版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
ResearchReport
TOBIASSYTSMA
QuantifyingAI’s
EconomicPotential
GrowthDifferentialsBetweenAssistiveandAutonomous
DevelopmentScenarios
RR-A4220-1
Formoreinformationonthispublication,visit
/t/RRA4220-1
.
AboutRAND
RANDisaresearchorganizationthatdevelopssolutionstopublicpolicychallengestohelpmakecommunitiesthroughouttheworldsaferandmoresecure,healthierandmoreprosperous.RANDisnonprofit,nonpartisan,andcommittedtothepublicinterest.TolearnmoreaboutRAND,visit
.
ResearchIntegrity
Ourmissiontohelpimprovepolicyanddecisionmakingthroughresearchandanalysisisenabledthroughourcorevaluesofqualityandobjectivityandourunwaveringcommitmenttothehighestlevelofintegrityandethicalbehavior.Tohelpensureourresearchandanalysisarerigorous,objective,andnonpartisan,wesubjectourresearchpublicationstoarobustandexactingquality-assuranceprocess;avoidboththeappearanceandrealityoffinancialandotherconflictsofinterestthroughstafftraining,projectscreening,andapolicyofmandatorydisclosure;andpursuetransparencyinourresearchengagementsthroughourcommitmenttotheopenpublicationofourresearchfindingsandrecommendations,disclosureofthesourceoffundingofpublishedresearch,andpoliciestoensureintellectualindependence.Formoreinformation,visit
/about/research-integrity
.
RAND’spublicationsdonotnecessarilyreflecttheopinionsofitsresearchclientsandsponsors.
PublishedbytheRANDCorporation,SantaMonica,Calif.
?2025RANDCorporation
RANDeisaregisteredtrademark.
LimitedPrintandElectronicDistributionRights
Thispublicationandtrademark(s)containedhereinareprotectedbylaw.ThisrepresentationofRANDintellectualpropertyisprovidedfornoncommercialuseonly.Unauthorizedpostingofthispublicationonlineisprohibited;linkingdirectlytoitswebpageonisencouraged.PermissionisrequiredfromRANDtoreproduce,orreuseinanotherform,anyofitsresearchproductsforcommercialpurposes.Forinformationonreprintandreusepermissions,visit
/about/publishing/permissions
.
iii
AboutThisReport
Theanalysisinthisreportmodelstheeconomicimplicationsoftwocontrastingboundary
scenariosforartificialintelligence(AI)development:restrictingAItopurelyassistivetoolsthat
augmenthumanproductivityversusenablingagentsthatcanautonomouslyperformtasksatleastaswellashumansandreplicatethemselves+TheAgentWorldscenariorepresentsthepotential
emergenceofartificialgeneralintelligence(AGI)capabilities,whereastheToolWorldscenario
representsAIprogressasavarietyofnarrow,specializedsystemsthatenhancehumanproductivitybutdonotachievegeneralintelligence.Thesestylizedscenariosarenotmeanttobeinterpretedaspredictions;rather,theyaremeanttoestablishavarietyofpotentialeconomicoutcomesfor
policymakers,economicadvisors,andresearchersworkingattheintersectionoftechnologypolicyandeconomicstrategy+UsingacalibratedendogenousgrowthmodelandMonteCarlosimulationsfrom2025to2045,theanalysissuggeststhatembracingAIagentscouldresultintheeconomy
growing3+8percentagepointsfasterannually,onaverage,thanlimitingAItotoolswould+ThisdifferencecompoundstomakeAgentWorldeconomiesnearlyfourtimeslargerby2045+
AlthoughtheAgentWorldscenarioassumessuccessfulresolutionofAIsafetyandalignmentchallenges,theresultshighlightthesubstantialeconomicincentivesdrivingtowardautonomousAIdevelopmentandillustratetheeconomictrade-offsthatareinherenttodifferentAI
developmentstrategies+
TechnologyandSecurityPolicyCenter
RANDGlobalandEmergingRisksisadivisionofRANDthatdeliversrigorousandobjectivepublicpolicyresearchonthemostconsequentialchallengestocivilizationandglobalsecurity+Thisworkwasundertakenbythedivision’sTechnologyandSecurityPolicyCenter,whichexplores
howhigh-consequence,dual-usetechnologieschangetheglobalcompetitionandthreat
environment,thendevelopspolicyandtechnologyoptionstoadvancethesecurityoftheUnitedStates,itsalliesandpartners,andtheworld+Formoreinformation,contact
tasp@rand+org
+
Funding
TheGeopoliticsofAGIInitiativeisindependentlyinitiatedandconductedwithinthe
TechnologyandSecurityPolicyCenter+FundingforthisresearchwasprovidedbyincomefromoperationsandgiftsfromRANDsupporters,includingphilanthropicgiftsmadeorrecommendedbyDALHAPInvestmentsLtd+,ErgoImpact,FoundersPledge,CharlottesochFredriksStiftelse,GoodVentures,JaanTallinn,Longview,andOpenPhilanthropy+Formoreinformation,contact
tasp@rand+org
+RANDdonorsandgrantorshavenoinfluenceoverresearchfindingsor
recommendations+
iv
Acknowledgments
IwouldliketothankJoelPredd,JimMitre,LisaAbraham,JessieWang,DanielMarkus,JeffAlstott,andthebroaderRANDGeopoliticsofAGIInitiativeforcommentsonanearlierversionofthisreport+IwouldalsoliketothankVegardNygaardandJimBakerfortheirrefereereports+
v
Summary
Theanalysisinthisreportmodelstheeconomicimplicationsoftwocontrastingboundary
scenariosforartificialintelligence(AI)development:restrictingAItopurelyassistivetoolsthat
augmenthumanproductivityversusenablingagentsthatcanautonomouslyperformtasksatleastaswellashumansandreplicatethemselves+TheAgentWorldscenariorepresentsthepotential
emergenceofartificialgeneralintelligence(AGI)capabilities,whereastheToolWorldscenario
representsAIprogressashavingavarietyofnarrow,specializedsystemsthatenhancehuman
productivitybutdonotachievegeneralintelligence+Thesestylizedscenariosarenotmeanttobeinterpretedaspredictions;rather,theyaremeanttoestablishavarietyofpotentialeconomic
outcomesforpolicymakers,economicadvisors,andresearchersworkingattheintersectionof
technologypolicyandeconomicstrategy+Usinganendogenousgrowthmodelcalibratedwith
MonteCarlosimulationsfrom2025to2045,theanalysissuggeststhatembracingAIagentscouldresultintheeconomygrowing3+8percentagepointsfasterannually,onaverage,thanlimitingAItotoolswould+ThisdifferencecompoundstomaketheAgentWorldeconomythreetimeslargerby2045+AlthoughtheAgentWorldscenarioassumessuccessfulresolutionofAIsafetyand
alignmentchallenges,theresultshighlightthesubstantialeconomicincentivesdrivingtoward
autonomousAIdevelopmentandillustratetheeconomictrade-offsthatareinherenttodifferentAIdevelopmentstrategies+
KeyFindings
ThisanalysiscontraststwostylizedboundaryscenariosthatspanexistingAIcapabilitiestopotentialAGIandartificialsuperintelligence:aToolWorldinwhichAIremainsstrictlyassistiveunderhumansandanAgentWorldinwhichAIisfullyautonomousandcancompletelyreplacehumanworkers+AgentWorldassumessafe,aligned,andsuccessfullydeployedadvancedAI
systems,whichareunproven+Theresults,asfollows,establishanupperboundonpotentialeconomicupsideswithoutimplyingthatsuchsolutionsareguaranteed:
?BuildingonestablishedeconomicgrowththeoryandusingMonteCarlosimulation
methods,theresultsindicatethatAgentWorldexceedsToolWorldbyanaverageof3+8percentagepointsinannualgrossdomesticproduct(GDP)growth,withamedian
differenceof2+6percentagepoints+
?By2045,themodelsuggeststhatAgentWorld’sGDPisapproximately3+6timeslargerthanToolWorld’sGDP,assumingsuccessfulAIdeploymentwithoutmajortransitioncostsorpolicyconstraints+SomesimulationssuggestthatAgentWorldGDPisseveralordersofmagnitudelarger+
?RegressiontreeanalysisofmodelsimulationsidentifiestheconversionratefromcomputetoAIagentsandthecompute-specificinvestmentrateasthemostimportantpredictivefactorsforgrowthdifferentials+
?Usingthemodel,AgentWorldeconomieswith90percentormoreAI-agentshareoftheresearchanddevelopment(R&D)workforceachieve25ormorepercentagepointgrowth
vi
advantagesoverToolWorldby2045,whilepartialintegrationcreatessmaller
improvements,suggestingthatcompletetransformationunlocksqualitativelydifferentgrowthregimes+
?Onaverage,theeconomicopportunitycostofforgoingAgentWorlddevelopment
through2045wouldrequirenonmodeledbenefits(suchassafety,stability,or
distributionaladvantages)thatareequivalentto1+2–2+8timestheexistingannualGDP,dependingonriskpreference+
vii
Contents
AboutThisReport++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++iiiSummary+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++vFiguresandTables+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++viiiPutaNumberonIt:ValuingAIAgencyintheTrade-OffBetweenAIBenefitsandRisk+++++++++++++++++++++++++++++1 Model++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++4 EmpiricalCalibrationandSimulationMethods+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++14 Results+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++15 Limitations+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++25 Conclusion++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++28Appendix+ParameterCalibrationandJustification+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++30Abbreviations++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++35References+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++36
viii
FiguresandTables
Figures
Figure1+ModelSchematic++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++6Figure2+TrajectoriesofAgentWorldGDPRelativetoToolWorldGDP+++++++++++++++++++++++++++++++++++++++++++++++++++15Figure3+DistributionofGrowthDifferentialsBetweenAgentandToolWorlds+++++++++++++++++++++++++++++++++++++++++16Figure4+GrowthRateDifferentialsandNumberofAIAgents+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++18Figure5+FactorImportanceinExplainingGrowthDifferentials++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++19Figure6+GrowthDynamicsandAIAgentWorkforce+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++20Figure7+AgentWorldTFPGrowth++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++21
Tables
Table1+KeyModelParameters,Interpretation,andCalibration+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++13Table2+GrowthResultsbyScenario++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++16Table3+RequiredBoostforToolWorldRelativetoAgentWorldThrough2045+++++++++++++++++++++++++++++++++++++++23Table4+PresentValueofPullingtheTakeoffYearForward++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++24
1
QuantifyingAI’sEconomicPotential:GrowthDifferentialsBetween
AssistiveandAutonomousDevelopmentScenarios
Recentbreakthroughsinartificialintelligence(AI)havesparkedadebateoverhowAIshouldbeintegratedintoeconomiesandsociety+SomeexpertsadvocateforAIasapowerfulbutstrictlyassistivetoolthatshouldremainundertighthumansupervision+Othersforesee(orwarnof)AIasanautonomousagentthatiscapableofmakingdecisionsandperformingtaskswithoutdirect
humanoversight+Thisdividedefinesthefollowingpolicychallenge:ShouldweaccelerateagenticAItocaptureitsunprecedentedupsidesorlimitAItobeingonlyatooltoguardagainst
potentiallycatastrophicorevenexistentialrisks?
ThedegreeofautonomythatispermittedinAIsystemsrepresentsapolicydimensionwithsignificantimplicationsforeconomicgrowth,labormarkets,globalcompetitivedynamics,and
humanity’slong-termsafety+Asofthiswriting,thisdebatehaslimitedempiricalgrounding,whileseeminglyunboundedpotentialforscientificadvancementandgrowthisweighedagainst
potentiallycatastrophiccosts+ThisreportcontributestothisdiscoursebymodelingthepotentialeconomicimplicationsofdifferentlevelsofconstraintonAI+Init,Iestablishquantitative
referencepointsthatmayhelppolicymakersunderstandthemagnitudeoftheeconomictrade-offsthatareinvolvedinvariousapproachestoAIgovernance,alongsidesafetyconcerns,transition
costs,anddistributionaleffectsthatarenotcapturedinthisanalysis+
Economistshavelongrecognizedthattechnologyisaprimarydriverofeconomicgrowth+Inclassicalgrowththeory,advancesintotalfactorproductivity(TFP)(whichisofteninterpretedastechnology)arenecessarytosustainlong-termgrowthbecausecapitalaccumulationfaces
diminishingreturns(Solow,1956)+EndogenousgrowthmodelsfurtherformalizehowintentionalresearchandinnovationinvestmentscanproducenewideasthatdriveTFPupward(Romer,
1990)+Akeyinsightfromthisliteratureisthataneffectivesupplyofresearchers(ormore
generally,problem-solvers)iscriticalforinnovation+Ifmoremindsaredevotedtoresearchanddevelopment(R&D),moreideascanbedeveloped,althoughwithdiminishingreturnsasexistingknowledgegrows(Bloometal+,2020;Jones,1995)+1However,intheexistinghuman-centric
paradigm,thestockofresearchersisultimatelyconstrainedbypopulation,demographics,andtrainingpipelines+Thisobservationhasledtoconcernsthatideaproductionisslowingdown+
1AdvancedAIsystemsmightpotentiallyalterthisdynamicbyexcellingatknowledgesynthesisacrossincreasingly
fragmentedandspecializedresearchfrontiers,whichwouldchangethequantityofresearchinputsandtheefficiencyoftheresearchprocessitself+However,evensuperintelligentAIresearchersmightencounterdiminishingreturns,whethertothefundamentalcomplexityofremainingunsolvedproblems,thetimerequiredforreal-worldexperimentationandvalidation,orevencoordinationcostsasresearchteams’scaleup+Theanalysistreatssuchstructuralresearchrelationshipsasfixed
parametersthatarecalibratedtohistoricalexperience,but,asdiscussedinthelimitationssection,transformativeAImightendogenouslyaltertheserelationshipsinwaysthatcouldamplifythegrowtheffectsestimatedhere+
2
Evidencesuggeststhat,despiterisingR&Deffort(orspending),researchproductivityper
researcherisdeclininginmanyfields(Bloometal+,2020)+2Inotherwords,ideasaregettinghardertoadvance,andtheexponentialgrowthofknowledgemaybedeceleratingunderhuman-only
research+
AIhasthepotentialtoalterthisequation+IfAIsystemscantakeonresearchtasksorevenimproveAIitself,thenumberofeffective“researchers”couldincreasefarbeyondthehumanworkforce+Historically,eachmajortechnologicalera(e+g+,steam,electricity,computing)
acceleratedgrowthforatimebuteventuallyfaceddiminishingreturnsinpartbecausehumansremainedthecentralactorsininnovation+AdvancedAIthatcaneithersignificantlyaugmenthumanresearchers(intheToolparadigm)orreplicateandreplacehumanresearchers(intheAgentparadigm)mightbreakthroughsomeoftheselimits+
Recentresearchhasbegunexploringthesepossibilities+Aghion,Jones,andJones(2019)
considersAIasaformofautomationinR&Dandaskwhetheritcouldleadtoever-acceleratinggrowthorevena“singularity”scenario+Theauthors’analysissuggeststhatAI-drivengrowthcouldsharplyincreaseinnovation+However,variousbottlenecks(includingtheneedforhumaninputinsomestagesofinnovation)mightstillcapgrowthrates(Aghion,Jones,andJones,2019)+
Similarly,Nordhaus(2021)examineswhetherrapidprogressinAIandcomputingcouldleadtoaneconomicsingularity(essentiallyunboundedgrowth)andconcludesthatsucharegimeshiftisnotimminentunderbase-caseassumptions,althoughitremainsalonger-termpossibility+Morerecently,Jones(2024)framesthesituationasthe“AIdilemma”:Ononehand,removingthe
humanconstraintsoninnovationviaAIcouldusherinaperiodofunprecedentedeconomic
growth;ontheotherhand,suchadevelopmentraisesconcernsofexistentialriskifAIsystemsbecometoopowerfulormisaligned+JonesarguesthatifhumanlaborisabottleneckforAI
progress,growthwillremainsomewhatconstrainedandmanageable;ifAIgainstheabilityto
effectivelyself-replicate(intermsofresearchefforts),thenexplosivegrowthandlossofhumancontrolbecomereal+Similarly,AcemogluandLensman(2024)examinesoptimaladoptionpathsfortransformativetechnologiesthatofferproductivitygainsbutposepotentialdisasterrisks,
findingthatgradualadoptioncanbeoptimaltoenablelearningaboutrisksovertime+
ThisreportcontributestothisdiscoursebyprovidingaquantitativemodelingexercisefocusedontheeconomicgrowthimplicationsofAItoolsversusAIagents+Iconstructanendogenous
growthmodelinthespiritofRomer(1990),Jones(1995),andBloometal+(2020),withthefollowingtwomodifications:
1+AIcancontributetotheproductionofgoodsandserviceseitherindirectlyasatoolraisinghumanproductivityordirectlyasrobotlaborreplacinghumans(AIinproduction)+
2+AIcancontributetoideagenerationeitherasaresearch-augmentingtoolorasanautonomousresearcherthataddstothetotalR&Dworkforce(AIininnovation)+
Idefinetwostylizedscenariosforthefuture:oneinwhichAIisneverallowed(orneverable)tofullyreplacehumanworkersorresearchers(ToolWorld)andoneinwhichAIisfreeto
substituteforhumanlaborandcanbereplicatedasneeded(AgentWorld)+ToolWorld
representsthecontinuationofexistingAIdevelopmenttrajectories,havingpowerfulbutnarrowsystemsthataugmenthumancapabilitiesthatstillrequiresomedegreeofhumanoversightand
2SomeresearchsuggeststhatthedecliningresearchproductivitydocumentedinBloometal+(2020)isoverstatedandthatapproximatelyhalfofthestateddeclinecanbeexplainedbyselectioneffects+Forinstance,EkerdtandWu(2025)findthattheabilityoftheaverageresearcherhasdeclinedbyroughly48percentastheR&Dworkforcehasexpandedovertime+
3
control+AgentWorldrepresentsapotentiallyfundamentalshifttowardartificialgeneral
intelligence(AGI),orevenartificialsuperintelligence,inwhichAIsystemsachievehuman-levelorsuperhumancognitivecapabilitiesacrossalldomainsandcanoperatefullyautonomously+
Althoughamixofthesescenariosmayunfold,examiningextremesisusefultoboundthepotentialoutcomes+Importantly,myaimisnottoadvocateonepathortheotherbuttoilluminatethe
economicstakesinvolved+
ThisreportcontributesempiricalanalysistotheToolAIversusAgentA(G)Idebate,whichoftenproceedsonnormativegroundsalone+MaxTegmarkhasemphasizedthevalueof
controllableToolAIsystemsthatcandelivertransformativeadvancesinhealthcare,climate,anddevelopmentwhileavoidingtheexistentialrisksofunboundedAGI+3Conversely,Gwern(the
independentresearcherknownforinfluentialwritingonAIdevelopmentandcapabilities)arguesthatAgentAIsystemsinherentlyoutperformToolAIacrossvarioustasks,yieldingsuperior
economicefficiency(Gwern,2019)+Imodeltwoextremefutures(AgentWorldversusTool
World)andquantifytheireconomicgrowthdifferentialundertheassumptionthattechnical
safetyandalignmentchallengescanbesuccessfullyresolvedintheAgentWorldscenario+Ratherthanadjudicatingwhichparadigmispreferablefromawelfareorpolicyperspective,Iaimto
establishthescaleofpotentialeconomicgainsfromautonomousAIsystems,providingoneinputforpolicymakersweighingthesebenefitsagainstsafetyrisks,transitioncosts,anddistributionalconcerns+
Giventhemodelsetup,undermostparameterranges,AgentWorldgrowsatasignificantly
fasterpacethanToolWorld,whichisunsurprisingbecausethemodelexplicitlydefinesTool
Worldasbottleneckedbythehumanpopulationgrowthrate,aconstraintthatisresolvedin
AgentWorld+However,thisgrowthdifferenceisnotahardandfastlaw+Inapproximately2
percentofsimulations,ToolWorldoutgrowsAgentWorldoverthe20-yearhorizon+ThesecasesemergeonlywhenAgentWorldispopulatedbyrelativelyinefficientagentsandcompute-starved+However,inthevastmajorityofcases,AgentWorldoffersasignificantgrowthboostrelativetoToolWorld+Theaveragegrowthdifferentialbetweenthetwoworldsisnearly4percentagepointsperyear,andthemediandifferentialisslightlylower+By2045,AgentWorld’sgrossdomestic
product(GDP)isapproximatelythreetimeslargerthanToolWorld’sonaverage+
TheprojectedgrowthratesalignwiththebroaderliteratureonAGI’spotentialeconomic
impact+AgentWorld’saverageannualgrowthof4–6percentmatchesscenariosdiscussedby
leadingresearchers+Forexample,JackClarkofAnthropichassuggestedthatAGIcouldplausiblydriveapproximately5percentofannualGDPgrowth(Cowen,2025)+Therighttailofthe
distributionofmodelsimulationsreflectsscenariosofeconomicsingularitiesand
superintelligence-drivenacceleration(Davidson,2021;ErdilandBesiro?lu,2024;Korinekand
Suh,2024)+Attheconservativeend,theaverageToolWorldscenarioprojectsanadditional0+2percentagepointsofgrowthabovebaseline,whichisclosetoAcemoglu’s(2024)estimateof0+10–0+16percentagepointsoveradecade+Inthisreport,theMonteCarlosimulationsspanthe
spectrumfromconservativeestimatestotransformativeAGIscenarios,providingacomprehensiveassessmentofplausibleeconomicfutures+
IalsoevaluatewhichfactorscontributethemosttothegrowthratedifferencesbetweenToolWorldandAgentWorld,findingthatfactorsrelatingtotherateatwhichsocietyinvestsinAI-specificcapital(e+g+,compute,datacenters)andtheconversionbetweencomputeandfull-time
3MaxTegmarkhaswrittenandspokenextensivelyonthistopic,includingonsocialmedia(Tegmark,2025),ininterviews(Tegmark,2024),andinwriting(TegmarkandOmohundro,2023)+
4
equivalent(FTE)AIagentsarethemostimportantpredictivefactors+ThisfindingsuggeststhateveninaworldinwhichAIagentscanfullyreplacehumanworkersandrapidlymultiply,therearestilltangibleconstraintsongrowth+4
Ialsoassessmechanisms+Specifically,themodelsuggeststhatthebenefitsofAI-research
integrationexhibitsharpthresholdeffects,witheconomiesthatachieveover90percentoftheAI-agentresearchershareexperiencinggrowthrateadvantagesexceeding15percentannuallyby
2045,whilepartialintegration(10–50percent)deliversmarginalimprovements+Thisnonlinearityreflectsthe“burdenofknowledge”mechanismbywhichonlyAgentWorldsthatreachsufficientagenticscalecanovercomethisconstraintandachievetransformativeaccelerationafter2040+
Theseresultsareconditionalonmodelingassumptions;however,theysuggestthatpartialAIagentintegrationstrategiesmaycaptureonlyafractionofthepotentialbenefits,whilecompletetransformationcancreatequalitativelydifferentgrowthregimes+
Beyondquantifyinggrowthdifferentials,theanalysisprovidestentativeeconomicbenchmarksforweighingsafetyagainstdevelopmentspeedoverthenexttwodecades+DespitemodelingAgentWorldwithmaximumeconomicbenefitswhileassumingawayimplementationchallenges,the
analysisfindsthatsafetybenefitsworthapproximatelyonetothreetimesexistingGDP
(dependingonriskaversion)wouldjustifychoosingmore-restrictiveAIdevelopmentpolicies
through2045+Althoughthisresultishighlycontingentonmodelingassumptions,itissimilartothoseinJones(2024),whichfindsthatevenexplosiveeconomicgrowthscenariosmaynotjustifyextremerisksundercertainriskpreferences+TheanalysisalsosuggeststhatadvancingAgent
Worlddevelopmentbyoneyearcouldbeworthapproximately60percentofGDP(withsubstantialuncertainty),revealingstrongeconomicincentivesforrapiddeployment+
Inwhatfollows,Ifirstoutlinethemodel’sstructureandassumptions,includinghowI
incorporateAIintothegrowthmodel+Ithendescribethecalibrationofparametersandempiricalfoundationsofthesimulation+Next,IpresentsimulationresultsthatcompareGDPgrowthinthetwoscenarios+Idiscussthepolicyandeconomicinsightsfromthesefindingsandaddressthe
model’slimitationsandsimplifyingassumptions+IconcludebyreflectingonwhattheanalysisimpliesforeconomicpolicyinaneraofrapidAIprogress+
Model
Idevelopatwo-sectorendogenousgrowthmodelthatextendstheclassicsemi-endogenous
growthframework(Jones,1995;Romer,1990)byexplicitlyincludingAIasafactorofproductionandinnovation+ThemodeldistinguishesbetweenhumanandAIcontributionsinboththe
productionofoutput(goodsandservices)andintheproductionofnewideas(R&D)+Inessence,themodelisastandardgrowthmodelthatisaugmentedwithanAIworkforceandanAI-drivenresearchprocess+
Theanalysismodelstwostylizedextremesboundbypotentialeconomicoutcomesratherthanforecastingrealisticscenarios+TheAgentWorldscenarioassumesthattechnicalsafety,alignment,andcontrolchallengesaresuccessfullyresolved,allowingA
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 社區(qū)創(chuàng)衛(wèi)培訓課件
- 兒童法律知識科普
- 社保工作培訓課件
- 可再生能源的發(fā)展與未來展望
- 教學評估與督導制度
- 2026馬年寒假散學典禮校長精彩講話引用3個效應:竹子效應手表效應踢貓效應
- 幼兒園小朋友禮儀制度
- 建筑煙筒拆除方案范本
- 市政道路施工安全管理條例制度
- 555叮咚門鈴課程設計
- THHPA 001-2024 盆底康復管理質(zhì)量評價指標體系
- JGT138-2010 建筑玻璃點支承裝置
- 垃圾清運服務投標方案(技術方案)
- 顱鼻眶溝通惡性腫瘤的治療及護理
- 光速測量實驗講義
- 斷橋鋁合金門窗施工組織設計
- 新蘇教版六年級科學上冊第一單元《物質(zhì)的變化》全部教案
- 四川山體滑坡地質(zhì)勘察報告
- 青島啤酒微觀運營
- 工程結算書(設備及安裝類)
- GB/T 19142-2016出口商品包裝通則
評論
0/150
提交評論