版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024-2025學(xué)年株洲市石峰區(qū)中考數(shù)學(xué)四模試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,直線a∥b,直線c與直線a、b分別交于點(diǎn)A、點(diǎn)B,AC⊥AB于點(diǎn)A,交直線b于點(diǎn)C.如果∠1=34°,那么∠2的度數(shù)為()A.34° B.56° C.66° D.146°2.如圖,在中,E為邊CD上一點(diǎn),將沿AE折疊至處,與CE交于點(diǎn)F,若,,則的大小為()A.20° B.30° C.36° D.40°3.甲、乙、丙三家超市為了促銷同一種定價(jià)為m元的商品,甲超市連續(xù)兩次降價(jià)20%;乙超市一次性降價(jià)40%;丙超市第一次降價(jià)30%,第二次降價(jià)10%,此時(shí)顧客要購買這種商品,最劃算的超市是()A.甲 B.乙 C.丙 D.都一樣4.弘揚(yáng)社會主義核心價(jià)值觀,推動文明城市建設(shè).根據(jù)“文明創(chuàng)建工作評分細(xì)則”,l0名評審團(tuán)成員對我市2016年度文明刨建工作進(jìn)行認(rèn)真評分,結(jié)果如下表:人數(shù)2341分?jǐn)?shù)80859095則得分的眾數(shù)和中位數(shù)分別是()A.90和87.5 B.95和85 C.90和85 D.85和87.55.PM2.5是指大氣中直徑小于或等于2.5μm(0.0000025m)的顆粒物,含有大量有毒、有害物質(zhì),也稱為可入肺顆粒物,將25微米用科學(xué)記數(shù)法可表示為()米.A.25×10﹣7B.2.5×10﹣6C.0.25×10﹣5D.2.5×10﹣56.如圖,矩形ABCD的對角線AC,BD相交于點(diǎn)O,點(diǎn)M是AB的中點(diǎn),若OM=4,AB=6,則BD的長為()A.4 B.5 C.8 D.107.已知☉O的半徑為5,且圓心O到直線l的距離是方程x2-4x-12=0的一個(gè)根,則直線l與圓的位置關(guān)系是()A.相交B.相切C.相離D.無法確定8.小剛從家去學(xué)校,先勻速步行到車站,等了幾分鐘后坐上了公交車,公交車勻速行駛一段時(shí)后到達(dá)學(xué)校,小剛從家到學(xué)校行駛路程s(單位:m)與時(shí)間r(單位:min)之間函數(shù)關(guān)系的大致圖象是()A. B. C. D.9.如圖1是一座立交橋的示意圖(道路寬度忽略不計(jì)),A為人口,F(xiàn),G為出口,其中直行道為AB,CG,EF,且AB=CG=EF;彎道為以點(diǎn)O為圓心的一段弧,且,,所對的圓心角均為90°.甲、乙兩車由A口同時(shí)駛?cè)肓⒔粯?,均?0m/s的速度行駛,從不同出口駛出,其間兩車到點(diǎn)O的距離y(m)與時(shí)間x(s)的對應(yīng)關(guān)系如圖2所示.結(jié)合題目信息,下列說法錯(cuò)誤的是()A.甲車在立交橋上共行駛8s B.從F口出比從G口出多行駛40m C.甲車從F口出,乙車從G口出 D.立交橋總長為150m10.下列各數(shù)中是有理數(shù)的是()A.π B.0 C. D.11.下列基本幾何體中,三視圖都是相同圖形的是()A. B. C. D.12.-4的絕對值是()A.4 B. C.-4 D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,直線a∥b,∠BAC的頂點(diǎn)A在直線a上,且∠BAC=100°.若∠1=34°,則∠2=_____°.14.飛機(jī)著陸后滑行的距離S(單位:米)與滑行的時(shí)間t(單位:秒)之間的函數(shù)關(guān)系式是s=60t﹣1.2t2,那么飛機(jī)著陸后滑行_____秒停下.15.已知△ABC中,AB=6,AC=BC=5,將△ABC折疊,使點(diǎn)A落在BC邊上的點(diǎn)D處,折痕為EF(點(diǎn)E.F分別在邊AB、AC上).當(dāng)以B.E.D為頂點(diǎn)的三角形與△DEF相似時(shí),BE的長為_____.16.如圖,點(diǎn)D是線段AB的中點(diǎn),點(diǎn)C是線段AD的中點(diǎn),若CD=1,則AB=________________.17.已知二次函數(shù)的圖象如圖所示,若方程有兩個(gè)不相等的實(shí)數(shù)根,則的取值范圍是_____________.18.若關(guān)于x的函數(shù)與x軸僅有一個(gè)公共點(diǎn),則實(shí)數(shù)k的值為.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標(biāo)系中,直線y=x+4與x軸、y軸分別交于A、B兩點(diǎn),拋物線y=-x2+bx+c經(jīng)過A、B兩點(diǎn),并與x軸交于另一點(diǎn)C(點(diǎn)C點(diǎn)A的右側(cè)),點(diǎn)P是拋物線上一動點(diǎn).(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);(2)若點(diǎn)P在第二象限內(nèi),過點(diǎn)P作PD⊥軸于D,交AB于點(diǎn)E.當(dāng)點(diǎn)P運(yùn)動到什么位置時(shí),線段PE最長?此時(shí)PE等于多少?(3)如果平行于x軸的動直線l與拋物線交于點(diǎn)Q,與直線AB交于點(diǎn)N,點(diǎn)M為OA的中點(diǎn),那么是否存在這樣的直線l,使得△MON是等腰三角形?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.20.(6分)閱讀下面材料,并解答問題.材料:將分式拆分成一個(gè)整式與一個(gè)分式(分子為整數(shù))的和的形式.解:由分母為﹣x2+1,可設(shè)﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b則﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵對應(yīng)任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+這樣,分式被拆分成了一個(gè)整式x2+2與一個(gè)分式的和.解答:將分式拆分成一個(gè)整式與一個(gè)分式(分子為整數(shù))的和的形式.試說明的最小值為1.21.(6分)數(shù)學(xué)課上,李老師和同學(xué)們做一個(gè)游戲:他在三張硬紙片上分別寫出一個(gè)代數(shù)式,背面分別標(biāo)上序號①、②、③,擺成如圖所示的一個(gè)等式,然后翻開紙片②是4x1+5x+6,翻開紙片③是3x1﹣x﹣1.解答下列問題求紙片①上的代數(shù)式;若x是方程1x=﹣x﹣9的解,求紙片①上代數(shù)式的值.22.(8分)如圖,點(diǎn)A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=1.(1)填空:拋物線的頂點(diǎn)坐標(biāo)為(用含m的代數(shù)式表示);(2)求△ABC的面積(用含a的代數(shù)式表示);(3)若△ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時(shí),y的最大值為2,求m的值.23.(8分)AB為⊙O直徑,C為⊙O上的一點(diǎn),過點(diǎn)C的切線與AB的延長線相交于點(diǎn)D,CA=CD.(1)連接BC,求證:BC=OB;(2)E是中點(diǎn),連接CE,BE,若BE=2,求CE的長.24.(10分)如圖,四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,若AB,求證:四邊形ABCD是正方形25.(10分)如圖所示,一艘輪船位于燈塔P的北偏東方向與燈塔Р的距離為80海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東方向上的B處.求此時(shí)輪船所在的B處與燈塔Р的距離.(結(jié)果保留根號)26.(12分)某中學(xué)課外興趣活動小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊長為米.若苗圃園的面積為72平方米,求;若平行于墻的一邊長不小于8米,這個(gè)苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;27.(12分)如圖,∠BAO=90°,AB=8,動點(diǎn)P在射線AO上,以PA為半徑的半圓P交射線AO于另一點(diǎn)C,CD∥BP交半圓P于另一點(diǎn)D,BE∥AO交射線PD于點(diǎn)E,EF⊥AO于點(diǎn)F,連接BD,設(shè)AP=m.(1)求證:∠BDP=90°.(2)若m=4,求BE的長.(3)在點(diǎn)P的整個(gè)運(yùn)動過程中.①當(dāng)AF=3CF時(shí),求出所有符合條件的m的值.②當(dāng)tan∠DBE=時(shí),直接寫出△CDP與△BDP面積比.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】分析:先根據(jù)平行線的性質(zhì)得出∠2+∠BAD=180°,再根據(jù)垂直的定義求出∠2的度數(shù).詳解:∵直線a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于點(diǎn)A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故選B.點(diǎn)睛:本題主要考查了平行線的性質(zhì),解題的關(guān)鍵是掌握兩直線平行,同旁內(nèi)角互補(bǔ),此題難度不大.2、C【解析】
由平行四邊形的性質(zhì)得出∠D=∠B=52°,由折疊的性質(zhì)得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性質(zhì)求出∠AEF=72°,由三角形內(nèi)角和定理求出∠AED′=108°,即可得出∠FED′的大?。驹斀狻俊咚倪呅蜛BCD是平行四邊形,∴,由折疊的性質(zhì)得:,,∴,,∴;故選C.本題考查了平行四邊形的性質(zhì)、折疊的性質(zhì)、三角形的外角性質(zhì)以及三角形內(nèi)角和定理;熟練掌握平行四邊形的性質(zhì)和折疊的性質(zhì),求出∠AEF和∠AED′是解決問題的關(guān)鍵.3、B【解析】
根據(jù)各超市降價(jià)的百分比分別計(jì)算出此商品降價(jià)后的價(jià)格,再進(jìn)行比較即可得出結(jié)論.【詳解】解:降價(jià)后三家超市的售價(jià)是:甲為(1-20%)2m=0.64m,乙為(1-40%)m=0.6m,丙為(1-30%)(1-10%)m=0.63m,∵0.6m<0.63m<0.64m,∴此時(shí)顧客要購買這種商品最劃算應(yīng)到的超市是乙.故選:B.此題考查了列代數(shù)式,解題的關(guān)鍵是根據(jù)題目中的數(shù)量關(guān)系列出代數(shù)式,并對代數(shù)式比較大?。?、A【解析】找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個(gè)數(shù)(或兩個(gè)數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),可得答案.解:在這一組數(shù)據(jù)中90是出現(xiàn)次數(shù)最多的,故眾數(shù)是90;排序后處于中間位置的那個(gè)數(shù),那么由中位數(shù)的定義可知,這組數(shù)據(jù)的中位數(shù)是87.5;故選:A.“點(diǎn)睛”本題考查了眾數(shù)、中位數(shù)的知識,掌握各知識點(diǎn)的概念是解答本題的關(guān)鍵.注意中位數(shù):將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).5、B【解析】
由科學(xué)計(jì)數(shù)法的概念表示出0.0000025即可.【詳解】0.0000025=2.5×10﹣6.故選B.本題主要考查科學(xué)計(jì)數(shù)法,熟記相關(guān)概念是解題關(guān)鍵.6、D【解析】
利用三角形中位線定理求得AD的長度,然后由勾股定理來求BD的長度.【詳解】解:∵矩形ABCD的對角線AC,BD相交于點(diǎn)O,
∴∠BAD=90°,點(diǎn)O是線段BD的中點(diǎn),
∵點(diǎn)M是AB的中點(diǎn),
∴OM是△ABD的中位線,
∴AD=2OM=1.
∴在直角△ABD中,由勾股定理知:BD=.
故選:D.本題考查了三角形中位線定理和矩形的性質(zhì),利用三角形中位線定理求得AD的長度是解題的關(guān)鍵.7、C【解析】
首先求出方程的根,再利用半徑長度,由點(diǎn)O到直線a的距離為d,若d<r,則直線與圓相交;若d=r,則直線與圓相切;若d>r,則直線與與圓相離.【詳解】∵x2-4x-12=0,
(x+2)(x-6)=0,
解得:x1=-2(不合題意舍去),x2=6,
∵點(diǎn)O到直線l距離是方程x2-4x-12=0的一個(gè)根,即為6,
∴點(diǎn)O到直線l的距離d=6,r=5,
∴d>r,
∴直線l與圓相離.故選:C本題考核知識點(diǎn):直線與圓的位置關(guān)系.解題關(guān)鍵點(diǎn):理解直線與圓的位置關(guān)系的判定方法.8、B【解析】【分析】根據(jù)小剛行駛的路程與時(shí)間的關(guān)系,確定出圖象即可.【詳解】小剛從家到學(xué)校,先勻速步行到車站,因此S隨時(shí)間t的增長而增長,等了幾分鐘后坐上了公交車,因此時(shí)間在增加,S不增長,坐上了公交車,公交車沿著公路勻速行駛一段時(shí)間后到達(dá)學(xué)校,因此S又隨時(shí)間t的增長而增長,故選B.【點(diǎn)睛】本題考查了函數(shù)的圖象,認(rèn)真分析,理解題意,確定出函數(shù)圖象是解題的關(guān)鍵.9、C【解析】分析:結(jié)合2個(gè)圖象分析即可.詳解:A.根據(jù)圖2甲的圖象可知甲車在立交橋上共行駛時(shí)間為:,故正確.B.3段弧的長度都是:從F口出比從G口出多行駛40m,正確.C.分析圖2可知甲車從G口出,乙車從F口出,故錯(cuò)誤.D.立交橋總長為:故正確.故選C.點(diǎn)睛:考查圖象問題,觀察圖象,讀懂圖象是解題的關(guān)鍵.10、B【解析】【分析】根據(jù)有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù),結(jié)合無理數(shù)的定義進(jìn)行判斷即可得答案.【詳解】A、π是無限不循環(huán)小數(shù),屬于無理數(shù),故本選項(xiàng)錯(cuò)誤;B、0是有理數(shù),故本選項(xiàng)正確;C、是無理數(shù),故本選項(xiàng)錯(cuò)誤;D、是無理數(shù),故本選項(xiàng)錯(cuò)誤,故選B.【點(diǎn)睛】本題考查了實(shí)數(shù)的分類,熟知有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù)是解題的關(guān)鍵.11、C【解析】
根據(jù)主視圖、左視圖、俯視圖的定義,可得答案.【詳解】球的三視圖都是圓,故選C.本題考查了簡單幾何體的三視圖,熟記特殊幾何體的三視圖是解題關(guān)鍵.12、A【解析】
根據(jù)絕對值的概念計(jì)算即可.(絕對值是指一個(gè)數(shù)在坐標(biāo)軸上所對應(yīng)點(diǎn)到原點(diǎn)的距離叫做這個(gè)數(shù)的絕對值.)【詳解】根據(jù)絕對值的概念可得-4的絕對值為4.錯(cuò)因分析:容易題.選錯(cuò)的原因是對實(shí)數(shù)的相關(guān)概念沒有掌握,與倒數(shù)、相反數(shù)的概念混淆.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、46【解析】試卷分析:根據(jù)平行線的性質(zhì)和平角的定義即可得到結(jié)論.解:∵直線a∥b,∴∠3=∠1=34°,∵∠BAC=100°,∴∠2=180°?34°?100°=46°,故答案為46°.14、1【解析】
飛機(jī)停下時(shí),也就是滑行距離最遠(yuǎn)時(shí),即在本題中需求出s最大時(shí)對應(yīng)的t值.【詳解】由題意,s=﹣1.2t2+60t=﹣1.2(t2﹣50t+61﹣61)=﹣1.2(t﹣1)2+750即當(dāng)t=1秒時(shí),飛機(jī)才能停下來.故答案為1.本題考查了二次函數(shù)的應(yīng)用.解題時(shí),利用配方法求得t=2時(shí),s取最大值.15、3或【解析】
以B.E.D為頂點(diǎn)的三角形與△DEF相似分兩種情形畫圖分別求解即可.【詳解】如圖作CM⊥AB當(dāng)∠FED=∠EDB時(shí),∵∠B=∠EAF=∠EDF∴△EDF~△DBE∴EF∥CB,設(shè)EF交AD于點(diǎn)O∵AO=OD,OE∥BD∴AE=EB=3當(dāng)∠FED=∠DEB時(shí)則∠FED=∠FEA=∠DEB=60°此時(shí)△FED~△DEB,設(shè)AE=ED=x,作DN⊥AB于N,則EN=,DN=,∵DN∥CM,∴∴∴x∴BE=6-x=故答案為3或本題考察學(xué)生對相似三角形性質(zhì)定理的掌握和應(yīng)用,熟練掌握相似三角形性質(zhì)定理是解答本題的關(guān)鍵,本題計(jì)算量比較大,計(jì)算能力也很關(guān)鍵.16、4【解析】∵點(diǎn)C是線段AD的中點(diǎn),若CD=1,∴AD=1×2=2,∵點(diǎn)D是線段AB的中點(diǎn),∴AB=2×2=4,故答案為4.17、【解析】分析:先移項(xiàng),整理為一元二次方程,讓根的判別式大于0求值即可.詳解:由圖象可知:二次函數(shù)y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(1,1),∴=1,即b2-4ac=-20a,∵ax2+bx+c=k有兩個(gè)不相等的實(shí)數(shù)根,∴方程ax2+bx+c-k=0的判別式△>0,即b2-4a(c-k)=b2-4ac+4ak=-20a+4ak=-4a(1-k)>0∵拋物線開口向下∴a<0∴1-k>0∴k<1.故答案為k<1.點(diǎn)睛:本題主要考查了拋物線與x軸的交點(diǎn)問題,以及數(shù)形結(jié)合法;二次函數(shù)中當(dāng)b2-4ac>0時(shí),二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個(gè)交點(diǎn).18、0或-1。【解析】由于沒有交待是二次函數(shù),故應(yīng)分兩種情況:當(dāng)k=0時(shí),函數(shù)是一次函數(shù),與x軸僅有一個(gè)公共點(diǎn)。當(dāng)k≠0時(shí),函數(shù)是二次函數(shù),若函數(shù)與x軸僅有一個(gè)公共點(diǎn),則有兩個(gè)相等的實(shí)數(shù)根,即。綜上所述,若關(guān)于x的函數(shù)與x軸僅有一個(gè)公共點(diǎn),則實(shí)數(shù)k的值為0或-1。三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=-x2-2x+1,C(1,0)(2)當(dāng)t=-2時(shí),線段PE的長度有最大值1,此時(shí)P(-2,6)(2)存在這樣的直線l,使得△MON為等腰三角形.所求Q點(diǎn)的坐標(biāo)為(,2)或(,2)或(,2)或(,2)【解析】解:(1)∵直線y=x+1與x軸、y軸分別交于A、B兩點(diǎn),∴A(-1,0),B(0,1).∵拋物線y=-x2+bx+c經(jīng)過A、B兩點(diǎn),∴,解得.∴拋物線解析式為y=-x2-2x+1.令y=0,得-x2-2x+1=0,解得x1=-1,x2=1,∴C(1,0).(2)如圖1,設(shè)D(t,0).∵OA=OB,∴∠BAO=15°.∴E(t,t+1),P(t,-t2-2t+1).PE=yP-yE=-t2-2t+1-t-1=-t2-1t=-(t+2)2+1.∴當(dāng)t=-2時(shí),線段PE的長度有最大值1,此時(shí)P(-2,6).(2)存在.如圖2,過N點(diǎn)作NH⊥x軸于點(diǎn)H.設(shè)OH=m(m>0),∵OA=OB,∴∠BAO=15°.∴NH=AH=1-m,∴yQ=1-m.又M為OA中點(diǎn),∴MH=2-m.當(dāng)△MON為等腰三角形時(shí):①若MN=ON,則H為底邊OM的中點(diǎn),∴m=1,∴yQ=1-m=2.由-xQ2-2xQ+1=2,解得.∴點(diǎn)Q坐標(biāo)為(,2)或(,2).②若MN=OM=2,則在Rt△MNH中,根據(jù)勾股定理得:MN2=NH2+MH2,即22=(1-m)2+(2-m)2,化簡得m2-6m+8=0,解得:m1=2,m2=1(不合題意,舍去).∴yQ=2,由-xQ2-2xQ+1=2,解得.∴點(diǎn)Q坐標(biāo)為(,2)或(,2).③若ON=OM=2,則在Rt△NOH中,根據(jù)勾股定理得:ON2=NH2+OH2,即22=(1-m)2+m2,化簡得m2-1m+6=0,∵△=-8<0,∴此時(shí)不存在這樣的直線l,使得△MON為等腰三角形.綜上所述,存在這樣的直線l,使得△MON為等腰三角形.所求Q點(diǎn)的坐標(biāo)為(,2)或(,2)或(,2)或(,2).(1)首先求得A、B點(diǎn)的坐標(biāo),然后利用待定系數(shù)法求拋物線的解析式,并求出拋物線與x軸另一交點(diǎn)C的坐標(biāo).(2)求出線段PE長度的表達(dá)式,設(shè)D點(diǎn)橫坐標(biāo)為t,則可以將PE表示為關(guān)于t的二次函數(shù),利用二次函數(shù)求極值的方法求出PE長度的最大值.(2)根據(jù)等腰三角形的性質(zhì)和勾股定理,將直線l的存在性問題轉(zhuǎn)化為一元二次方程問題,通過一元二次方程的判別式可知直線l是否存在,并求出相應(yīng)Q點(diǎn)的坐標(biāo).“△MON是等腰三角形”,其中包含三種情況:MN=ON,MN=OM,ON=OM,逐一討論求解.20、(1)=x2+7+(2)見解析【解析】
(1)根據(jù)閱讀材料中的方法將分式拆分成一個(gè)整式與一個(gè)分式(分子為整數(shù))的和的形式即可;(2)原式分子變形后,利用不等式的性質(zhì)求出最小值即可.【詳解】(1)設(shè)﹣x4﹣6x+1=(﹣x2+1)(x2+a)+b=﹣x4+(1﹣a)x2+a+b,可得,解得:a=7,b=1,則原式=x2+7+;(2)由(1)可知,=x2+7+.∵x2≥0,∴x2+7≥7;當(dāng)x=0時(shí),取得最小值0,∴當(dāng)x=0時(shí),x2+7+最小值為1,即原式的最小值為1.21、(1)7x1+4x+4;(1)55.【解析】
(1)根據(jù)整式加法的運(yùn)算法則,將(4x1+5x+6)+(3x1﹣x﹣1)即可求得紙片①上的代數(shù)式;(1)先解方程1x=﹣x﹣9,再代入紙片①的代數(shù)式即可求解.【詳解】解:(1)紙片①上的代數(shù)式為:(4x1+5x+6)+(3x1﹣x﹣1)=4x1+5x+6+3x1-x-1=7x1+4x+4(1)解方程:1x=﹣x﹣9,解得x=﹣3代入紙片①上的代數(shù)式得7x1+4x+4=7×(-3)2+4×(-3)+4=63-11+4=55即紙片①上代數(shù)式的值為55.本題考查了整式加減混合運(yùn)算,解一元一次方程,代數(shù)式求值,在解題的過程中要牢記并靈活運(yùn)用整式加減混合運(yùn)算的法則.特別是對于含括號的運(yùn)算,在去括號時(shí),一定要注意符號的變化.22、(1)(m,2m﹣2);(2)S△ABC=﹣;(3)m的值為或10+2.【解析】分析:(1)利用配方法將二次函數(shù)解析式由一般式變形為頂點(diǎn)式,此題得解;(2)過點(diǎn)C作直線AB的垂線,交線段AB的延長線于點(diǎn)D,由AB∥x軸且AB=1,可得出點(diǎn)B的坐標(biāo)為(m+2,1a+2m?2),設(shè)BD=t,則點(diǎn)C的坐標(biāo)為(m+2+t,1a+2m?2?t),利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面積公式即可得出S△ABC的值;(3)由(2)的結(jié)論結(jié)合S△ABC=2可求出a值,分三種情況考慮:①當(dāng)m>2m?2,即m<2時(shí),x=2m?2時(shí)y取最大值,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于m的一元二次方程,解之可求出m的值;②當(dāng)2m?2≤m≤2m?2,即2≤m≤2時(shí),x=m時(shí)y取最大值,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于m的一元一次方程,解之可求出m的值;③當(dāng)m<2m?2,即m>2時(shí),x=2m?2時(shí)y取最大值,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于m的一元一次方程,解之可求出m的值.綜上即可得出結(jié)論.詳解:(1)∵y=ax2﹣2amx+am2+2m﹣2=a(x﹣m)2+2m﹣2,∴拋物線的頂點(diǎn)坐標(biāo)為(m,2m﹣2),故答案為(m,2m﹣2);(2)過點(diǎn)C作直線AB的垂線,交線段AB的延長線于點(diǎn)D,如圖所示,∵AB∥x軸,且AB=1,∴點(diǎn)B的坐標(biāo)為(m+2,1a+2m﹣2),∵∠ABC=132°,∴設(shè)BD=t,則CD=t,∴點(diǎn)C的坐標(biāo)為(m+2+t,1a+2m﹣2﹣t),∵點(diǎn)C在拋物線y=a(x﹣m)2+2m﹣2上,∴1a+2m﹣2﹣t=a(2+t)2+2m﹣2,整理,得:at2+(1a+1)t=0,解得:t1=0(舍去),t2=﹣,∴S△ABC=AB?CD=﹣;(3)∵△ABC的面積為2,∴﹣=2,解得:a=﹣,∴拋物線的解析式為y=﹣(x﹣m)2+2m﹣2.分三種情況考慮:①當(dāng)m>2m﹣2,即m<2時(shí),有﹣(2m﹣2﹣m)2+2m﹣2=2,整理,得:m2﹣11m+39=0,解得:m1=7﹣(舍去),m2=7+(舍去);②當(dāng)2m﹣2≤m≤2m﹣2,即2≤m≤2時(shí),有2m﹣2=2,解得:m=;③當(dāng)m<2m﹣2,即m>2時(shí),有﹣(2m﹣2﹣m)2+2m﹣2=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣2(舍去),m1=10+2.綜上所述:m的值為或10+2.點(diǎn)睛:本題考查了二次函數(shù)解析式的三種形式、二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、等腰直角三角形、解一元二次方程以及二次函數(shù)的最值,解題的關(guān)鍵是:(1)利用配方法將二次函數(shù)解析式變形為頂點(diǎn)式;(2)利用等腰直角三角形的性質(zhì)找出點(diǎn)C的坐標(biāo);(3)分m<2、2≤m≤2及m>2三種情況考慮.23、(2)見解析;(2)2+.【解析】
(2)連接OC,根據(jù)圓周角定理、切線的性質(zhì)得到∠ACO=∠DCB,根據(jù)CA=CD得到∠CAD=∠D,證明∠COB=∠CBO,根據(jù)等角對等邊證明;
(2)連接AE,過點(diǎn)B作BF⊥CE于點(diǎn)F,根據(jù)勾股定理計(jì)算即可.【詳解】(2)證明:連接OC,∵AB為⊙O直徑,∴∠ACB=90°,∵CD為⊙O切線∴∠OCD=90°,∴∠ACO=∠DCB=90°﹣∠OCB,∵CA=CD,∴∠CAD=∠D.∴∠COB=∠CBO.∴OC=BC.∴OB=BC;(2)連接AE,過點(diǎn)B作BF⊥CE于點(diǎn)F,∵E是AB中點(diǎn),∴,∴AE=BE=2.∵AB為⊙O直徑,∴∠AEB=90°.∴∠ECB=∠BAE=45°,,∴.∴CF=BF=2.∴.∴.本題考查的是切線的性質(zhì)、圓周角定理、勾股定理,掌握圓的切線垂直于經(jīng)過切點(diǎn)的半徑是解題的關(guān)鍵.24、詳見解析.【解析】
四邊形ABCD是正方形,利用已知條件先證明四邊形ABCD是平行四邊形,再證明四邊形ABCD是矩形,再根據(jù)對角線垂直的矩形是正方形即可證明四邊形ABCD是正方形.【詳解】證明:在四邊形ABCD中,OA=OC,OB=OD,∴四邊形ABCD是平行四邊形,∵OA=OB=OC=OD,又∵AC=AO+OC,BD=OB+DO,∴AC=BD,∴平行四邊形是矩形,在△AOB中,,∴△AOB是直角三角形,即AC⊥BD,∴矩形ABCD是正方形.本題考查了平行四邊形的判
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電器分銷合同協(xié)議
- 編輯勞務(wù)合同范本
- 工程合同撤銷協(xié)議
- 總進(jìn)度計(jì)劃協(xié)議書
- 借車協(xié)議書合同
- 手機(jī)寫合同協(xié)議書
- 信訪包保協(xié)議書
- 企業(yè)股改協(xié)議書
- 金融碩士跨境金融服務(wù)便利化路徑探索實(shí)踐畢業(yè)答辯
- 2025 九年級數(shù)學(xué)上冊位似圖形坐標(biāo)變換規(guī)律課件
- GB/T 3521-2023石墨化學(xué)分析方法
- 一年級數(shù)學(xué)重疊問題練習(xí)題
- 三維動畫及特效制作智慧樹知到課后章節(jié)答案2023年下吉林電子信息職業(yè)技術(shù)學(xué)院
- 胰腺囊腫的護(hù)理查房
- 臨床醫(yī)學(xué)概論常見癥狀課件
- 事業(yè)單位專業(yè)技術(shù)人員崗位工資標(biāo)準(zhǔn)表
- 知識圖譜與自然語言處理的深度融合
- 物業(yè)管理理論實(shí)務(wù)教材
- 仁川國際機(jī)場
- 全檢員考試試題
- 光刻和刻蝕工藝
評論
0/150
提交評論