漳州康橋?qū)W校中考數(shù)學(xué)期末幾何綜合壓軸題易錯(cuò)匯編_第1頁
漳州康橋?qū)W校中考數(shù)學(xué)期末幾何綜合壓軸題易錯(cuò)匯編_第2頁
漳州康橋?qū)W校中考數(shù)學(xué)期末幾何綜合壓軸題易錯(cuò)匯編_第3頁
漳州康橋?qū)W校中考數(shù)學(xué)期末幾何綜合壓軸題易錯(cuò)匯編_第4頁
漳州康橋?qū)W校中考數(shù)學(xué)期末幾何綜合壓軸題易錯(cuò)匯編_第5頁
已閱讀5頁,還剩43頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

漳州康橋?qū)W校中考數(shù)學(xué)期末幾何綜合壓軸題易錯(cuò)匯編一、中考數(shù)學(xué)幾何綜合壓軸題1.小明研究了這樣一道幾何題:如圖1,在中,把繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,把繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,連接.當(dāng)時(shí),請(qǐng)問邊上的中線與的數(shù)量關(guān)系是什么?以下是他的研究過程:特例驗(yàn)證:(1)①如圖2,當(dāng)為等邊三角形時(shí),猜想與的數(shù)量關(guān)系為_______;②如圖3,當(dāng),時(shí),則長為________.猜想論證:(2)在圖1中,當(dāng)為任意三角形時(shí),猜想與的數(shù)量關(guān)系,并給予證明.拓展應(yīng)用:(3)如圖4,在四邊形,,,,,,在四邊形內(nèi)部是否存在點(diǎn),使與之間滿足小明探究的問題中的邊角關(guān)系?若存在,請(qǐng)畫出點(diǎn)的位置(保留作圖痕跡,不需要說明)并直接寫出的邊上的中線的長度;若不存在,說明理由.解析:(1)①;②4,(2);理由見解析,(3)存在;【分析】(1)①首先證明是含有的直角三角形,可得,即可解決問題;②首先證明,根據(jù)直角三角形斜邊中線定理即可解決問題.(2)與的數(shù)量關(guān)系為,如圖5,延長到,使,連接、,先證四邊形是平行四邊形,再證明,即可解決問題.(3)存在,如圖6,延長交的延長線于,作于,做直線的垂直平分線交于,交于,連接、、,作的中線,連接交于,先證明,,再證明,即可得出結(jié)論,再在中,根據(jù)勾股定理,即可求出的長.【詳解】(1)①如圖2,∵是等邊三角形,把繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,把繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,∴,又∵是邊上的中線,∴,∴,即,∵,,∴,∴,∴在中,,,∴.故答案為:.②如圖3,∵,,∴,即和為直角三角形,∵把繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,把繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,∴,,∴在和中,∴,∴,∵是邊上的中線,為直角三角形,∴,又∵,∴.故答案為:.(2),如圖5,延長到,使,連接、,圖5∵,,∴四邊形是平行四邊形,∴,∵,,∴,∵,∴在和中,∴,∴,∴.(3)存在,如圖6,延長交的延長線于,作于,作直線的垂直平分線交于,交于,連接、、,作的中線,連接交于,圖6∵,∴,∵,∴,在中,∵,,,∴,,,在中,∵,,,∴,∴,∵,∴,∵,∴,,在中,∵,,∴,∴,∴,∴,∵,∴四邊形是矩形,∴,∴,∴是等邊三角形,∴,∵,∴,∴,∴與之間滿足小明探究的問題中的邊角關(guān)系,在中,∵,,,∴.【點(diǎn)睛】本題考查了三角形的綜合問題.掌握全等三角形的性質(zhì)以及判定定理、直角三角形斜邊中線定理、解直角三角形、勾股定理、中線的性質(zhì)是解題的關(guān)鍵.在處理三角形的邊旋轉(zhuǎn)問題時(shí),旋轉(zhuǎn)前后邊長不變,根據(jù)已知角度變化,求得線段之間關(guān)系.在證明某點(diǎn)是否存在問題時(shí),先假設(shè)這點(diǎn)存在,能求出相關(guān)線段或坐標(biāo),即證實(shí)存在性.2.已知△ABC是等腰三角形,AB=AC.(1)特殊情形:如圖1,當(dāng)DE∥BC時(shí),有DBEC.(填“>”,“<”或“=”)(2)發(fā)現(xiàn)探究:若將圖1中的△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<180°)到圖2位置,則(1)中的結(jié)論還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由.(3)拓展運(yùn)用:如圖3,P是等腰直角三角形ABC內(nèi)一點(diǎn),∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度數(shù).解析:(1)=;(2)成立,證明見解析;(3)135°.【分析】試題(1)由DE∥BC,得到,結(jié)合AB=AC,得到DB=EC;(2)由旋轉(zhuǎn)得到的結(jié)論判斷出△DAB≌△EAC,得到DB=CE;(3)由旋轉(zhuǎn)構(gòu)造出△CPB≌△CEA,再用勾股定理計(jì)算出PE,然后用勾股定理逆定理判斷出△PEA是直角三角形,再簡單計(jì)算即可.【詳解】(1)∵DE∥BC,∴,∵AB=AC,∴DB=EC,故答案為=,(2)成立.證明:由①易知AD=AE,∴由旋轉(zhuǎn)性質(zhì)可知∠DAB=∠EAC,又∵AD=AE,AB=AC∴△DAB≌△EAC,∴DB=CE,(3)如圖,將△CPB繞點(diǎn)C旋轉(zhuǎn)90°得△CEA,連接PE,∴△CPB≌△CEA,∴CE=CP=2,AE=BP=1,∠PCE=90°,∴∠CEP=∠CPE=45°,在Rt△PCE中,由勾股定理可得,PE=,在△PEA中,PE2=()2=8,AE2=12=1,PA2=32=9,∵PE2+AE2=AP2,∴△PEA是直角三角形∴∠PEA=90°,∴∠CEA=135°,又∵△CPB≌△CEA∴∠BPC=∠CEA=135°.【點(diǎn)睛】考點(diǎn):幾何變換綜合題;平行線平行線分線段成比例.3.[探究函數(shù)的圖象與性質(zhì)](1)函數(shù)的自變量的取值范圍是;(2)下列四個(gè)函數(shù)圖象中函數(shù)的圖象大致是;(3)對(duì)于函數(shù),求當(dāng)時(shí),的取值范圍.請(qǐng)將下列的求解過程補(bǔ)充完整.解:∵∴∵∴.[拓展運(yùn)用](4)若函數(shù),則的取值范圍.解析:(1);(2)C;(3)4,4;(4)【詳解】試題分析:本題的⑴問抓住函數(shù)是由分式給定的,所以抓住是分母不為0,即可確定自變量的取值范圍.本題的⑵問結(jié)合第⑴問中的,即或進(jìn)行分類討論函數(shù)值的大致取值范圍,即可得到函數(shù)的大致圖象.本題的第⑶問根據(jù)函數(shù)的配方逆向展開即推出“()”應(yīng)填寫“常數(shù)”部分,再根據(jù)配方情況可以得到當(dāng)當(dāng)時(shí),的取值范圍.本題的⑷問現(xiàn)將函數(shù)改寫為的形式,再按⑶的形式進(jìn)行配方變形即可求的取值范圍.試題解析:(1)由于函數(shù)是分式給定的,所要滿足分母不為0,所以.故填:.(2)即或;當(dāng)時(shí),的值是正數(shù),此時(shí)畫出的圖象只能在第一象限;當(dāng)時(shí),的值是負(fù)數(shù),此時(shí)畫出的圖象只能在第三象限;所以函數(shù)的圖象只在直角坐標(biāo)系的一、三象限.故其大致圖象應(yīng)選C.(3)∵,∴.故分別填:;(4)∵(這里隱含有首先是正數(shù))∴∵∴.4.如圖所示,點(diǎn)A為半圓O直徑MN所在直線上一點(diǎn),射線AB垂直于MN,垂足為A,半圓繞M點(diǎn)順時(shí)針轉(zhuǎn)動(dòng),轉(zhuǎn)過的角度記作α;設(shè)半圓O的半徑為R,AM的長度為m,回答下列問題:(1)探究:若R=2,m=1,如圖1,當(dāng)旋轉(zhuǎn)30°時(shí),圓心O′到射線AB的距離是;如圖2,當(dāng)α=°時(shí),半圓O與射線AB相切;(2)如圖3,在(1)的條件下,為了使得半圓O轉(zhuǎn)動(dòng)30°即能與射線AB相切,在保持線段AM長度不變的條件下,調(diào)整半徑R的大小,請(qǐng)你求出滿足要求的R,并說明理由.(3)發(fā)現(xiàn):如圖4,在0°<α<90°時(shí),為了對(duì)任意旋轉(zhuǎn)角都保證半圓O與射線AB能夠相切,小明探究了cosα與R、m兩個(gè)量的關(guān)系,請(qǐng)你幫助他直接寫出這個(gè)關(guān)系;cosα=(用含有R、m的代數(shù)式表示)(4)拓展:如圖5,若R=m,當(dāng)半圓弧線與射線AB有兩個(gè)交點(diǎn)時(shí),α的取值范圍,并求出在這個(gè)變化過程中陰影部分(弓形)面積的最大值(用m表示)解析:(1)+1;60°;(2)4+2;(3);(4)m2.【詳解】試題分析:(1)如圖1中,作O′E⊥AB于E,MF⊥O′E于F.則四邊形AMFE是矩形,EF=AM=1.如圖2中,設(shè)切點(diǎn)為F,連接O′F,作O′E⊥OA于E,則四邊形O′EAF是矩形,在Rt△O′EM中,由sinα=,推出α=60°.(2)設(shè)切點(diǎn)為P,連接O′P,作MQ⊥O′P,則四邊形APQM是矩形.列出方程即可解決問題.(3)設(shè)切點(diǎn)為P,連接O′P,作MQ⊥O′P,則四邊形APQM是矩形.列出方程即可解決問題、(4)當(dāng)半圓與射線AB相切時(shí),之后開始出現(xiàn)兩個(gè)交點(diǎn),此時(shí)α=90°;當(dāng)N′落在AB上時(shí),為半圓與AB有兩個(gè)交點(diǎn)的最后時(shí)刻,此時(shí)∵M(jìn)N′=2AM,所以∠AMN′=60°,所以,α=120°因此,當(dāng)半圓弧線與射線AB有兩個(gè)交點(diǎn)時(shí),α的取值范圍是:90°<α≤120°.當(dāng)N′落在AB上時(shí),陰影部分面積最大,求出此時(shí)的面積即可.試題解析:(1)如圖1中,作O′E⊥AB于E,MF⊥O′E于F.則四邊形AMFE是矩形,EF=AM=1.想辦法求出O′E的長即可.在Rt△MFO′中,∵∠MOF=30°,MO′=2,∴O′F=O′M?cos30°=,O′E=+1,∴點(diǎn)O′到AB的距離為+1.如圖2中,設(shè)切點(diǎn)為F,連接O′F,作O′E⊥OA于E,則四邊形O′EAF是矩形,∴AE=O′F=2,∵AM=1,∴EM=1,在Rt△O′EM中,sinα=,∴α=60°故答案為+1,60°.(2)設(shè)切點(diǎn)為P,連接O′P,作MQ⊥O′P,則四邊形APQM是矩形.∵O′P=R,∴R=R+1,∴R=4+2.(3)設(shè)切點(diǎn)為P,連接O′P,作MQ⊥O′P,則四邊形APQM是矩形.在Rt△O′QM中,O′Q=R?cosα,QP=m,∵O′P=R,∴R?cosα+m=R,∴cosα=.故答案為.(4)如圖5中,當(dāng)半圓與射線AB相切時(shí),之后開始出現(xiàn)兩個(gè)交點(diǎn),此時(shí)α=90°;當(dāng)N′落在AB上時(shí),為半圓與AB有兩個(gè)交點(diǎn)的最后時(shí)刻,此時(shí)∵M(jìn)N′=2AM,所以∠AMN′=60°,所以,α=120°因此,當(dāng)半圓弧線與射線AB有兩個(gè)交點(diǎn)時(shí),α的取值范圍是:90°<α≤120°故答案為90°<α≤120°;當(dāng)N′落在AB上時(shí),陰影部分面積最大,所以S═﹣?m?m=m2.5.(問題情境)如圖1,點(diǎn)E是平行四邊形ABCD的邊AD上一點(diǎn),連接BE、CE.求證:S平行四邊形ABCD.(說明:S表示面積)請(qǐng)以“問題情境”為基礎(chǔ),繼續(xù)下面的探究(探究應(yīng)用1)如圖2,以平行四邊形ABCD的邊AD為直徑作⊙O,⊙O與BC邊相切于點(diǎn)H,與BD相交于點(diǎn)M.若AD=6,BD=y(tǒng),AM=x,試求y與x之間的函數(shù)關(guān)系式.(探究應(yīng)用2)如圖3,在圖1的基礎(chǔ)上,點(diǎn)F在CD上,連接AF、BF,AF與CE相交于點(diǎn)G,若AF=CE,求證:BG平分∠AGC.(遷移拓展)如圖4,平行四邊形ABCD中,AB:BC=4:3,∠ABC=120°,E是AB的中點(diǎn),F(xiàn)在BC上,且BF:FC=2:1,過D分別作DG⊥AF于G,DH⊥CE于H,請(qǐng)直接寫出DG:DH的值.解析:【問題情境】見解析;【探究應(yīng)用1】;【探究應(yīng)用2】見解析;【遷移拓展】.【分析】(1)作EF⊥BC于F,則S△BCE=BC×EF,S平行四邊形ABCD=BC×EF,即可得出結(jié)論;(2)連接OH,由切線的性質(zhì)得出OH⊥BC,OH=AD=3,求出平行四邊形ABCD的面積=AD×OH=18,由圓周角定理得出AM⊥BD,得出△ABD的面積=BD×AM=平行四邊形的面積=9,即可得出結(jié)果;(3)作BM⊥AF于M,BN⊥CE于N,同圖1得:△ABF的面積=△BCE的面積=平行四邊形ABCD的面積,得出AF×BM=CE×BN,證出BM=BN,即可得出BG平分∠AGC.(4)作AP⊥BC于P,EQ⊥BC于Q,由平行四邊形的性質(zhì)得出∠ABP=60°,得出∠BAP=30°,設(shè)AB=4x,則BC=3x,由直角三角形的性質(zhì)得出BP=AB=2x,BQ=BE,AP=BP=2x,由已知得出BE=2x,BF=2x,得出BQ=x,EQ=x,PF=4x,QF=3x,QC=4x,由勾股定理求出AF==2x,CE==x,連接DF、DE,由三角形的面積關(guān)系得出AF×DG=CE×DH,即可得出結(jié)果.【詳解】(1)證明:作EF⊥BC于F,如圖1所示:則S△BCE=BC×EF,S平行四邊形ABCD=BC×EF,∴.(2)解:連接OH,如圖2所示:∵⊙O與BC邊相切于點(diǎn)H,∴OH⊥BC,OH=AD=3,∴平行四邊形ABCD的面積=AD×OH=6×3=18,∵AD是⊙O的直徑,∴∠AMD=90°,∴AM⊥BD,∴△ABD的面積=BD×AM=平行四邊形的面積=9,即xy=9,∴y與x之間的函數(shù)關(guān)系式y(tǒng)=;(3)證明:作BM⊥AF于M,BN⊥CE于N,如圖3所示:同圖1得:△ABF的面積=△BCE的面積=平行四邊形ABCD的面積,∴AF×BM=CE×BN,∵AF=CE,∴BM=BN,∴BG平分∠AGC.(4)解:作AP⊥BC于P,EQ⊥BC于Q,如圖4所示:∵平行四邊形ABCD中,AB:BC=4:3,∠ABC=120°,∴∠ABP=60°,∴∠BAP=30°,設(shè)AB=4x,則BC=3x,∴BP=AB=2x,BQ=BE,AP=BP=2x,∵E是AB的中點(diǎn),F(xiàn)在BC上,且BF:FC=2:1,∴BE=2x,BF=2x,∴BQ=x,∴EQ=x,PF=4x,QF=3x,QC=4x,由勾股定理得:AF==2x,CE==x,連接DF、DE,則△CDE的面積=△ADF的面積=平行四邊形ABCD的面積,∴AF×DG=CE×DH,∴DG:DH=CE:AF=.【點(diǎn)睛】本題是圓的綜合題目,考查了圓周角定理、平行四邊形的性質(zhì)、三角形面積公式、含30°角的直角三角形的性質(zhì)、勾股定理、角平分線的判定等知識(shí);本題綜合性強(qiáng),需要添加輔助線,熟練掌握平行四邊形的性質(zhì)和勾股定理是解題的關(guān)鍵.6.如圖①,在中,為邊上一點(diǎn),過點(diǎn)作交于點(diǎn),連接,為的中點(diǎn),連接.(觀察猜想)(1)①的數(shù)量關(guān)系是___________②的數(shù)量關(guān)系是______________(類比探究)(2)將圖①中繞點(diǎn)逆時(shí)針旋轉(zhuǎn),如圖②所示,則(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由;(拓展遷移)(3)將繞點(diǎn)旋轉(zhuǎn)任意角度,若,請(qǐng)直接寫出點(diǎn)在同一直線上時(shí)的長.解析:(1)①;②;(2)成立,證明見解析;(3)的長為或【分析】(1)①根據(jù)直角三角形斜邊上的中線等于斜邊的一半,即可得到答案;②由①知,利用等邊對(duì)等角和三角形的外角性質(zhì),得到,,然后即可得到答案;(2)①過點(diǎn)作交的延長線于點(diǎn),EF與交于點(diǎn),利用等腰直角三角形的性質(zhì),證明,即可得到結(jié)論成立;②由全等三角形的性質(zhì),求出∠OEC=90°,即可得到結(jié)論成立;(3)根據(jù)旋轉(zhuǎn)的性質(zhì),點(diǎn)在同一直線上可分為兩種情況:①點(diǎn)C在線段OB上;②點(diǎn)C在OB的延長線上;利用等腰直角三角形的性質(zhì),分別求出OE的長度,即可得到答案.【詳解】解:(1)如圖,在△AOD和△ACD中,∵,為AD中點(diǎn),,,E為AD中點(diǎn),,;②,為AD中點(diǎn),,∴;同理可得:,,.(2)成立.證明:①如圖,過點(diǎn)作交的延長線于點(diǎn)與交于點(diǎn),∵是等腰三角形,∴∵,∴,∴,∴均為等腰直角三角形,∴,又∵,∴,∴;②,∴,,,;(3)的長為或;∵在等腰直角中,,,由(2)可知,,,∴是等腰直角三角形,∴;當(dāng)點(diǎn)在同一直線上時(shí),有①點(diǎn)C在線段OB上;如圖:∴,∴;②點(diǎn)C在OB的延長線上;如圖:∴,∴;綜上所述,的長為或;【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的判定和性質(zhì),解直角三角形,全等三角形的判定和性質(zhì),直角三角形斜邊上的中線等于斜邊的一半,以及三角形的外角性質(zhì)等,綜合能力強(qiáng),知識(shí)的運(yùn)用廣泛.解題的關(guān)鍵是熟練掌握所學(xué)的性質(zhì)進(jìn)行解題,注意運(yùn)用數(shù)形結(jié)合的思想和分類討論的思想進(jìn)行分析.7.(感知)如圖1,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,將線段繞著點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)至線段,過點(diǎn)作軸,垂足為點(diǎn),易知,得到點(diǎn)的坐標(biāo)為.(探究)如圖2,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,將線段繞著點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)至線段.(1)求點(diǎn)的坐標(biāo).(用含的代數(shù)式表示)(2)求出BC所在直線的函數(shù)表達(dá)式.(拓展)如圖3,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)在軸上,將線段繞著點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)至線段,連結(jié)、,則的最小值為_______.解析:【探究】(1)點(diǎn)坐標(biāo)為;(2);【拓展】.【分析】探究:(1)證明△AOC≌△CMB(AAS),即可求解;(2)根據(jù)點(diǎn)B的坐標(biāo)為(m,m+1),點(diǎn)坐標(biāo),即可求解;拓展:BO+BA=,BO+BA的值,相當(dāng)于求點(diǎn)P(m,m)到點(diǎn)M(1,-1)和點(diǎn)N(0,-1)的最小值,即可求解.【詳解】解:探究:(1)過點(diǎn)作軸,垂足為點(diǎn).,.線段繞著點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)至線段,...,,.點(diǎn)坐標(biāo),點(diǎn)坐標(biāo),點(diǎn)坐標(biāo)為(2)∵點(diǎn)B的坐標(biāo)為(m,m+1),點(diǎn)C為(0,m),設(shè)直線BC為:y=kx+b,,解得:,∴;則BC所在的直線為:;拓展:如圖作BH⊥OH于H.設(shè)點(diǎn)C的坐標(biāo)為(0,m),由(1)知:OC=HB=m,OA=HC=1,則點(diǎn)B(m,1+m),則:BO+BA=,BO+BA的值,相當(dāng)于求點(diǎn)P(m,m)到點(diǎn)M(1,-1)和點(diǎn)N(0,-1)的最小值,相當(dāng)于在直線y=x上尋找一點(diǎn)P(m,m),使得點(diǎn)P到M(0,-1),到N(1,-1)的距離和最小,作M關(guān)于直線y=x的對(duì)稱點(diǎn)M′(-1,0),易知PM+PN=PM′+PN≥NM′,M′N=,故:BO+BA的最小值為,故答案為:.【點(diǎn)睛】本題為一次函數(shù)綜合題,主要考查的是三角形全等的思維拓展,其中拓展,將BO+BA的值轉(zhuǎn)化點(diǎn)P(m,m)到點(diǎn)M(1,-1)和點(diǎn)N(0,-1)的最小值,是本題的新穎點(diǎn)8.問題探究(1)如圖1,△ABC和△DEC均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)B,D,E在同一直線上,連接AD,BD.①請(qǐng)?zhí)骄緼D與BD之間的位置關(guān)系:________;②若AC=BC=,DC=CE=,則線段AD的長為________;拓展延伸(2)如圖2,△ABC和△DEC均為直角三角形,∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.將△DCE繞點(diǎn)C在平面內(nèi)順時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角∠BCD為α(0°≤α<360°),作直線BD,連接AD,當(dāng)點(diǎn)B,D,E在同一直線上時(shí),畫出圖形,并求線段AD的長.解析:(1)①垂直,②4;(2)作圖見解析,或【分析】(1)①由“SAS”可證△ACD≌△BCE,可得∠ADC=∠BEC=45°,可得AD⊥BD;②過點(diǎn)C作CF⊥AD于點(diǎn)F,由勾股定理可求DF,CF,AF的長,即可求AD的長;(2)分點(diǎn)D在BC左側(cè)和BC右側(cè)兩種情況討論,根據(jù)勾股定理和相似三角形的性質(zhì)可求解.【詳解】解:(1)∵△ABC和△DEC均為等腰直角三角形,∴AC=BC,CE=CD,∠ABC=∠DEC=45°=∠CDE∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,且AC=BC,CE=CD∴△ACD≌△BCE(SAS)∴∠ADC=∠BEC=45°∴∠ADE=∠ADC+∠CDE=90°∴AD⊥BD故答案為:垂直②如圖,過點(diǎn)C作CF⊥AD于點(diǎn)F,∵∠ADC=45°,CF⊥AD,CD=∴DF=CF=1∴∴AD=AF+DF=4故答案為:4.(2)①如圖:∵∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1,∴AB=2,DE=2,∠ACD=∠BCE,.∴△ACD∽△BCE.∴∠ADC=∠E,.又∵∠CDE+∠E=90°,∴∠ADC+∠CDE=90°,即∠ADE=90°.∴AD⊥BE.設(shè)BE=x,則AD=x.在Rt△ABD中,,即.解得(負(fù)值舍去).∴AD=.②如圖,同①設(shè)BE=x,則AD=x.在Rt△ABD中,,即.解得(負(fù)值舍去).∴AD=.綜上可得,線段AD的長為【點(diǎn)睛】本題是幾何變換綜合題,考查了全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理,等腰三角形的性質(zhì)等知識(shí)點(diǎn),關(guān)鍵是添加恰當(dāng)輔助線.9.問題背景(1)如圖(1),,都是等邊三角形,可以由通過旋轉(zhuǎn)變換得到,請(qǐng)寫出旋轉(zhuǎn)中心、旋轉(zhuǎn)方向及旋轉(zhuǎn)角的大?。畤L試應(yīng)用(2)如圖(2).在中,,分別以AC,AB為邊,作等邊和等邊,連接ED,并延長交BC于點(diǎn)F,連接BD.若,求的值.拓展創(chuàng)新(3)如圖(3).在中,,,將線段AC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到線段AP,連接PB,直接寫出PB的最大值.解析:(1)旋轉(zhuǎn)中心是點(diǎn)A,旋轉(zhuǎn)方向是順時(shí)針,旋轉(zhuǎn)角是;(2);(3).【分析】(1)由等邊三角形得出,,,,證明,由旋轉(zhuǎn)性質(zhì)即可得;(2)證明,由全等三角形的性質(zhì)得,,得出,由直角三角形性質(zhì)得,則可計(jì)算得答案;(3)過點(diǎn)A作,且使AE=AD,連接PE,BE,由直角三角形的性質(zhì)求出BE、PE的長即可得解.【詳解】解(1)∵,都是等邊三角形,∴,,,,,,,可以由繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到,即旋轉(zhuǎn)中心是點(diǎn)A,旋轉(zhuǎn)方向是順時(shí)針,旋轉(zhuǎn)角是;(2)和都是等邊三角形,,,,,,,,,,,,,,,設(shè)BF=x,則CF=DF=2x,DE=3x,∴;(3),∴點(diǎn)C在以AB為直徑的圓上運(yùn)動(dòng),取AB的中點(diǎn)D,連接CD,,如圖,過點(diǎn)A作,且使AE=AD,連接PE,BE,∵將線段AC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到線段AP,,PA=AC.,,,∴PE=CD=1.∵AB=2,AE=AD=1,∴BE===,,∴BP的最大值為+1.【點(diǎn)睛】本題是幾何變換的綜合題,考查了旋轉(zhuǎn)的性質(zhì)、等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理、直角三角形的性質(zhì)、圓周角定理;熟練掌握旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.10.在△ABC中,AD為BC邊上的中線,E為AD上一動(dòng)點(diǎn),設(shè)DE=nEA,連接CE并延長,交AB于點(diǎn)F.(1)嘗試探究:如圖1,當(dāng)∠BAC=90°,∠B=30°,DE=EA時(shí),BF,BA之間的數(shù)量關(guān)系是;(2)類比延伸:如圖2,當(dāng)△ABC為銳角三角形,DE=EA時(shí),(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由;(3)拓展遷移:如圖3,當(dāng)△ABC為銳角三角形,DE=nEA時(shí),請(qǐng)直接寫出BF,BA之間的數(shù)量關(guān)系.解析:(1);(2)仍然成立,見解析;(3)【分析】(1)嘗試探究:過點(diǎn)作,交于,可證,,,可得,可證,可得BF,BA之間的數(shù)量關(guān)系;(2)類比延伸:過點(diǎn)作,交于,可證,,可得,可證,可得之間的數(shù)量關(guān)系;(3)拓展遷移:過點(diǎn)作,交于,由平行線分線段成比例可得,可得,即可求之間的數(shù)量關(guān)系.【詳解】解:(1)嘗試探究如圖,過點(diǎn)作,交于∵是中線,∴∵,∴,∴∴∴∴∴(2)類比延伸:結(jié)論仍然成立,理由如下:如圖,過點(diǎn)作,交于∵是中線,∴∵,∴,∴∴∴∴∴(3)拓展遷移如圖,過點(diǎn)作,交于∵,且∴∴∵∴∴∴∴∴【點(diǎn)睛】本題主要考查了相似三角形的判定和性質(zhì)綜合,根據(jù)題干條件作出輔助線并得到對(duì)應(yīng)的相似三角形是解決本題的關(guān)鍵.11.問題背景:如圖1,在矩形中,,,點(diǎn)是邊的中點(diǎn),過點(diǎn)作交于點(diǎn).實(shí)驗(yàn)探究:(1)在一次數(shù)學(xué)活動(dòng)中,小王同學(xué)將圖1中的繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn),如圖2所示,得到結(jié)論:①_____;②直線與所夾銳角的度數(shù)為______.(2)小王同學(xué)繼續(xù)將繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)至如圖3所示位置.請(qǐng)問探究(1)中的結(jié)論是否仍然成立?并說明理由.拓展延伸:在以上探究中,當(dāng)旋轉(zhuǎn)至、、三點(diǎn)共線時(shí),則的面積為______.解析:(1),30°;(2)成立,理由見解析;拓展延伸:或【分析】(1)通過證明,可得,,即可求解;(2)通過證明,可得,,即可求解;拓展延伸:分兩種情況討論,先求出,的長,即可求解.【詳解】解:(1)如圖1,,,,,如圖2,設(shè)與交于點(diǎn),與交于點(diǎn),繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn),,,,,又,,直線與所夾銳角的度數(shù)為,故答案為:,;(2)結(jié)論仍然成立,理由如下:如圖3,設(shè)與交于點(diǎn),與交于點(diǎn),將繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn),,又,,,,又,,直線與所夾銳角的度數(shù)為.拓展延伸:如圖4,當(dāng)點(diǎn)在的上方時(shí),過點(diǎn)作于,,,點(diǎn)是邊的中點(diǎn),,,,,,,,、、三點(diǎn)共線,,,,,由(2)可得:,,,的面積;如圖5,當(dāng)點(diǎn)在的下方時(shí),過點(diǎn)作,交的延長線于,同理可求:的面積;故答案為:或.【點(diǎn)睛】本題是幾何變換綜合題,考查了矩形的性質(zhì),相似三角形的判定和性質(zhì),直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì)等知識(shí),利用分類討論思想解決問題是解題的關(guān)鍵.12.(探究函數(shù)y=x+的圖象與性質(zhì))(1)函數(shù)y=x+的自變量x的取值范圍是;(2)下列四個(gè)函數(shù)圖象中函數(shù)y=x+的圖象大致是;(3)對(duì)于函數(shù)y=x+,求當(dāng)x>0時(shí),y的取值范圍.請(qǐng)將下列的求解過程補(bǔ)充完整.解:∵x>0∴y=x+=()2+()2=(﹣)2+∵(﹣)2≥0∴y≥.[拓展運(yùn)用](4)若函數(shù)y=,則y的取值范圍.解析:(1)x≠0;(2)C(3)4;4;(4)y≥13【解析】試題分析:根據(jù)反比例函數(shù)的性質(zhì),一次函數(shù)的性質(zhì);二次函數(shù)的性質(zhì)解答即可.試題解析:(1)函數(shù)y=x+的自變量x的取值范圍是x≠0;(2)函數(shù)y=x+的圖象大致是C;(3)解:∵x>0∴y=x+=()2+()2=(﹣)2+4∵(﹣)2≥0∴y≥4.(4)y==x+﹣5═()2+()2﹣5=(+)2+13∵(﹣)2≥0,∴y≥13.考點(diǎn):1.反比例函數(shù)的性質(zhì);一次函數(shù)的性質(zhì);二次函數(shù)的性質(zhì).13.如圖(1),已知點(diǎn)G在正方形ABCD的對(duì)角線AC上,GE⊥BC,垂足為點(diǎn)E,GF⊥CD,垂足為點(diǎn)F.(1)證明與推斷:①求證:四邊形CEGF是正方形;②推斷:的值為:(2)探究與證明:將正方形CEGF繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說明理由:(3)拓展與運(yùn)用:正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點(diǎn)在一條直線上時(shí),如圖(3)所示,延長CG交AD于點(diǎn)H.若AG=6,GH=2,則BC=.解析:(1)①四邊形CEGF是正方形;②;(2)線段AG與BE之間的數(shù)量關(guān)系為AG=BE;(3)3【分析】(1)①由、結(jié)合可得四邊形CEGF是矩形,再由即可得證;②由正方形性質(zhì)知、,據(jù)此可得、,利用平行線分線段成比例定理可得;(2)連接CG,只需證∽即可得;(3)證∽得,設(shè),知,由得、、,由可得a的值.【詳解】(1)①∵四邊形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四邊形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四邊形CEGF是正方形;②由①知四邊形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴,GE∥AB,∴,故答案為;(2)連接CG,由旋轉(zhuǎn)性質(zhì)知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=、=,∴=,∴△ACG∽△BCE,∴,∴線段AG與BE之間的數(shù)量關(guān)系為AG=BE;(3)∵∠CEF=45°,點(diǎn)B、E、F三點(diǎn)共線,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴,設(shè)BC=CD=AD=a,則AC=a,則由得,∴AH=a,則DH=AD﹣AH=a,CH==a,∴由得,解得:a=3,即BC=3,故答案為3.【點(diǎn)睛】本題考查了正方形的性質(zhì)與判定,相似三角形的判定與性質(zhì)等,綜合性較強(qiáng),有一定的難度,正確添加輔助線,熟練掌握正方形的判定與性質(zhì)、相似三角形的判定與性質(zhì)是解題的關(guān)鍵.14.(1)問題發(fā)現(xiàn)如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點(diǎn)M.填空:①的值為;②∠AMB的度數(shù)為.(2)類比探究如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長線于點(diǎn)M.請(qǐng)判斷的值及∠AMB的度數(shù),并說明理由;(3)拓展延伸在(2)的條件下,將△OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點(diǎn)M,若OD=1,OB=,請(qǐng)直接寫出當(dāng)點(diǎn)C與點(diǎn)M重合時(shí)AC的長.解析:(1)①1;②40°;(2),90°;(3)AC的長為3或2.【分析】(1)①證明△COA≌△DOB(SAS),得AC=BD,比值為1;②由△COA≌△DOB,得∠CAO=∠DBO,根據(jù)三角形的內(nèi)角和定理得:∠AMB=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°;(2)根據(jù)兩邊的比相等且夾角相等可得△AOC∽△BOD,則,由全等三角形的性質(zhì)得∠AMB的度數(shù);(3)正確畫圖形,當(dāng)點(diǎn)C與點(diǎn)M重合時(shí),有兩種情況:如圖3和4,同理可得:△AOC∽△BOD,則∠AMB=90°,,可得AC的長.【詳解】(1)問題發(fā)現(xiàn):①如圖1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°-(∠CAO+∠OAB+∠ABD)=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°,(2)類比探究:如圖2,,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴,∠CAO=∠DBO,在△AMB中,∠AMB=180°-(∠MAB+∠ABM)=180°-(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸:①點(diǎn)C與點(diǎn)M重合時(shí),如圖3,同理得:△AOC∽△BOD,∴∠AMB=90°,,設(shè)BD=x,則AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x-2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,(x)2+(x?2)2=(2)2,x2-x-6=0,(x-3)(x+2)=0,x1=3,x2=-2,∴AC=3;②點(diǎn)C與點(diǎn)M重合時(shí),如圖4,同理得:∠AMB=90°,,設(shè)BD=x,則AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,(x)2+(x+2)2=(2)2.x2+x-6=0,(x+3)(x-2)=0,x1=-3,x2=2,∴AC=2;.綜上所述,AC的長為3或2.【點(diǎn)睛】本題是三角形的綜合題,主要考查了三角形全等和相似的性質(zhì)和判定,幾何變換問題,解題的關(guān)鍵是能得出:△AOC∽△BOD,根據(jù)相似三角形的性質(zhì),并運(yùn)用類比的思想解決問題,本題是一道比較好的題目.15.問題背景:我們學(xué)習(xí)等邊三角形時(shí)得到直角三角形的一個(gè)性質(zhì):在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半.即:如圖1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,則:AC=AB.探究結(jié)論:小明同學(xué)對(duì)以上結(jié)論作了進(jìn)一步研究.(1)如圖1,連接AB邊上中線CE,由于CE=AB,易得結(jié)論:①△ACE為等邊三角形;②BE與CE之間的數(shù)量關(guān)系為.(2)如圖2,點(diǎn)D是邊CB上任意一點(diǎn),連接AD,作等邊△ADE,且點(diǎn)E在∠ACB的內(nèi)部,連接BE.試探究線段BE與DE之間的數(shù)量關(guān)系,寫出你的猜想并加以證明.(3)當(dāng)點(diǎn)D為邊CB延長線上任意一點(diǎn)時(shí),在(2)條件的基礎(chǔ)上,線段BE與DE之間存在怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的結(jié)論.拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(﹣,1),點(diǎn)B是x軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等邊△ABC,當(dāng)C點(diǎn)在第一象限內(nèi),且B(2,0)時(shí),求C點(diǎn)的坐標(biāo).解析:(1)EC=EB;(2)ED=EB,理由見解析;(3)ED=EB;拓展應(yīng)用:C(1,2+).【分析】探究結(jié)論:(1)只要證明△ACE是等邊三角形即可解決問題;(2)如圖2中,結(jié)論:ED=EB.想辦法證明EP垂直平分線段AB即可解決問題;(3)結(jié)論不變,證明方法類似;拓展應(yīng)用:利用(2)中結(jié)論,可得CO=CB,設(shè)C(1,n),根據(jù)OC=CB=AB,構(gòu)建方程即可解決問題.【詳解】探究結(jié)論(1),如圖1中,∵∠ACB=90°,∠B=30°,∴∠A=60°,∵AC=AB=AE=EB,∴△ACE是等邊三角形,∴EC=AE=EB,故答案為:EC=EB;(2)如圖2中,結(jié)論:ED=EB.理由:連接PE,∵△ACP,△ADE都是等邊三角形,∴AC=AD=DE,AD=AE,∠CAP=∠DAE=60°,∴∠CAD=∠PAE,∴△CAD≌△PAE,∴∠ACD=∠APE=90°,∴EP⊥AB,∵PA=PB,∴EA=EB,∵DE=AE,∴ED=EB;(3)當(dāng)點(diǎn)D為邊CB延長線上任意一點(diǎn)時(shí),同法可證:ED=EB,故答案為:ED=EB;拓展應(yīng)用:如圖3中,作AH⊥x軸于H,CF⊥OB于F,連接OA,∵A(﹣,1),∴∠AOH=30°,由(2)可知,CO=CB,∵CF⊥OB,∴OF=FB=1,∴可以假設(shè)C(1,n),∵OC=BC=AB,∴1+n2=1+(+2)2,∴n=2+,∴C(1,2+).【點(diǎn)睛】本題考查三角形綜合題、等邊三角形的判定和性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理、線段的垂直平分線的性質(zhì)等知識(shí),正確添加常用輔助線,構(gòu)造全等三角形是解決問題的關(guān)鍵.16.小明將兩個(gè)直角三角形紙片如圖(1)那樣拼放在同一平面上,抽象出如圖(2)的平面圖形,與恰好為對(duì)頂角,,連接,,點(diǎn)F是線段上一點(diǎn).探究發(fā)現(xiàn):(1)當(dāng)點(diǎn)F為線段的中點(diǎn)時(shí),連接(如圖(2),小明經(jīng)過探究,得到結(jié)論:.你認(rèn)為此結(jié)論是否成立?_________.(填“是”或“否”)拓展延伸:(2)將(1)中的條件與結(jié)論互換,即:若,則點(diǎn)F為線段的中點(diǎn).請(qǐng)判斷此結(jié)論是否成立.若成立,請(qǐng)寫出證明過程;若不成立,請(qǐng)說明理由.問題解決:(3)若,求的長.解析:(1)是;(2)結(jié)論成立,理由見解析;(3)【分析】(1)利用等角的余角相等求出∠A=∠E,再通過AB=BD求出∠A=∠ADB,緊接著根據(jù)直角三角形斜邊的中線等于斜邊的一半求出FD=FE=FC,由此得出∠E=∠FDE,據(jù)此進(jìn)一步得出∠ADB=∠FDE,最終通過證明∠ADB+∠EDC=90°證明結(jié)論成立即可;(2)根據(jù)垂直的性質(zhì)可以得出90°,90°,從而可得,接著證明出,利用可知,從而推出,最后通過證明得出,據(jù)此加以分析即可證明結(jié)論;(3)如圖,設(shè)G為的中點(diǎn),連接GD,由(1)得,故而,在中,利用勾股定理求出,由此得出,緊接著,繼續(xù)通過勾股定理求出,最后進(jìn)一步證明,再根據(jù)相似三角形性質(zhì)得出,從而求出,最后進(jìn)一步分析求解即可.【詳解】(1)∵∠ABC=∠CDE=90°,∴∠A+∠ACB=∠E+∠ECD,∵∠ACB=∠ECD,∴∠A=∠E,∵AB=BD,∴∠A=∠ADB,在中,∵F是斜邊CE的中點(diǎn),∴FD=FE=FC,∴∠E=∠FDE,∵∠A=∠E,∴∠ADB=∠FDE,∵∠FDE+∠FDC=90°,∴∠ADB+∠FDC=90°,即∠FDB=90°,∴BD⊥DF,結(jié)論成立,故答案為:是;(2)結(jié)論成立,理由如下:∵,∴90°,90°,∴,∵,∴.∴.又∵,∴.∴.又90°,90°,,∴,∴.∴.∴F為的中點(diǎn);(3)如圖,設(shè)G為的中點(diǎn),連接GD,由(1)可知,∴,又∵,在中,,∴,在中,,在與中,∵∠ABC=∠EDC,∠ACB=∠ECD,∴,∴,∴,∴.【點(diǎn)睛】本題主要考查了直角三角形的性質(zhì)和相似三角形的性質(zhì)及判定的綜合運(yùn)用,熟練掌握相關(guān)方法是解題關(guān)鍵.17.(1)(閱讀與證明)如圖1,在正的外角內(nèi)引射線,作點(diǎn)C關(guān)于的對(duì)稱點(diǎn)E(點(diǎn)E在內(nèi)),連接,、分別交于點(diǎn)F、G.①完成證明:點(diǎn)E是點(diǎn)C關(guān)于的對(duì)稱點(diǎn),,,.正中,,,,得.在中,,______.在中,,______.②求證:.(2)(類比與探究)把(1)中的“正”改為“正方形”,其余條件不變,如圖2.類比探究,可得:①______;②線段、、之間存在數(shù)量關(guān)系___________.(3)(歸納與拓展)如圖3,點(diǎn)A在射線上,,,在內(nèi)引射線,作點(diǎn)C關(guān)于的對(duì)稱點(diǎn)E(點(diǎn)E在內(nèi)),連接,、分別交于點(diǎn)F、G.則線段、、之間的數(shù)量關(guān)系為__________.解析:(1)①60°,30°;②證明見解析;(2)①45°;②BF=(AF+FG);(3).【分析】(1)①根據(jù)等量代換和直角三角形的性質(zhì)即可確定答案;②在FB上取AN=AF,連接AN.先證明△AFN是等邊三角形,得到∠BAN=∠2=∠1,然后再證明△ABN≌△AEF,然后利用全等三角形的性質(zhì)以及線段的和差即可證明;(2)類比(1)的方法即可作答;(3)根據(jù)(1)(2)的結(jié)論,即可總結(jié)出答案.【詳解】解:(1)①∵,,∴,即60°;∵∴故答案為60°,30°;②在FB上取FN=AF,連接AN∵∠AFN=∠EFG=60°∴△AFN是等邊三角形∴AF=FN=AN∵FN=AF∴∠BAC=∠NAF=60°∴∠BAN+∠NAC=∠NAC+∠2∴∠BAN=∠2∵點(diǎn)C關(guān)于的對(duì)稱點(diǎn)E∴∠2=∠1,AC=AE∴∠BAN=∠2=∠1∵AB=AC∴AB=AE在△ABN和△AEFFN=AF,∠BAN=∠1,AB=AE∴△ABN≌△AEF∴BN=EF∵AG⊥CE,∠FEG=30°∴EF=2FG∴BN=EF=2FG∵BF=BN+NF∴BF=2FG+AF(2)①點(diǎn)E是點(diǎn)C關(guān)于的對(duì)稱點(diǎn),,,.正方形ABCD中,,,,得.在中,,45.在中,,45.故答案為45°;②在FB上取FN=AF,連接AN∵∠AFN=∠EFG=45°∴△AFN是等腰直角三角形∴∠NAF=90°,AF=AN∴∠BAN+∠NAC=∠NAC+∠2=90°,FN=AF∴∠BAN=∠2∵點(diǎn)C關(guān)于的對(duì)稱點(diǎn)E∴∠2=∠1,AC=AE∴∠BAN=∠2=∠1∵AB=AC∴AB=AE在△ABN和△AEFFN=AF,∠BAN=∠1,AB=AE∴△ABN≌△AEF∴BN=EF∵AG⊥CE,∠FEG=45°∴EF=FG∴BN=EF=FG∵BF=BN+NF∴BF=FG+AF(3)由(1)得:當(dāng)∠BAC=60°時(shí)BF=AF+2FG=;由(2)得:當(dāng)∠BAC=90°時(shí)BF=AF+2FG=;以此類推,當(dāng)當(dāng)∠BAC=60°時(shí),.【點(diǎn)睛】本題考查了軸對(duì)稱的性質(zhì)、全等三角形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)以及三角函數(shù)的應(yīng)用,靈活應(yīng)用所學(xué)知識(shí)是解答本題的關(guān)鍵.18.在中,,.點(diǎn)D在邊上,且,交邊于點(diǎn)F,連接.(1)特例發(fā)現(xiàn):如圖1,當(dāng)時(shí),①求證:;②推斷:_________.;(2)探究證明:如圖2,當(dāng)時(shí),請(qǐng)?zhí)骄康亩葦?shù)是否為定值,并說明理由;(3)拓展運(yùn)用:如圖3,在(2)的條件下,當(dāng)時(shí),過點(diǎn)D作的垂線,交于點(diǎn)P,交于點(diǎn)K,若,求的長.解析:(1)①證明見解析,②;(2)為定值,證明見解析;(3)【分析】(1)①利用已知條件證明即可得到結(jié)論,②先證明利用相似三角形的性質(zhì)再證明結(jié)合相似三角形的性質(zhì)可得答案;(2)由(1)中②的解題思路可得結(jié)論;(3)設(shè)則利用等腰直角三角形的性質(zhì)分別表示:由表示再證明利用相似三角形的性質(zhì)建立方程求解,即可得到答案.【詳解】證明:(1)①②推斷:理由如下:(2)為定值,理由如下:由(1)得:(3),設(shè)則,解得:【點(diǎn)睛】本題考查的是三角形的全等的判定與性質(zhì),等腰直角三角形的性質(zhì),三角形相似的判定與性質(zhì),更重要的是考查學(xué)生的學(xué)習(xí)探究的能力,掌握以上知識(shí)是解題的關(guān)鍵.19.如圖1,已知,,點(diǎn)D在上,連接并延長交于點(diǎn)F,(1)猜想:線段與的數(shù)量關(guān)系為_____;(2)探究:若將圖1的繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn),當(dāng)小于時(shí),得到圖2,連接并延長交于點(diǎn)F,則(1)中的結(jié)論是否還成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;(3)拓展:圖1中,過點(diǎn)E作,垂足為點(diǎn)G.當(dāng)?shù)拇笮“l(fā)生變化,其它條件不變時(shí),若,,直接寫出的長.解析:(1)AF=EF;(2)成立,理由見解析;(3)12【分析】(1)延長DF到G點(diǎn),并使FG=DC,連接GE,證明△ACF△EDG,進(jìn)而得到△GEF為等腰三角形,即可證明AF=GE=EF;(2)證明原理同(1),延長DF到G點(diǎn),并使FG=DC,連接GE,證明△ACF△EDG,進(jìn)而得到△GEF為等腰三角形,即可證明AF=GE=EF;(3)補(bǔ)充完整圖后證明四邊形AEGC為矩形,進(jìn)而得到∠ABC=∠ABE=∠EBG=60°即可求解.【詳解】解:(1)延長DF到G點(diǎn),并使FG=DC,連接GE,如下圖所示∵,∴DE=AC,BD=BC,∴∠CDB=∠DCB,且∠CDB=∠ADF,∴∠ADF=∠DCB,∵∠ACB=90°,∴∠ACD+∠DCB=90°,∵∠EDB=90°,∴∠ADF+∠FDE=90°,∴∠ACD=∠FDE,又延長DF使得FG=DC,∴FG+DF=DC+DF,∴DG=CF,在△ACF和△EDG中,,∴△ACF△EDG(SAS),∴GE=AF,∠G

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論