2025年江蘇專升本高數(shù)真題及答案_第1頁
2025年江蘇專升本高數(shù)真題及答案_第2頁
2025年江蘇專升本高數(shù)真題及答案_第3頁
2025年江蘇專升本高數(shù)真題及答案_第4頁
2025年江蘇專升本高數(shù)真題及答案_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025年江蘇專升本高數(shù)練習(xí)題及答案2025年江蘇省普通高?!皩^D(zhuǎn)本”選拔考試高等數(shù)學(xué)練習(xí)題一、單項(xiàng)選擇題(本大題共6小題,每小題4分,共24分)1.函數(shù)\(y=\frac{1}{\ln(x-1)}\)的定義域是()A.\((1,+\infty)\)B.\((1,2)\cup(2,+\infty)\)C.\([1,+\infty)\)D.\([1,2)\cup(2,+\infty)\)本題可根據(jù)對(duì)數(shù)函數(shù)和分式的性質(zhì)來確定函數(shù)的定義域。要使函數(shù)\(y=\frac{1}{\ln(x-1)}\)有意義,則分母\(\ln(x-1)\neq0\),且對(duì)數(shù)中的真數(shù)\(x-1>0\)。由\(x-1>0\)可得\(x>1\);由\(\ln(x-1)\neq0\),即\(x-1\neq1\),可得\(x\neq2\)。所以函數(shù)的定義域?yàn)閈((1,2)\cup(2,+\infty)\),答案選B。2.當(dāng)\(x\to0\)時(shí),下列無窮小量中與\(x\)等價(jià)的是()A.\(1-\cosx\)B.\(\ln(1+x)\)C.\(e^x-1-x\)D.\(\sin^2x\)本題可根據(jù)等價(jià)無窮小的定義來逐一判斷選項(xiàng)。等價(jià)無窮小的定義為:當(dāng)\(x\tox_0\)時(shí),\(\alpha(x)\)和\(\beta(x)\)都是無窮小量,且\(\lim\limits_{x\tox_0}\frac{\alpha(x)}{\beta(x)}=1\),則稱\(\alpha(x)\)與\(\beta(x)\)是等價(jià)無窮小。-選項(xiàng)A:當(dāng)\(x\to0\)時(shí),\(1-\cosx\sim\frac{1}{2}x^2\),則\(\lim\limits_{x\to0}\frac{1-\cosx}{x}=\lim\limits_{x\to0}\frac{\frac{1}{2}x^2}{x}=\lim\limits_{x\to0}\frac{1}{2}x=0\),所以\(1-\cosx\)是比\(x\)高階的無窮小,A選項(xiàng)錯(cuò)誤。-選項(xiàng)B:根據(jù)等價(jià)無窮小的知識(shí),當(dāng)\(x\to0\)時(shí),\(\ln(1+x)\simx\),則\(\lim\limits_{x\to0}\frac{\ln(1+x)}{x}=\lim\limits_{x\to0}\frac{x}{x}=1\),所以\(\ln(1+x)\)與\(x\)是等價(jià)無窮小,B選項(xiàng)正確。-選項(xiàng)C:已知\(e^x=1+x+\frac{1}{2!}x^2+o(x^2)\),則\(e^x-1-x=\frac{1}{2}x^2+o(x^2)\),那么\(\lim\limits_{x\to0}\frac{e^x-1-x}{x}=\lim\limits_{x\to0}\frac{\frac{1}{2}x^2+o(x^2)}{x}=\lim\limits_{x\to0}(\frac{1}{2}x+\frac{o(x^2)}{x})=0\),所以\(e^x-1-x\)是比\(x\)高階的無窮小,C選項(xiàng)錯(cuò)誤。-選項(xiàng)D:當(dāng)\(x\to0\)時(shí),\(\sinx\simx\),則\(\sin^2x\simx^2\),所以\(\lim\limits_{x\to0}\frac{\sin^2x}{x}=\lim\limits_{x\to0}\frac{x^2}{x}=\lim\limits_{x\to0}x=0\),\(\sin^2x\)是比\(x\)高階的無窮小,D選項(xiàng)錯(cuò)誤。3.設(shè)函數(shù)\(f(x)=\begin{cases}x^2+1,&x\leq0\\e^x,&x>0\end{cases}\),則\(f(x)\)在\(x=0\)處()A.不連續(xù)B.連續(xù)但不可導(dǎo)C.可導(dǎo)但導(dǎo)數(shù)不連續(xù)D.可導(dǎo)且導(dǎo)數(shù)連續(xù)本題可先判斷函數(shù)在\(x=0\)處的連續(xù)性,再判斷可導(dǎo)性,最后判斷導(dǎo)數(shù)的連續(xù)性。-判斷連續(xù)性:函數(shù)在某點(diǎn)連續(xù)的定義為\(\lim\limits_{x\tox_0^-}f(x)=\lim\limits_{x\tox_0^+}f(x)=f(x_0)\)。\(\lim\limits_{x\to0^-}f(x)=\lim\limits_{x\to0^-}(x^2+1)=0^2+1=1\),\(\lim\limits_{x\to0^+}f(x)=\lim\limits_{x\to0^+}e^x=e^0=1\),\(f(0)=0^2+1=1\),因?yàn)閈(\lim\limits_{x\to0^-}f(x)=\lim\limits_{x\to0^+}f(x)=f(0)=1\),所以函數(shù)\(f(x)\)在\(x=0\)處連續(xù)。-判斷可導(dǎo)性:函數(shù)在某點(diǎn)可導(dǎo)的定義為左導(dǎo)數(shù)等于右導(dǎo)數(shù),即\(f'_-(x_0)=f'_+(x_0)\)。左導(dǎo)數(shù)\(f'_-(0)=\lim\limits_{x\to0^-}\frac{f(x)-f(0)}{x-0}=\lim\limits_{x\to0^-}\frac{x^2+1-1}{x}=\lim\limits_{x\to0^-}x=0\);右導(dǎo)數(shù)\(f'_+(0)=\lim\limits_{x\to0^+}\frac{f(x)-f(0)}{x-0}=\lim\limits_{x\to0^+}\frac{e^x-1}{x}\),根據(jù)等價(jià)無窮小\(e^x-1\simx\)(\(x\to0\)),可得\(f'_+(0)=\lim\limits_{x\to0^+}\frac{x}{x}=1\)。因?yàn)閈(f'_-(0)\neqf'_+(0)\),所以函數(shù)\(f(x)\)在\(x=0\)處不可導(dǎo)。綜上,函數(shù)\(f(x)\)在\(x=0\)處連續(xù)但不可導(dǎo),答案選B。4.曲線\(y=x^3-3x^2+1\)的拐點(diǎn)坐標(biāo)是()A.\((1,-1)\)B.\((2,-3)\)C.\((0,1)\)D.\((-1,-3)\)本題可先求出函數(shù)的二階導(dǎo)數(shù),再根據(jù)二階導(dǎo)數(shù)為零的點(diǎn)和二階導(dǎo)數(shù)變號(hào)的點(diǎn)來確定拐點(diǎn)。-求一階導(dǎo)數(shù):對(duì)\(y=x^3-3x^2+1\)求導(dǎo),根據(jù)求導(dǎo)公式\((X^n)^\prime=nX^{n-1}\),可得\(y^\prime=3x^2-6x\)。-求二階導(dǎo)數(shù):對(duì)\(y^\prime=3x^2-6x\)求導(dǎo),可得\(y^{\prime\prime}=6x-6\)。-求二階導(dǎo)數(shù)為零的點(diǎn):令\(y^{\prime\prime}=0\),即\(6x-6=0\),解得\(x=1\)。-判斷二階導(dǎo)數(shù)在\(x=1\)兩側(cè)的符號(hào):當(dāng)\(x<1\)時(shí),\(y^{\prime\prime}=6x-6<0\);當(dāng)\(x>1\)時(shí),\(y^{\prime\prime}=6x-6>0\),所以二階導(dǎo)數(shù)在\(x=1\)兩側(cè)變號(hào)。將\(x=1\)代入原函數(shù)\(y=x^3-3x^2+1\),可得\(y=1^3-3\times1^2+1=-1\)。所以曲線的拐點(diǎn)坐標(biāo)是\((1,-1)\),答案選A。5.下列廣義積分收斂的是()A.\(\int_{1}^{+\infty}\frac{1}{x}dx\)B.\(\int_{1}^{+\infty}\frac{1}{x^2}dx\)C.\(\int_{0}^{1}\frac{1}{x}dx\)D.\(\int_{0}^{1}\frac{1}{x^2}dx\)本題可根據(jù)廣義積分的斂散性判斷方法來逐一分析選項(xiàng)。-選項(xiàng)A:\(\int_{1}^{+\infty}\frac{1}{x}dx=\lim\limits_{b\to+\infty}\int_{1}^\frac{1}{x}dx=\lim\limits_{b\to+\infty}\lnx\big|_{1}^=\lim\limits_{b\to+\infty}(\lnb-\ln1)=+\infty\),所以該廣義積分發(fā)散,A選項(xiàng)錯(cuò)誤。-選項(xiàng)B:\(\int_{1}^{+\infty}\frac{1}{x^2}dx=\lim\limits_{b\to+\infty}\int_{1}^x^{-2}dx=\lim\limits_{b\to+\infty}(-x^{-1})\big|_{1}^=\lim\limits_{b\to+\infty}(-\frac{1}+1)=1\),所以該廣義積分收斂,B選項(xiàng)正確。-選項(xiàng)C:\(\int_{0}^{1}\frac{1}{x}dx=\lim\limits_{a\to0^+}\int_{a}^{1}\frac{1}{x}dx=\lim\limits_{a\to0^+}\lnx\big|_{a}^{1}=\lim\limits_{a\to0^+}(0-\lna)=+\infty\),所以該廣義積分發(fā)散,C選項(xiàng)錯(cuò)誤。-選項(xiàng)D:\(\int_{0}^{1}\frac{1}{x^2}dx=\lim\limits_{a\to0^+}\int_{a}^{1}x^{-2}dx=\lim\limits_{a\to0^+}(-x^{-1})\big|_{a}^{1}=\lim\limits_{a\to0^+}(-1+\frac{1}{a})=+\infty\),所以該廣義積分發(fā)散,D選項(xiàng)錯(cuò)誤。6.設(shè)向量\(\vec{a}=(1,-2,3)\),\(\vec=(2,1,0)\),則\(\vec{a}\)與\(\vec\)的夾角為()A.\(0\)B.\(\frac{\pi}{2}\)C.\(\frac{\pi}{3}\)D.\(\pi\)本題可根據(jù)向量的點(diǎn)積公式\(\vec{a}\cdot\vec=|\vec{a}||\vec|\cos\theta\)(其中\(zhòng)(\theta\)為\(\vec{a}\)與\(\vec\)的夾角)來求解夾角。-計(jì)算\(\vec{a}\cdot\vec\):\(\vec{a}\cdot\vec=1\times2+(-2)\times1+3\times0=2-2+0=0\)。-計(jì)算\(|\vec{a}|\)和\(|\vec|\):\(|\vec{a}|=\sqrt{1^2+(-2)^2+3^2}=\sqrt{1+4+9}=\sqrt{14}\),\(|\vec|=\sqrt{2^2+1^2+0^2}=\sqrt{4+1}=\sqrt{5}\)。-計(jì)算夾角\(\theta\):由\(\vec{a}\cdot\vec=|\vec{a}||\vec|\cos\theta\)可得\(\cos\theta=\frac{\vec{a}\cdot\vec}{|\vec{a}||\vec|}=\frac{0}{\sqrt{14}\times\sqrt{5}}=0\)。因?yàn)閈(0\leq\theta\leq\pi\),所以\(\theta=\frac{\pi}{2}\),答案選B。二、填空題(本大題共6小題,每小題4分,共24分)1.\(\lim\limits_{x\to0}\frac{\sin3x}{x}=\)______。本題可利用等價(jià)無窮小或重要極限來求解。-方法一:利用等價(jià)無窮小當(dāng)\(x\to0\)時(shí),\(\sin3x\sim3x\),則\(\lim\limits_{x\to0}\frac{\sin3x}{x}=\lim\limits_{x\to0}\frac{3x}{x}=3\)。-方法二:利用重要極限\(\lim\limits_{x\to0}\frac{\sin3x}{x}=\lim\limits_{x\to0}\frac{\sin3x}{3x}\times3=1\times3=3\)。所以答案為\(3\)。2.設(shè)函數(shù)\(y=e^{2x}\),則\(y^\prime=\)______。本題可根據(jù)復(fù)合函數(shù)求導(dǎo)法則來求導(dǎo)。令\(u=2x\),則\(y=e^u\)。根據(jù)復(fù)合函數(shù)求導(dǎo)法則\(y^\prime_x=y^\prime_u\cdotu^\prime_x\),先對(duì)\(y=e^u\)關(guān)于\(u\)求導(dǎo),得\(y^\prime_u=e^u\);再對(duì)\(u=2x\)關(guān)于\(x\)求導(dǎo),得\(u^\prime_x=2\)。所以\(y^\prime=y^\prime_u\cdotu^\prime_x=e^u\cdot2=2e^{2x}\)。故答案為\(2e^{2x}\)。3.曲線\(y=x^2\)在點(diǎn)\((1,1)\)處的切線方程為______。本題可先求出曲線在該點(diǎn)處的切線斜率,再利用點(diǎn)斜式方程求出切線方程。-求切線斜率:對(duì)\(y=x^2\)求導(dǎo),根據(jù)求導(dǎo)公式\((X^n)^\prime=nX^{n-1}\),可得\(y^\prime=2x\)。將\(x=1\)代入\(y^\prime\),可得切線斜率\(k=y^\prime|_{x=1}=2\times1=2\)。-求切線方程:已知切線過點(diǎn)\((1,1)\),斜率為\(2\),根據(jù)點(diǎn)斜式方程\(y-y_0=k(x-x_0)\)(其中\(zhòng)((x_0,y_0)\)為直線上一點(diǎn),\(k\)為直線斜率),可得切線方程為\(y-1=2(x-1)\),整理得\(2x-y-1=0\)。所以答案為\(2x-y-1=0\)。4.\(\intx\cosxdx=\)______。本題可利用分部積分法來求解。分部積分公式為\(\intudv=uv-\intvdu\)。令\(u=x\),\(dv=\cosxdx\),則\(du=dx\),\(v=\sinx\)。根據(jù)分部積分公式可得:\(\intx\cosxdx=x\sinx-\int\sinxdx=x\sinx+\cosx+C\)(\(C\)為常數(shù))。所以答案為\(x\sinx+\cosx+C\)。5.設(shè)\(z=x^2y+\sin(xy)\),則\(\frac{\partialz}{\partialx}=\)______。本題可根據(jù)偏導(dǎo)數(shù)的求導(dǎo)法則來求\(\frac{\partialz}{\partialx}\)。求\(\frac{\partialz}{\partialx}\)時(shí),將\(y\)看作常數(shù),對(duì)\(x\)求導(dǎo)。\(\frac{\partialz}{\partialx}=\frac{\partial}{\partialx}(x^2y)+\frac{\partial}{\partialx}[\sin(xy)]\)。-對(duì)\(x^2y\)關(guān)于\(x\)求導(dǎo),根據(jù)求導(dǎo)公式\((X^n)^\prime=nX^{n-1}\),可得\(\frac{\partial}{\partialx}(x^2y)=2xy\)。-對(duì)\(\sin(xy)\)關(guān)于\(x\)求導(dǎo),令\(u=xy\),則\(\frac{\partial}{\partialx}[\sin(xy)]=\frac{\partial}{\partialu}(\sinu)\cdot\frac{\partialu}{\partialx}=\cos(xy)\cdoty=y\cos(xy)\)。所以\(\frac{\partialz}{\partialx}=2xy+y\cos(xy)\)。故答案為\(2xy+y\cos(xy)\)。6.微分方程\(y^\prime+2y=0\)的通解為______。本題可先判斷該微分方程的類型,再根據(jù)相應(yīng)的方法求解通解。該微分方程\(y^\prime+2y=0\)是一階線性齊次微分方程,其標(biāo)準(zhǔn)形式為\(y^\prime+P(x)y=0\),其中\(zhòng)(P(x)=2\)。一階線性齊次微分方程的通解公式為\(y=Ce^{-\intP(x)dx}\)(\(C\)為常數(shù))。計(jì)算\(-\intP(x)dx=-\int2dx=-2x\),則通解為\(y=Ce^{-2x}\)(\(C\)為任意常數(shù))。所以答案為\(y=Ce^{-2x}\)(\(C\)為任意常數(shù))。三、解答題(本大題共8小題,共60分)1.(本題6分)求\(\lim\limits_{x\to1}\frac{x^2-1}{x^2-3x+2}\)。本題可先對(duì)分子分母進(jìn)行因式分解,然后約去公因式,再求極限。-對(duì)分子分母因式分解:\(x^2-1=(x-1)(x+1)\),\(x^2-3x+2=(x-1)(x-2)\)。-約去公因式并求極限:\(\lim\limits_{x\to1}\frac{x^2-1}{x^2-3x+2}=\lim\limits_{x\to1}\frac{(x-1)(x+1)}{(x-1)(x-2)}=\lim\limits_{x\to1}\frac{x+1}{x-2}=\frac{1+1}{1-2}=-2\)。2.(本題6分)設(shè)函數(shù)\(y=\ln(1+x^2)\),求\(dy\)。本題可先求出函數(shù)的導(dǎo)數(shù)\(y^\prime\),再根據(jù)微分公式\(dy=y^\primedx\)求出\(dy\)。-求\(y^\prime\):令\(u=1+x^2\),則\(y=\lnu\)。根據(jù)復(fù)合函數(shù)求導(dǎo)法則\(y^\prime_x=y^\prime_u\cdotu^\prime_x\),先對(duì)\(y=\lnu\)關(guān)于\(u\)求導(dǎo),得\(y^\prime_u=\frac{1}{u}\);再對(duì)\(u=1+x^2\)關(guān)于\(x\)求導(dǎo),得\(u^\prime_x=2x\)。所以\(y^\prime=y^\prime_u\cdotu^\prime_x=\frac{1}{1+x^2}\cdot2x=\frac{2x}{1+x^2}\)。-求\(dy\):根據(jù)微分公式\(dy=y^\primedx\),可得\(dy=\frac{2x}{1+x^2}dx\)。3.(本題8分)求函數(shù)\(f(x)=x^3-3x^2-9x+5\)的單調(diào)區(qū)間和極值。本題可先求出函數(shù)的導(dǎo)數(shù)\(f^\prime(x)\),再根據(jù)導(dǎo)數(shù)的正負(fù)性來確定函數(shù)的單調(diào)區(qū)間,最后根據(jù)單調(diào)區(qū)間求出極值。-求\(f^\prime(x)\):對(duì)\(f(x)=x^3-3x^2-9x+5\)求導(dǎo),得\(f^\prime(x)=3x^2-6x-9=3(x^2-2x-3)=3(x-3)(x+1)\)。-求函數(shù)的駐點(diǎn):令\(f^\prime(x)=0\),即\(3(x-3)(x+1)=0\),解得\(x=-1\)或\(x=3\)。-確定函數(shù)的單調(diào)區(qū)間:將定義域\((-\infty,+\infty)\)分為\((-\infty,-1)\),\((-1,3)\),\((3,+\infty)\)三個(gè)區(qū)間,分別討論\(f^\prime(x)\)的正負(fù)性:-當(dāng)\(x\in(-\infty,-1)\)時(shí),\(x-3<0\),\(x+1<0\),則\(f^\prime(x)>0\),所以函數(shù)\(f(x)\)在\((-\infty,-1)\)上單調(diào)遞增。-當(dāng)\(x\in(-1,3)\)時(shí),\(x-3<0\),\(x+1>0\),則\(f^\prime(x)<0\),所以函數(shù)\(f(x)\)在\((-1,3)\)上單調(diào)遞減。-當(dāng)\(x\in(3,+\infty)\)時(shí),\(x-3>0\),\(x+1>0\),則\(f^\prime(x)>0\),所以函數(shù)\(f(x)\)在\((3,+\infty)\)上單調(diào)遞增。-求函數(shù)的極值:根據(jù)單調(diào)性可知,\(x=-1\)為極大值點(diǎn),\(x=3\)為極小值點(diǎn)。將\(x=-1\)代入\(f(x)\),得\(f(-1)=(-1)^3-3\times(-1)^2-9\times(-1)+5=-1-3+9+5=10\);將\(x=3\)代入\(f(x)\),得\(f(3)=3^3-3\times3^2-9\times3+5=27-27-27+5=-22\)。所以函數(shù)\(f(x)\)的單調(diào)遞增區(qū)間為\((-\infty,-1)\)和\((3,+\infty)\),單調(diào)遞減區(qū)間為\((-1,3)\);極大值為\(10\),極小值為\(-22\)。4.(本題8分)計(jì)算\(\int_{0}^{1}x\sqrt{1-x^2}dx\)。本題可利用換元積分法來求解。令\(u=1-x^2\),則\(du=-2xdx\),當(dāng)\(x=0\)時(shí),\(u=1-0^2=1\);當(dāng)\(x=1\)時(shí),\(u=1-1^2=0\)。\(\int_{0}^{1}x\sqrt{1-x^2}dx=-\frac{1}{2}\int_{1}^{0}\sqrt{u}du=\frac{1}{2}\int_{0}^{1}u^{\frac{1}{2}}du\)。根據(jù)積分公式\(\intx^ndx=\frac{1}{n+1}x^{n+1}+C\)(\(n\neq-1\)),可得:\(\frac{1}{2}\int_{0}^{1}u^{\frac{1}{2}}du=\frac{1}{2}\times\frac{2}{3}u^{\frac{3}{2}}\big|_{0}^{1}=\frac{1}{3}(1^{\frac{3}{2}}-0^{\frac{3}{2}})=\frac{1}{3}\)。5.(本題8分)求由曲線\(y=x^2\)和\(y=2-x^2\)所圍成的平面圖形的面積。本題可先求出兩曲線的交點(diǎn),確定積分區(qū)間,再根據(jù)定積分的幾何意義求出所圍成圖形的面積。-求兩曲線的交點(diǎn):聯(lián)立\(\begin{cases}y=x^2\\y=2-x^2\end{cases}\),可得\(x^2=2-x^2\),即\(2x^2=2\),解得\(x=\pm1\)。所以兩曲線的交點(diǎn)為\((-1,1)\)和\((1,1)\),積分區(qū)間為\([-1,1]\)。-求所圍成圖形的面積:在區(qū)間\([-1,1]\)上,\(2-x^2\geqx^2\),根據(jù)定積分的幾何意義,所求面積\(S=\int_{-1}^{1}[(2-x^2)-x^2]dx=\int_{-1}^{1}(2-2x^2)dx\)。因?yàn)楸环e函數(shù)\(2-2x^2\)是偶函數(shù),根據(jù)偶函數(shù)在對(duì)稱區(qū)間上的積分性質(zhì)\(\int_{-a}^{a}f(x)dx=2\int_{0}^{a}f(x)dx\),可得:\(S=2\int_{0}^{1}(2-2x^2)dx=2(2x-\frac{2}{3}x^3)\big|_{0}^{1}=2(2\times1-\frac{2}{3}\times1^3-0)=2\times\frac{4}{3}=\frac{8}{3}\)。所以所圍成的平面圖形的面積為\(\frac{8}{3}\)。6.(本題8分)設(shè)\(z=f(x^2y,\frac{y}{x})\),其中\(zhòng)(f\)具有一階連續(xù)偏導(dǎo)數(shù),求\(\frac{\partialz}{\partialx}\)和\(\frac{\partialz}{\partialy}\)。本題可根據(jù)復(fù)合函數(shù)求導(dǎo)法則來求偏導(dǎo)數(shù)。令\(u=x^2y\),\(v=\frac{y}{x}\),則\(z=f(u,v)\)。-求\(\frac{\partialz}{\partialx}\):根據(jù)復(fù)合函數(shù)求導(dǎo)法則\(\frac{\partialz}{\partialx}=\frac{\partialz}{\partialu}\cdot\frac{\partialu}{\partialx}+\frac{\partialz}{\partialv}\cdot\frac{\partialv}{\partialx}\)。對(duì)\(u=x^2y\)關(guān)于\(x\)求偏導(dǎo)數(shù),得\(\frac{\partialu}{\partialx}=2xy\);對(duì)\(v=\frac{y}{x}\)關(guān)于\(x\)求偏導(dǎo)數(shù),得\(\frac{\partialv}{\partialx}=-\frac{y}{x^2}\)。所以\(\frac{\partialz}{\partialx}=f_1^\prime\cdot2xy+f_2^\prime\cdot(-\frac{y}{x^2})=2xyf_1^\prime-\frac{y}{x^2}f_2^\prime\),其中\(zhòng)(f_1^\prime\)表示\(f\)對(duì)第一個(gè)變量\(u\)的偏導(dǎo)數(shù),\(f_2^\prime\)表示\(f\)對(duì)第二個(gè)變量\(v\)的偏導(dǎo)數(shù)。-求\(\frac{\partialz}{\partialy}\):根據(jù)復(fù)合函數(shù)求導(dǎo)法則\(\frac{\partialz}{\partialy}=\frac{\partialz}{\partialu}\cdot\frac{\partialu}{\partialy}+\frac{\partialz}{\partialv}\cdot\frac{\partialv}{\partialy}\)。對(duì)\(u=x^2y\)關(guān)于\(y\)求偏導(dǎo)數(shù),得\(\frac{\partialu}{\partialy}=x^2\);對(duì)\(v=\frac{y}{x}\)關(guān)于\(y\)求偏導(dǎo)數(shù),得\(\frac{\partialv}{\partialy}=\frac{1}{x}\)。所以\(\frac{\partialz}{\partialy}=f_1^\prime\cdotx^2+f_2^\prime\cdot\frac{1}{x}=x^2f_1^\prime+\frac{1}{x}f_2^\prime\)。7.(本題8分)求微分方程\(y^{\prime\prime}-4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論