貴州省水城實驗學校2026屆數(shù)學九年級第一學期期末監(jiān)測試題含解析_第1頁
貴州省水城實驗學校2026屆數(shù)學九年級第一學期期末監(jiān)測試題含解析_第2頁
貴州省水城實驗學校2026屆數(shù)學九年級第一學期期末監(jiān)測試題含解析_第3頁
貴州省水城實驗學校2026屆數(shù)學九年級第一學期期末監(jiān)測試題含解析_第4頁
貴州省水城實驗學校2026屆數(shù)學九年級第一學期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

貴州省水城實驗學校2026屆數(shù)學九年級第一學期期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.已知二次函數(shù)y=(a﹣1)x2﹣x+a2﹣1圖象經(jīng)過原點,則a的取值為()A.a(chǎn)=±1 B.a(chǎn)=1 C.a(chǎn)=﹣1 D.無法確定2.將拋物線y=x2﹣4x﹣4向左平移3個單位,再向上平移5個單位,得到拋物線的函數(shù)表達式為()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣33.以下給出的幾何體中,主視圖是矩形,俯視圖是圓的是()A. B. C. D.4.如圖,某小區(qū)計劃在一塊長為31m,寬為10m的矩形空地上修建三條同樣寬的道路,剩余的空地上種植草坪,使草坪的面積為570m1.若設道路的寬為xm,則下面所列方程正確的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5705.用一個圓心角為120°,半徑為6cm的扇形做成一個圓錐的側面,這個圓錐的高為()A. B. C. D.6.點到軸的距離是()A. B. C. D.7.如圖,已知點A(m,m+3),點B(n,n﹣3)是反比例函數(shù)y=(k>0)在第一象限的圖象上的兩點,連接AB.將直線AB向下平移3個單位得到直線l,在直線l上任取一點C,則△ABC的面積為()A. B.6 C. D.98.圓錐的母線長為4,底面半徑為2,則它的側面積為()A.4π B.6π C.8π D.16π9.如圖,在正方形網(wǎng)格上有兩個相似三角形△ABC和△DEF,則∠BAC的度數(shù)為()A.105° B.115° C.125° D.135°10.一個不透明的袋子裝有除顏色外其余均相同的2個白球和個黑球.隨機地從袋中摸出一個球記錄下顏色,再放回袋中搖勻.大量重復試驗后,發(fā)現(xiàn)摸出白球的頻率穩(wěn)定在1.2附近,則的值為()A.2 B.4 C.8 D.1111.如圖,已知直線a∥b∥c,直線m、n與a、b、c分別交于點A、C、E、B、D、F,若AC=8,CE=12,BD=6,則BF的值是()A.14 B.15 C.16 D.1712.在△ABC中,I是內(nèi)心,∠BIC=130°,則∠A的度數(shù)是()A.40° B.50° C.65° D.80°二、填空題(每題4分,共24分)13.如圖,三個頂點的坐標分別為,以原點O為位似中心,把這個三角形縮小為原來的,可以得到,已知點的坐標是,則點的坐標是______.14.一組數(shù)據(jù):2,5,3,1,6,則這組數(shù)據(jù)的中位數(shù)是________.15.如圖,△ABC和△A′B′C是兩個完全重合的直角三角板,∠B=30°,斜邊長為10cm.三角板A′B′C繞直角頂點C順時針旋轉,當點A′落在AB邊上時,CA′旋轉所構成的扇形的弧長為_______cm.16.方程2x2﹣6=0的解是_____.17.如圖,在平面直角坐標系中,直角三角形的直角頂點與原點O重合,頂點A,B恰好分別落在函數(shù),的圖象上,則tan∠ABO的值為___________18.若,且,則的值是__________.三、解答題(共78分)19.(8分)如圖,直線經(jīng)過⊙上的點,直線與⊙交于點和點,與⊙交于點,連接,.已知,,,.(1)求證:直線是⊙的切線;(2)求的長.20.(8分)如圖,已知,是的中點,過點作.求證:與相切.21.(8分)如圖,在平行四邊形ABCD中,連接對角線AC,延長AB至點E,使,連接DE,分別交BC,AC交于點F,G.(1)求證:;(2)若,,求FG的長.22.(10分)已知關于的方程①求證:方程有兩個不相等的實數(shù)根.②若方程的一個根是求另一個根及的值.23.(10分)在矩形中,,,是射線上的點,連接,將沿直線翻折得.(1)如圖①,點恰好在上,求證:∽;(2)如圖②,點在矩形內(nèi),連接,若,求的面積;(3)若以點、、為頂點的三角形是直角三角形,則的長為.24.(10分)小明家所在居民樓的對面有一座大廈AB,高為74米,為測量居民樓與大廈之間的距離,小明從自己家的窗戶C處測得大廈頂部A的仰角為37°,大廈底部B的俯角為48°.(1)求∠ACB的度數(shù);(2)求小明家所在居民樓與大廈之間的距離.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈,sin48°≈,cos48°≈,tan48°≈)25.(12分)已知反比例函數(shù)的圖象與一次函數(shù)的圖象相交于點(2,1).(1)分別求出這兩個函數(shù)的解析式;(2)試判斷點P(-1,5)關于x軸的對稱點P'是否在一次函數(shù)圖象上.26.如圖:已知?ABCD,過點A的直線交BC的延長線于E,交BD、CD于F、G.(1)若AB=3,BC=4,CE=2,求CG的長;(2)證明:AF2=FG×FE.

參考答案一、選擇題(每題4分,共48分)1、C【分析】將(0,0)代入y=(a﹣1)x2﹣x+a2﹣1即可得出a的值.【詳解】解:∵二次函數(shù)y=(a﹣1)x2﹣x+a2﹣1的圖象經(jīng)過原點,∴a2﹣1=0,∴a=±1,∵a﹣1≠0,∴a≠1,∴a的值為﹣1.故選:C.本題考查了二次函數(shù),二次函數(shù)圖像上的點滿足二次函數(shù)解析式,熟練掌握這一點是解題的關鍵,同時解題過程中要注意二次項系數(shù)不為0.2、D【詳解】因為y=x2-4x-4=(x-2)2-8,以拋物線y=x2-4x-4的頂點坐標為(2,-8),把點(2,-8)向左平移1個單位,再向上平移5個單位所得對應點的坐標為(-1,-1),所以平移后的拋物線的函數(shù)表達式為y=(x+1)2-1.故選D.3、D【分析】根據(jù)幾何體的正面看得到的圖形,可得答案.【詳解】A、主視圖是圓,俯視圖是圓,故A不符合題意;B、主視圖是矩形,俯視圖是矩形,故B不符合題意;C、主視圖是三角形,俯視圖是圓,故C不符合題意;D、主視圖是個矩形,俯視圖是圓,故D符合題意;故選D.本題考查了簡單幾何體的三視圖,熟記簡單幾何的三視圖是解題關鍵.4、A【解析】六塊矩形空地正好能拼成一個矩形,設道路的寬為xm,根據(jù)草坪的面積是570m1,即可列出方程:(31?1x)(10?x)=570,故選A.5、B【分析】根據(jù)題意直接利用圓錐的性質(zhì)求出圓錐的半徑,進而利用勾股定理得出圓錐的高.【詳解】解:設此圓錐的底面半徑為r,由題意得:,解得r=2cm,故這個圓錐的高為:.故選:B.本題主要考查圓錐的計算,熟練掌握圓錐的性質(zhì)并正確得出圓錐的半徑是解題關鍵.6、C【分析】根據(jù)點的坐標的性質(zhì)即可得.【詳解】由點的坐標的性質(zhì)得,點P到x軸的距離為點P的縱坐標的絕對值則點到軸的距離是故選:C.本題考查了點的坐標的性質(zhì),掌握理解點的坐標的性質(zhì)是解題關鍵.7、A【分析】由點A(m,m+3),點B(n,n﹣3)在反比例函數(shù)y=(k>0)第一象限的圖象上,可得到m、n之間的關系,過點A、B分別作x軸、y軸的平行線,構造直角三角形,可求出直角三角形的直角邊的長,由平移可得直角三角形的直角頂點在直線l上,進而將問題轉化為求△ADB的面積.【詳解】解:∵點A(m,m+3),點B(n,n﹣3)在反比例函數(shù)y=(k>0)第一象限的圖象上,∴k=m(m+3)=n(n﹣3),即:(m+n)(m﹣n+3)=0,∵m+n>0,∴m﹣n+3=0,即:m﹣n=﹣3,過點A、B分別作x軸、y軸的平行線相交于點D,∴BD=xB﹣xA=n﹣m=3,AD=y(tǒng)A﹣yB=m+3﹣(n﹣3)=m﹣n+6=3,又∵直線l是由直線AB向下平移3個單位得到的,∴平移后點A與點D重合,因此,點D在直線l上,∴S△ACB=S△ADB=AD?BD=,故選:A.本題主要考察反比例函數(shù)與一次函數(shù)的交點問題,解題關鍵是熟練掌握計算法則.8、C【分析】求出圓錐的底面圓周長,利用公式即可求出圓錐的側面積.【詳解】解:圓錐的地面圓周長為2π×2=4π,

則圓錐的側面積為×4π×4=8π.

故選:C.本題考查了圓錐的計算,能將圓錐側面展開是解題的關鍵,并熟悉相應的計算公式.9、D【分析】根據(jù)相似三角形的對應角相等即可得出.【詳解】∵△ABC∽△EDF,∴∠BAC=∠DEF,又∵∠DEF=90°+45°=135°,∴∠BAC=135°,故選:D.本題考查相似三角形的性質(zhì),解題的關鍵是找到對應角10、C【分析】根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目,二者的比值就是其發(fā)生的概率.【詳解】解:依題意有:=1.2,

解得:n=2.

故選:C.此題考查了利用概率的求法估計總體個數(shù),利用如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=是解題關鍵.11、B【分析】三條平行線截兩條直線,所得的對應線段成比例.直接根據(jù)平行線分線段成比例定理即可得出結論.【詳解】解:∵a∥b∥c,AC=8,CE=12,BD=6,

∴,即,解得:,故選:B.本題考查的是平行線分線段成比例定理,熟知三條平行線截兩條直線,所得的對應線段成比例是解答此題的關鍵.12、D【解析】試題分析:已知∠BIC=130°,則根據(jù)三角形內(nèi)角和定理可知∠IBC+∠ICB=50°,則得到∠ABC+∠ACB=100度,則本題易解.解:∵∠BIC=130°,∴∠IBC+∠ICB=50°,又∵I是內(nèi)心即I是三角形三個內(nèi)角平分線的交點,∴∠ABC+∠ACB=100°,∴∠A=80°.故選D.考點:三角形內(nèi)角和定理;角平分線的定義.二、填空題(每題4分,共24分)13、(1,2)【解析】解:∵點A的坐標為(2,4),以原點O為位似中心,把這個三角形縮小為原來的,∴點A′的坐標是(2×,4×),即(1,2).故答案為(1,2).14、3【解析】根據(jù)中位數(shù)的定義進行求解即可得出答案.【詳解】將數(shù)據(jù)從小到大排列:1,2,3,5,6,處于最中間的數(shù)是3,∴中位數(shù)為3,故答案為:3.【點睛】本題考查了中位數(shù)的定義,中位數(shù)是將一組數(shù)據(jù)從小到大或從大到小排列,處于最中間(中間兩數(shù)的平均數(shù))的數(shù)即為這組數(shù)據(jù)的中位數(shù).15、【分析】根據(jù)Rt△ABC中的30°角所對的直角邊是斜邊的一半、直角三角形斜邊上的中線等于斜邊的一半以及旋轉的性質(zhì)推知△AA′C是等邊三角形,所以根據(jù)等邊三角形的性質(zhì)利用弧長公式來求CA′旋轉所構成的扇形的弧長.【詳解】解:∵在Rt△ABC中,∠B=30°,AB=10cm,∴AC=AB=5cm.根據(jù)旋轉的性質(zhì)知,A′C=AC,∴A′C=AB=5cm.∴點A′是斜邊AB的中點,∴AA′=AB=5cm.∴AA′=A′C=AC,∴∠A′CA=60°.∴CA′旋轉所構成的扇形的弧長為:(cm).故答案為:.16、x1=,x2=﹣【解析】此題通過移項,然后利用直接開平方法解方程即可.【詳解】方程2x2﹣6=0,即x2=3,開方得:x=±,解得:x1=,x2=﹣,故答案為:x1=,x2=﹣此題主要考查了一元二次方程的解法—直接開平方法,比較簡單.17、【分析】根據(jù)反比例函數(shù)的幾何意義可得直角三角形的面積;根據(jù)題意可得兩個直角三角形相似,而相似比就是直角三角形?AOB的兩條直角邊的比,從而得出答案.【詳解】過點A、B分別作AD⊥x軸,BE⊥x軸,垂足為D、E,∵頂點A,B恰好分別落在函數(shù),的圖象上∴又∵∠AOB=90°∴∠AOD=∠OBE∴∴則tan∠ABO=故本題答案為:.本題考查了反比例函數(shù),相似三角形和三角函數(shù)的綜合題型,連接輔助線是解題的關鍵.18、-2【分析】根據(jù)比例的性質(zhì)得到3b=4a,結合a+b=14求得a、b的值,代入求值即可.【詳解】解:由a:b=3:4知3b=4a,所以b=,所以由a+b=14得到:,解得a=1.

所以b=8,所以a-b=1-8=-2.

故答案為:-2.考查了比例的性質(zhì),內(nèi)項之積等于外項之積.若,則ad=bc.三、解答題(共78分)19、(1)見解析;(2)【解析】(1)欲證明直線AB是O的切線,只要證明OC⊥AB即可.

(2)作ON⊥DF于N,延長DF交AB于M,在RT△CDM中,求出DM、CM即可解決問題.【詳解】(1)證明:連結OC,∵OA=OB,AC=CB∴,∵點C在⊙O上,∴AB是⊙O的切線,(2)作于N,延長DF交AB于M.∵,∴DN=NF=3,在中,∵,OD=5,DN=3,∴又∵,,∴∴FM//OC∵,∴,∴四邊形OCMN是矩形,∴CM=ON=4,MN=OC=5在中,∵,∴.本題考查了切線的判定,矩形的判定及性質(zhì),結合圖形作合適的輔助線,想法證明OC⊥AB時解題的關鍵.20、詳見解析.【分析】證法一:連接,,,,連接交于點,利用線段垂直平分線的性質(zhì)和垂徑定理的推論證明垂直平分,然后利用垂徑定理和平行線的性質(zhì)求得,從而使問題得證;證法二:連接,,連接交于點,利用垂徑定理的推論得到,,然后利用平行線的性質(zhì)求得,從而使問題得證;證法三:過點作于點,延長交于點,利用垂徑定理的推論得到是的中點,然后判斷點與點是同一個點,然后然后利用平行線的性質(zhì)求得,從而使問題得證.【詳解】證明:證法一:連接,,,,連接交于點.∵,∴點在的垂直平分線上.∵是的中點,∴,∴,∴點在的垂直平分線上,∴垂直平分,∴,∵,∴,∴,∵點為半徑的外端點,∴與相切.證法二:連接,,連接交于點.∵是的中點,∴,∴,∴,∴,∵,∴,∴,∵點為半徑的外端點,∴與相切.證法三:過點作于點,延長交于點,∴,,∴是的中點,∵點是的中點,∴點與點是同一個點.∵,∴,∴,∵點為半徑的外端點,∴與相切.本題考查切線的判定及垂徑定理的推論,掌握相關定理靈活應用解題是本題的解題關鍵.21、(1)證明見解析;(2)FG=2.【解析】(1)由平行四邊形的性質(zhì)可得,,進而得,根據(jù)相似三角形的性質(zhì)即可求得答案;(2)由平行四邊形的性質(zhì)可得,進而可得,根據(jù)相似三角形的性質(zhì)即可求得答案.【詳解】(1)四邊形ABCD是平行四邊形,,,,∴,∵BE=AB,AE=AB+BE,,,;(2)四邊形ABCD是平行四邊形,,,,即,解得,.本題考查了平行四邊形的性質(zhì),相似三角形的判定與性質(zhì),熟練掌握相似三角形的判定定理與性質(zhì)定理是解題的關鍵.22、①詳見解析;②,k=1【分析】①求出,即可證出結論;②設另一根為x1,根據(jù)根與系數(shù)的關系即可求出結論.【詳解】①解:=k2+8>0∴方程有兩個不相等實數(shù)根②設另一根為x1,由根與系數(shù)的關系:∴,k=1此題考查的是判斷一元二次方程根的情況和根與系數(shù)的關系,掌握與根的情況和根與系數(shù)的關系是解決此題的關鍵.23、(1)見解析;(2)的面積為;(3)、5、1、【分析】(1)先說明∠CEF=∠AFB和,即可證明∽;(2)過點作交與點,交于點,則;再結合矩形的性質(zhì),證得△FGE∽△AHF,得到AH=5GF;然后運用勾股定理求得GF的長,最后運用三角形的面積公式解答即可;(3)分點E在線段CD上和DC的延長線上兩種情況,然后分別再利用勾股定進行解答即可.【詳解】(1)解:∵矩形中,∴由折疊可得∵∴∴在和中∵,∴∽(2)解:過點作交與點,交于點,則∵矩形中,∴由折疊可得:,,∵∴∴在和中∵∴∽∴∴∴在中,∵∴∴∴的面積為(3)設DE=x,以點E、F、C為頂點的三角形是直角三角形,則:①當點E在線段CD上時,∠DAE<45°,∴∠AED>45°,由折疊性質(zhì)得:∠AEF=∠AED>45°,∴∠DEF=∠AED+∠AEF>90°,∴∠CEF<90°,∴只有∠EFC=90°或∠ECF=90°,a,當∠EFC=90°時,如圖所示:由折疊性質(zhì)可知,∠AFE=∠D=90°,∴∠AFE+∠EFC=90°,∴點A,F(xiàn),C在同一條線上,即:點F在矩形的對角線AC上,在Rt△ACD中,AD=5,CD=AB=3,根據(jù)勾股定理得,AC=,由折疊可知知,EF=DE=x,AF=AD=5,∴CF=AC-AF=-5,在Rt△ECF中,EF2+CF2=CE2,∴x2+(-5)2=(3-x)2,解得x=即:DE=b,當∠ECF=90°時,如圖所示:點F在BC上,由折疊知,EF=DE=x,AF=AD=5,在Rt△ABF中,根據(jù)勾股定理得,BF==4,∴CF=BC-BF=1,在Rt△ECF中,根據(jù)勾股定理得,CE2+CF2=EF2,(3-x)2+12=x2,解得x=,即:DE=;②當點E在DC延長線上時,CF在∠AFE內(nèi)部,而∠AFE=90°,∴∠CFE<90°,∴只有∠CEF=90°或∠ECF=90°,a、當∠CEF=90°時,如圖所示由折疊知,AD=AF=5,∠AFE=90°=∠D=∠CEF,∴四邊形AFED是正方形,∴DE=AF=5;b、當∠ECF=90°時,如圖所示:∵∠ABC=∠BCD=90°,∴點F在CB的延長線上,∴∠ABF=90°,由折疊知,EF=DE=x,AF=AD=5,在Rt△ABF中,根據(jù)勾股定理得,BF==4,∴CF=BC+BF=9,在Rt△ECF中,根據(jù)勾股定理得,CE2+CF2=EF2,∴(x-3)2+92=x2,解得x=1,即DE=1,故答案為、、5、1.本題屬于相似形綜合題,主要考查了相似三角形的判定和性質(zhì)、折疊的性質(zhì)、勾股定理等知識點,正確作出輔助線構造相似三角形和直角三角形是解答本題的關鍵.24、(1)85°;(2)小明家所在居民樓與大廈的距離CD的長度是40米.【分析】(1)結合圖形即可得出答案;(2)利用所給角的三角函數(shù)用CD表示出AD、BD;根據(jù)AB=AD+BD=74米,即可求得居民樓與大廈的距離.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論