MEN=(∠BMH+∠HND),由圖可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案為:2∠MEN+∠MHN=360°.②:由①的結(jié)論得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.過點(diǎn)H作HT∥MP.如答圖2∵M(jìn)P∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).∵M(jìn)P平分∠AMH,∴∠PMH=∠AMH=(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.∵∠ENH=∠HND.∴∠ENQ+∠HND+140°﹣90°+∠BMH=180°.∴∠ENQ+(HND+∠BMH)=130°.∴∠ENQ+∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【點(diǎn)睛】本題考查了平行線的性質(zhì),角平分線的性質(zhì),鄰補(bǔ)角,等量代換,角之間的數(shù)量關(guān)系運(yùn)算,輔助線的作法,正確作出輔助線是解題的關(guān)鍵,本題綜合性較強(qiáng).4.(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根據(jù),用含t的式子表示出,根據(jù)(2)中給出的條件得出方程式,求出t的值,進(jìn)而求出的度數(shù);(3)根據(jù)燈B的解析:(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根據(jù),用含t的式子表示出,根據(jù)(2)中給出的條件得出方程式,求出t的值,進(jìn)而求出的度數(shù);(3)根據(jù)燈B的要求,t<150,在這個(gè)時(shí)間段內(nèi)A可以轉(zhuǎn)3次,分情況討論.【詳解】解:(1).又,.,;(2)設(shè)燈轉(zhuǎn)動(dòng)時(shí)間為秒,如圖,作,而,,,,,,(3)設(shè)燈轉(zhuǎn)動(dòng)秒,兩燈的光束互相平行.依題意得①當(dāng)時(shí),兩河岸平行,所以兩光線平行,所以所以,即:,解得;②當(dāng)時(shí),兩光束平行,所以兩河岸平行,所以所以,,解得;③當(dāng)時(shí),圖大概如①所示,解得(不合題意)綜上所述,當(dāng)秒或82.5秒時(shí),兩燈的光束互相平行.【點(diǎn)睛】這道題考察的是平行線的性質(zhì)和一元一次方程的應(yīng)用.根據(jù)平行線的性質(zhì)找到對(duì)應(yīng)角列出方程是解題的關(guān)鍵.5.(1)30°;(2)∠DEF+2∠CDF=150°,理由見解析;(3)【分析】(1)由非負(fù)性可求α,β的值,由平行線的性質(zhì)和外角性質(zhì)可求解;(2)過點(diǎn)E作直線EH∥AB,由角平分線的性質(zhì)和平行解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由見解析;(3)【分析】(1)由非負(fù)性可求α,β的值,由平行線的性質(zhì)和外角性質(zhì)可求解;(2)過點(diǎn)E作直線EH∥AB,由角平分線的性質(zhì)和平行線的性質(zhì)可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的數(shù)量可求解;(3)由平行線的性質(zhì)和外角性質(zhì)可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.【詳解】解:(1)∵+(β﹣60)2=0,∴α=30,β=60,∵AB∥CD,∴∠AMN=∠MND=60°,∵∠AMN=∠B+∠BEM=60°,∴∠BEM=60°﹣30°=30°;(2)∠DEF+2∠CDF=150°.理由如下:過點(diǎn)E作直線EH∥AB,∵DF平分∠CDE,∴設(shè)∠CDF=∠EDF=x°;∵EH∥AB,∴∠DEH=∠EDC=2x°,∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;∴∠DEF=150°﹣2∠CDF,即∠DEF+2∠CDF=150°;(3)如圖3,設(shè)MQ與CD交于點(diǎn)E,∵M(jìn)Q平分∠BMT,QC平分∠DCP,∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,∵AB∥CD,∴∠BME=∠MEC,∠BMP=∠PND,∵∠MEC=∠Q+∠DCQ,∴2∠MEC=2∠Q+2∠DCQ,∴∠PMB=2∠Q+∠PCD,∵∠PND=∠PCD+∠CPM=∠PMB,∴∠CPM=2∠Q,∴∠Q與∠CPM的比值為,故答案為:.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)、角平分線的性質(zhì),準(zhǔn)確計(jì)算是解題的關(guān)鍵.二、解答題6.(1)50°;(2)∠A+∠C=30°+α,理由見解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)過M作MN∥AB,由平行線的性質(zhì)即可求得∠M的值.(2)延長(zhǎng)BA,DC交于E,解析:(1)50°;(2)∠A+∠C=30°+α,理由見解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)過M作MN∥AB,由平行線的性質(zhì)即可求得∠M的值.(2)延長(zhǎng)BA,DC交于E,應(yīng)用四邊形的內(nèi)角和定理與平角的定義即可解決問題.(3)分兩種情形分別求解即可;【詳解】解:(1)過M作MN∥AB,∵AB∥CD,∴AB∥MN∥CD,∴∠1=∠A,∠2=∠C,∴∠AMC=∠1+∠2=∠A+∠C=50°;故答案為:50°;(2)∠A+∠C=30°+α,延長(zhǎng)BA,DC交于E,∵∠B+∠D=150°,∴∠E=30°,∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α;即∠A+∠C=30°+α;(3)①如下圖所示:延長(zhǎng)BA、DC使之相交于點(diǎn)E,延長(zhǎng)MC與BA的延長(zhǎng)線相交于點(diǎn)F,∵∠B+∠D=150°,∠AMC=α,∴∠E=30°由三角形的內(nèi)外角之間的關(guān)系得:∠1=30°+∠2∠2=∠3+α∴∠1=30°+∠3+α∴∠1-∠3=30°+α即:∠A-∠C=30°+α.②如圖所示,210-∠A=(180°-∠DCM)+α,即∠A-∠DCM=30°-α.綜上所述,∠A-∠DCM=30°+α或30°-α.【點(diǎn)睛】本題考查了平行線的性質(zhì).解答該題時(shí),通過作輔助線準(zhǔn)確作出輔助線l∥AB,利用平行線的性質(zhì)(兩直線平行內(nèi)錯(cuò)角相等)將所求的角∠M與已知角∠A、∠C的數(shù)量關(guān)系聯(lián)系起來,從而求得∠M的度數(shù).7.(1)見解析;(2)45;(3)不變,見解析;【分析】(1)由可求得m及n,從而可求得∠MOC=∠OCQ,則可得結(jié)論;(2)易得∠AON的度數(shù),由兩條角平分線,可得∠DON,∠OCF的度數(shù),也解析:(1)見解析;(2)45;(3)不變,見解析;【分析】(1)由可求得m及n,從而可求得∠MOC=∠OCQ,則可得結(jié)論;(2)易得∠AON的度數(shù),由兩條角平分線,可得∠DON,∠OCF的度數(shù),也易得∠COE的度數(shù),由三角形外角的性質(zhì)即可求得∠OEF的度數(shù);(3)不變,分三種情況討論即可.【詳解】(1)∵,,且∴,∴m=20,n=70∴∠MOC=90゜-∠AOM=70゜∴∠MOC=∠OCQ=70゜∴MN∥PQ(2)∵∠AON=180゜-∠AOM=160゜又∵平分,平分∴,∵∴∴∠OEF=∠OCF+∠COE=35゜+10゜=45゜故答案為:45.(3)不變,理由如下:如圖,當(dāng)0゜<α<20゜時(shí),∵CF平分∠OCQ∴∠OCF=∠QCF設(shè)∠OCF=∠QCF=x則∠OCQ=2x∵M(jìn)N∥PQ∴∠MOC=∠OCQ=2x∵∠AON=360゜-90゜—(180゜-2x)=90゜+2x,OD平分∠AON∴∠DON=45゜+x∵∠MOE=∠DON=45゜+x∴∠COE=∠MOE-∠MOC=45゜+x-2x=45゜-x∴∠OEF=∠COE+∠OCF=45゜-x+x=45゜當(dāng)α=20゜時(shí),OD與OB共線,則∠OCQ=90゜,由CF平分∠OCQ知,∠OEF=45゜當(dāng)20゜<α<90゜時(shí),如圖∵CF平分∠OCQ∴∠OCF=∠QCF設(shè)∠OCF=∠QCF=x則∠OCQ=2x∵M(jìn)N∥PQ∴∠NOC=180゜-∠OCQ=180゜-2x∵∠AON=90゜+(180゜-2x)=270゜-2x,OD平分∠AON∴∠AOE=135゜-x∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜綜上所述,∠EOF的度數(shù)不變.【點(diǎn)睛】本題主要考查了角平分線的定義,平行線的判定與性質(zhì),角的和差關(guān)系,注意分類討論,引入適當(dāng)?shù)牧勘阌谶\(yùn)算簡(jiǎn)便.8.(1)80;(2)①;②【分析】(1)過點(diǎn)P作PG∥AB,則PG∥CD,由平行線的性質(zhì)可得∠BPC的度數(shù);(2)①過點(diǎn)P作FD的平行線,依據(jù)平行線的性質(zhì)可得∠APE與∠α,∠β之間的數(shù)量關(guān)系;解析:(1)80;(2)①;②【分析】(1)過點(diǎn)P作PG∥AB,則PG∥CD,由平行線的性質(zhì)可得∠BPC的度數(shù);(2)①過點(diǎn)P作FD的平行線,依據(jù)平行線的性質(zhì)可得∠APE與∠α,∠β之間的數(shù)量關(guān)系;②過P作PQ∥DF,依據(jù)平行線的性質(zhì)可得∠β=∠QPA,∠α=∠QPE,即可得到∠APE=∠APQ-∠EPQ=∠β-∠α.【詳解】解:(1)過點(diǎn)P作PG∥AB,則PG∥CD,由平行線的性質(zhì)可得∠B+∠BPG=180°,∠C+∠CPG=180°,又∵∠PBA=125°,∠PCD=155°,∴∠BPC=360°-125°-155°=80°,故答案為:80;(2)①如圖2,過點(diǎn)P作FD的平行線PQ,則DF∥PQ∥AC,∴∠α=∠EPQ,∠β=∠APQ,∴∠APE=∠EPQ+∠APQ=∠α+∠β,∠APE與∠α,∠β之間的數(shù)量關(guān)系為∠APE=∠α+∠β;②如圖3,∠APE與∠α,∠β之間的數(shù)量關(guān)系為∠APE=∠β-∠α;理由:過P作PQ∥DF,∵DF∥CG,∴PQ∥CG,∴∠β=∠QPA,∠α=∠QPE,∴∠APE=∠APQ-∠EPQ=∠β-∠α.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),解決問題的關(guān)鍵是過拐點(diǎn)作平行線,利用平行線的性質(zhì)得出結(jié)論.9.(1),見解析;(2);(3)60°【分析】(1)作EF//AB,如圖1,則EF//CD,利用平行線的性質(zhì)得∠1=∠BAE,∠2=∠CDE,從而得到∠BAE+∠CDE=∠AED;(2)如圖2,解析:(1),見解析;(2);(3)60°【分析】(1)作EF//AB,如圖1,則EF//CD,利用平行線的性質(zhì)得∠1=∠BAE,∠2=∠CDE,從而得到∠BAE+∠CDE=∠AED;(2)如圖2,由(1)的結(jié)論得∠AFD=∠BAF+∠CDF,根據(jù)角平分線的定義得到∠BAF=∠BAE,∠CDF=∠CDE,則∠AFD=(∠BAE+∠CDE),加上(1)的結(jié)論得到∠AFD=∠AED;(3)由(1)的結(jié)論得∠AGD=∠BAF+∠CDG,利用折疊性質(zhì)得∠CDG=4∠CDF,再利用等量代換得到∠AGD=2∠AED-∠BAE,加上90°-∠AGD=180°-2∠AED,從而可計(jì)算出∠BAE的度數(shù).【詳解】解:(1)理由如下:作,如圖1,,.,,;(2)如圖2,由(1)的結(jié)論得,、的兩條平分線交于點(diǎn)F,,,,,;(3)由(1)的結(jié)論得,而射線沿翻折交于點(diǎn)G,,,,,.【點(diǎn)睛】本題考查了平行線性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.10.(1)①90;②t為或或或或或或;(2)①正確,②錯(cuò)誤,證明見解析.【分析】(1)①由平角的定義,結(jié)合已知條件可得:從而可得答案;②當(dāng)時(shí),有兩種情況,畫出符合題意的圖形,利用平行線的性質(zhì)與角的和解析:(1)①90;②t為或或或或或或;(2)①正確,②錯(cuò)誤,證明見解析.【分析】(1)①由平角的定義,結(jié)合已知條件可得:從而可得答案;②當(dāng)時(shí),有兩種情況,畫出符合題意的圖形,利用平行線的性質(zhì)與角的和差求解旋轉(zhuǎn)角,可得旋轉(zhuǎn)時(shí)間;當(dāng)時(shí),有兩種情況,畫出符合題意的圖形,利用平行線的性質(zhì)與角的和差關(guān)系求解旋轉(zhuǎn)角,可得旋轉(zhuǎn)時(shí)間;當(dāng)時(shí),有兩種情況,畫出符合題意的圖形,利用平行線的性質(zhì)與角的和差關(guān)系求解旋轉(zhuǎn)角,可得旋轉(zhuǎn)時(shí)間;當(dāng)時(shí),畫出符合題意的圖形,利用平行線的性質(zhì)與角的和差關(guān)系求解旋轉(zhuǎn)角,可得旋轉(zhuǎn)時(shí)間;當(dāng)時(shí)的旋轉(zhuǎn)時(shí)間與相同;(2)分兩種情況討論:當(dāng)在上方時(shí),當(dāng)在下方時(shí),①分別用含的代數(shù)式表示,從而可得的值;②分別用含的代數(shù)式表示,得到是一個(gè)含的代數(shù)式,從而可得答案.【詳解】解:(1)①∵∠DPC=180°﹣∠CPA﹣∠DPB,∠CPA=60°,∠DPB=30°,∴∠DPC=180﹣30﹣60=90°,故答案為90;②如圖1﹣1,當(dāng)BD∥PC時(shí),∵PC∥BD,∠DBP=90°,∴∠CPN=∠DBP=90°,∵∠CPA=60°,∴∠APN=30°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時(shí)間為3秒;如圖1﹣2,當(dāng)PC∥BD時(shí),∵∠PBD=90°,∴∠CPB=∠DBP=90°,∵∠CPA=60°,∴∠APM=30°,∵三角板PAC繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)的角度為180°+30°=210°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時(shí)間為21秒,如圖1﹣3,當(dāng)PA∥BD時(shí),即點(diǎn)D與點(diǎn)C重合,此時(shí)∠ACP=∠BPD=30°,則AC∥BP,∵PA∥BD,∴∠DBP=∠APN=90°,∴三角板PAC繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)的角度為90°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時(shí)間為9秒,如圖1﹣4,當(dāng)PA∥BD時(shí),∵∠DPB=∠ACP=30°,∴AC∥BP,∵PA∥BD,∴∠DBP=∠BPA=90°,∴三角板PAC繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)的角度為90°+180°=270°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時(shí)間為27秒,如圖1﹣5,當(dāng)AC∥DP時(shí),∵AC∥DP,∴∠C=∠DPC=30°,∴∠APN=180°﹣30°﹣30°﹣60°=60°,∴三角板PAC繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)的角度為60°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時(shí)間為6秒,如圖1﹣6,當(dāng)時(shí),∴三角板PAC繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)的角度為∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時(shí)間為秒,如圖1﹣7,當(dāng)AC∥BD時(shí),∵AC∥BD,∴∠DBP=∠BAC=90°,∴點(diǎn)A在MN上,∴三角板PAC繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)的角度為180°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時(shí)間為18秒,當(dāng)時(shí),如圖1-3,1-4,旋轉(zhuǎn)時(shí)間分別為:,綜上所述:當(dāng)t為或或或或或或時(shí),這兩個(gè)三角形是“孿生三角形”;(2)如圖,當(dāng)在上方時(shí),①正確,理由如下:設(shè)運(yùn)動(dòng)時(shí)間為t秒,則∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=30°﹣2t,∠APN=3t.∴∠CPD=180°﹣∠DPM﹣∠CPA﹣∠APN=90°﹣t,∴②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD隨著時(shí)間在變化,不為定值,結(jié)論錯(cuò)誤.當(dāng)在下方時(shí),如圖,①正確,理由如下:設(shè)運(yùn)動(dòng)時(shí)間為t秒,則∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=∠APN=3t.∴∠CPD=∴②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD隨著時(shí)間在變化,不為定值,結(jié)論錯(cuò)誤.綜上:①正確,②錯(cuò)誤.【點(diǎn)睛】本題考查的是角的和差倍分關(guān)系,平行線的性質(zhì)與判定,角的動(dòng)態(tài)定義(旋轉(zhuǎn)角)的理解,掌握分類討論的思想是解題的關(guān)鍵.三、解答題11.(1),理由見解析;(2)當(dāng)點(diǎn)P在B、O兩點(diǎn)之間時(shí),;當(dāng)點(diǎn)P在射線AM上時(shí),.【分析】(1)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠C解析:(1),理由見解析;(2)當(dāng)點(diǎn)P在B、O兩點(diǎn)之間時(shí),;當(dāng)點(diǎn)P在射線AM上時(shí),.【分析】(1)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分兩種情況:①點(diǎn)P在A、M兩點(diǎn)之間,②點(diǎn)P在B、O兩點(diǎn)之間,分別畫出圖形,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出結(jié)論.【詳解】解:(1)∠CPD=∠α+∠β,理由如下:如圖,過P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)當(dāng)點(diǎn)P在A、M兩點(diǎn)之間時(shí),∠CPD=∠β-∠α.理由:如圖,過P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;當(dāng)點(diǎn)P在B、O兩點(diǎn)之間時(shí),∠CPD=∠α-∠β.理由:如圖,過P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【點(diǎn)睛】本題考查了平行線的性質(zhì)的運(yùn)用,主要考核了學(xué)生的推理能力,解決問題的關(guān)鍵是作平行線構(gòu)造內(nèi)錯(cuò)角,利用平行線的性質(zhì)進(jìn)行推導(dǎo).解題時(shí)注意:?jiǎn)栴}(2)也可以運(yùn)用三角形外角性質(zhì)來解決.12.(1)110(2)(90+n)(3)×90°+n°【分析】(1)根據(jù)角平分線的性質(zhì),結(jié)合三角形的內(nèi)角和定理可得到角之間的關(guān)系,然后求解即可;(2)根據(jù)BO、CO分別是∠ABC與∠ACB的角平解析:(1)110(2)(90+n)(3)×90°+n°【分析】(1)根據(jù)角平分線的性質(zhì),結(jié)合三角形的內(nèi)角和定理可得到角之間的關(guān)系,然后求解即可;(2)根據(jù)BO、CO分別是∠ABC與∠ACB的角平分線,用n°的代數(shù)式表示出∠OBC與∠OCB的和,再根據(jù)三角形的內(nèi)角和定理求出∠BOC的度數(shù);(3)根據(jù)規(guī)律直接計(jì)算即可.【詳解】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵點(diǎn)O是∠AB故答案為:110°;C與∠ACB的角平分線的交點(diǎn),∴∠OBC+∠OCB=70°,∴∠BOC=110°.(2)∵∠A=n°,∴∠ABC+∠ACB=180°-n°,∵BO、CO分別是∠ABC與∠ACB的角平分線,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°﹣n°)=90°﹣n°,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+n°.故答案為:(90+n);(3)由(2)得∠O=90°+n°,∵∠ABO的平分線與∠ACO的平分線交于點(diǎn)O1,∴∠O1BC=∠ABC,∠O1CB=∠ACB,∴∠O1=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=×180°+n°,同理,∠O2=×180°+n°,∴∠On=×180°+n°,∴∠O2017=×180°+n°,故答案為:×90°+n°.【點(diǎn)睛】本題考查了三角形內(nèi)角和定理,角平分線定義的應(yīng)用,注意:三角形的內(nèi)角和等于180°.13.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行線的性質(zhì)求解即可.(2)①利用三角形的面積求出GH,HF,再證明AO=OG=2,可得結(jié)論.②利用角平分線的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行線的性質(zhì)求解即可.(2)①利用三角形的面積求出GH,HF,再證明AO=OG=2,可得結(jié)論.②利用角平分線的定義求出∠M,∠N(用∠FAO表示),可得結(jié)論.【詳解】解:(1)如圖,∵AB∥ED∴∠E=∠EAB=90°(兩直線平行,內(nèi)錯(cuò)角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案為:45°.(2)①如圖1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=?GH?AO=4,S△AHF=?FH?AO=1,∴GH=4,F(xiàn)H=1,∴OF=GH-HF-OG=4-1-2=1.②結(jié)論:∠N+∠M=142.5°,度數(shù)不變.理由:如圖2中,∵M(jìn)F,MO分別平分∠AFO,∠AOF,∴∠M=180°-(∠AFO+∠AOF)=180°-(180°-∠FAO)=90°+∠FAO,∵NH,NG分別平分∠DHG,∠BGH,∴∠N=180°-(∠DHG+∠BGH)=180°-(∠HAG+∠AGH+∠HAG+∠AHG)=180°-(180°+∠HAG)=90°-∠HAG=90°-(30°+∠FAO+45°)=52.5°-∠FAO,∴∠M+∠N=142.5°.【點(diǎn)睛】本題考查平行線的性質(zhì),角平分線的定義,三角形內(nèi)角和定理,三角形外角的性質(zhì)等知識(shí),最后一個(gè)問題的解題關(guān)鍵是用∠FAO表示出∠M,∠N.14.(1)50°;(2)①見解析;②見解析;(3)360°.【分析】(1)根據(jù)題意,已知,,可結(jié)合三角形內(nèi)角和定理和折疊變換的性質(zhì)求解;(2)①先根據(jù)折疊得:∠ADE=∠A′DE,∠AED=∠A′解析:(1)50°;(2)①見解析;②見解析;(3)3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《GB-T 39451-2020商品無接觸配送服務(wù)規(guī)范》專題研究報(bào)告
- 《GBT 30170.2-2016 地理信息 基于坐標(biāo)的空間參照 第 2 部分:參數(shù)值擴(kuò)展》專題研究報(bào)告
- 2026年洛陽商業(yè)職業(yè)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性考試題庫(kù)及答案詳解一套
- 《幼兒文學(xué)》課件-1.2.1幼兒文學(xué)讀者特點(diǎn)
- 《藥品生物檢定技術(shù)》創(chuàng)新課件-藥膳餐飲實(shí)體店創(chuàng)業(yè)計(jì)劃
- 雜志插畫設(shè)計(jì)協(xié)議
- 終端銷售崗位招聘考試試卷及答案
- 2025二建考試真題高頻練習(xí)(附答案)
- 2025年《人力資源管理》真題及答案
- 2026年小學(xué)心理健康工作計(jì)劃(2篇)
- 2024-2025學(xué)年江蘇省徐州市高一上學(xué)期期末抽測(cè)數(shù)學(xué)試題(解析版)
- 新解讀《DL-T 5891-2024電氣裝置安裝工程 電纜線路施工及驗(yàn)收規(guī)范》新解讀
- 生產(chǎn)部裝配管理制度
- DB31/T 1205-2020醫(yī)務(wù)社會(huì)工作基本服務(wù)規(guī)范
- 酒店供貨框架協(xié)議書
- 紡織品的物理化學(xué)性質(zhì)試題及答案
- 高處安裝維護(hù)拆除作業(yè)培訓(xùn)
- 長(zhǎng)鑫存儲(chǔ)在線測(cè)評(píng)
- 2025年小學(xué)生科普知識(shí)競(jìng)賽練習(xí)題庫(kù)及答案(200題)
- (完整版)保密工作獎(jiǎng)懲制度
- 西氣東輸二線管道工程靈臺(tái)壓氣站施工組織設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論