2025年量化人工智能的經(jīng)濟潛力-輔助和自主發(fā)展情景之間的增長差異報告(英文版)-Rand蘭德_第1頁
2025年量化人工智能的經(jīng)濟潛力-輔助和自主發(fā)展情景之間的增長差異報告(英文版)-Rand蘭德_第2頁
2025年量化人工智能的經(jīng)濟潛力-輔助和自主發(fā)展情景之間的增長差異報告(英文版)-Rand蘭德_第3頁
2025年量化人工智能的經(jīng)濟潛力-輔助和自主發(fā)展情景之間的增長差異報告(英文版)-Rand蘭德_第4頁
2025年量化人工智能的經(jīng)濟潛力-輔助和自主發(fā)展情景之間的增長差異報告(英文版)-Rand蘭德_第5頁
已閱讀5頁,還剩81頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

ResearchReport

TOBIASSYTSMA

QuantifyingAI’s

EconomicPotential

GrowthDifferentialsBetweenAssistiveandAutonomous

DevelopmentScenarios

RR-A4220-1

Formoreinformationonthispublication,visit

/t/RRA4220-1

.

AboutRAND

RANDisaresearchorganizationthatdevelopssolutionstopublicpolicychallengestohelpmakecommunitiesthroughouttheworldsaferandmoresecure,healthierandmoreprosperous.RANDisnonprofit,nonpartisan,andcommittedtothepublicinterest.TolearnmoreaboutRAND,visit

.

ResearchIntegrity

Ourmissiontohelpimprovepolicyanddecisionmakingthroughresearchandanalysisisenabledthroughourcorevaluesofqualityandobjectivityandourunwaveringcommitmenttothehighestlevelofintegrityandethicalbehavior.Tohelpensureourresearchandanalysisarerigorous,objective,andnonpartisan,wesubjectourresearchpublicationstoarobustandexactingquality-assuranceprocess;avoidboththeappearanceandrealityoffinancialandotherconflictsofinterestthroughstafftraining,projectscreening,andapolicyofmandatorydisclosure;andpursuetransparencyinourresearchengagementsthroughourcommitmenttotheopenpublicationofourresearchfindingsandrecommendations,disclosureofthesourceoffundingofpublishedresearch,andpoliciestoensureintellectualindependence.Formoreinformation,visit

/about/research-integrity

.

RAND’spublicationsdonotnecessarilyreflecttheopinionsofitsresearchclientsandsponsors.

PublishedbytheRANDCorporation,SantaMonica,Calif.

?2025RANDCorporation

RANDeisaregisteredtrademark.

LimitedPrintandElectronicDistributionRights

Thispublicationandtrademark(s)containedhereinareprotectedbylaw.ThisrepresentationofRANDintellectualpropertyisprovidedfornoncommercialuseonly.Unauthorizedpostingofthispublicationonlineisprohibited;linkingdirectlytoitswebpageonisencouraged.PermissionisrequiredfromRANDtoreproduce,orreuseinanotherform,anyofitsresearchproductsforcommercialpurposes.Forinformationonreprintandreusepermissions,visit

/about/publishing/permissions

.

iii

AboutThisReport

Theanalysisinthisreportmodelstheeconomicimplicationsoftwocontrastingboundary

scenariosforartificialintelligence(AI)development:restrictingAItopurelyassistivetoolsthat

augmenthumanproductivityversusenablingagentsthatcanautonomouslyperformtasksatleastaswellashumansandreplicatethemselves+TheAgentWorldscenariorepresentsthepotential

emergenceofartificialgeneralintelligence(AGI)capabilities,whereastheToolWorldscenario

representsAIprogressasavarietyofnarrow,specializedsystemsthatenhancehumanproductivitybutdonotachievegeneralintelligence.Thesestylizedscenariosarenotmeanttobeinterpretedaspredictions;rather,theyaremeanttoestablishavarietyofpotentialeconomicoutcomesfor

policymakers,economicadvisors,andresearchersworkingattheintersectionoftechnologypolicyandeconomicstrategy+UsingacalibratedendogenousgrowthmodelandMonteCarlosimulationsfrom2025to2045,theanalysissuggeststhatembracingAIagentscouldresultintheeconomy

growing3+8percentagepointsfasterannually,onaverage,thanlimitingAItotoolswould+ThisdifferencecompoundstomakeAgentWorldeconomiesnearlyfourtimeslargerby2045+

AlthoughtheAgentWorldscenarioassumessuccessfulresolutionofAIsafetyandalignmentchallenges,theresultshighlightthesubstantialeconomicincentivesdrivingtowardautonomousAIdevelopmentandillustratetheeconomictrade-offsthatareinherenttodifferentAI

developmentstrategies+

TechnologyandSecurityPolicyCenter

RANDGlobalandEmergingRisksisadivisionofRANDthatdeliversrigorousandobjectivepublicpolicyresearchonthemostconsequentialchallengestocivilizationandglobalsecurity+Thisworkwasundertakenbythedivision’sTechnologyandSecurityPolicyCenter,whichexplores

howhigh-consequence,dual-usetechnologieschangetheglobalcompetitionandthreat

environment,thendevelopspolicyandtechnologyoptionstoadvancethesecurityoftheUnitedStates,itsalliesandpartners,andtheworld+Formoreinformation,contact

tasp@rand+org

+

Funding

TheGeopoliticsofAGIInitiativeisindependentlyinitiatedandconductedwithinthe

TechnologyandSecurityPolicyCenter+FundingforthisresearchwasprovidedbyincomefromoperationsandgiftsfromRANDsupporters,includingphilanthropicgiftsmadeorrecommendedbyDALHAPInvestmentsLtd+,ErgoImpact,FoundersPledge,CharlottesochFredriksStiftelse,GoodVentures,JaanTallinn,Longview,andOpenPhilanthropy+Formoreinformation,contact

tasp@rand+org

+RANDdonorsandgrantorshavenoinfluenceoverresearchfindingsor

recommendations+

iv

Acknowledgments

IwouldliketothankJoelPredd,JimMitre,LisaAbraham,JessieWang,DanielMarkus,JeffAlstott,andthebroaderRANDGeopoliticsofAGIInitiativeforcommentsonanearlierversionofthisreport+IwouldalsoliketothankVegardNygaardandJimBakerfortheirrefereereports+

v

Summary

Theanalysisinthisreportmodelstheeconomicimplicationsoftwocontrastingboundary

scenariosforartificialintelligence(AI)development:restrictingAItopurelyassistivetoolsthat

augmenthumanproductivityversusenablingagentsthatcanautonomouslyperformtasksatleastaswellashumansandreplicatethemselves+TheAgentWorldscenariorepresentsthepotential

emergenceofartificialgeneralintelligence(AGI)capabilities,whereastheToolWorldscenario

representsAIprogressashavingavarietyofnarrow,specializedsystemsthatenhancehuman

productivitybutdonotachievegeneralintelligence+Thesestylizedscenariosarenotmeanttobeinterpretedaspredictions;rather,theyaremeanttoestablishavarietyofpotentialeconomic

outcomesforpolicymakers,economicadvisors,andresearchersworkingattheintersectionof

technologypolicyandeconomicstrategy+Usinganendogenousgrowthmodelcalibratedwith

MonteCarlosimulationsfrom2025to2045,theanalysissuggeststhatembracingAIagentscouldresultintheeconomygrowing3+8percentagepointsfasterannually,onaverage,thanlimitingAItotoolswould+ThisdifferencecompoundstomaketheAgentWorldeconomythreetimeslargerby2045+AlthoughtheAgentWorldscenarioassumessuccessfulresolutionofAIsafetyand

alignmentchallenges,theresultshighlightthesubstantialeconomicincentivesdrivingtoward

autonomousAIdevelopmentandillustratetheeconomictrade-offsthatareinherenttodifferentAIdevelopmentstrategies+

KeyFindings

ThisanalysiscontraststwostylizedboundaryscenariosthatspanexistingAIcapabilitiestopotentialAGIandartificialsuperintelligence:aToolWorldinwhichAIremainsstrictlyassistiveunderhumansandanAgentWorldinwhichAIisfullyautonomousandcancompletelyreplacehumanworkers+AgentWorldassumessafe,aligned,andsuccessfullydeployedadvancedAI

systems,whichareunproven+Theresults,asfollows,establishanupperboundonpotentialeconomicupsideswithoutimplyingthatsuchsolutionsareguaranteed:

?BuildingonestablishedeconomicgrowththeoryandusingMonteCarlosimulation

methods,theresultsindicatethatAgentWorldexceedsToolWorldbyanaverageof3+8percentagepointsinannualgrossdomesticproduct(GDP)growth,withamedian

differenceof2+6percentagepoints+

?By2045,themodelsuggeststhatAgentWorld’sGDPisapproximately3+6timeslargerthanToolWorld’sGDP,assumingsuccessfulAIdeploymentwithoutmajortransitioncostsorpolicyconstraints+SomesimulationssuggestthatAgentWorldGDPisseveralordersofmagnitudelarger+

?RegressiontreeanalysisofmodelsimulationsidentifiestheconversionratefromcomputetoAIagentsandthecompute-specificinvestmentrateasthemostimportantpredictivefactorsforgrowthdifferentials+

?Usingthemodel,AgentWorldeconomieswith90percentormoreAI-agentshareoftheresearchanddevelopment(R&D)workforceachieve25ormorepercentagepointgrowth

vi

advantagesoverToolWorldby2045,whilepartialintegrationcreatessmaller

improvements,suggestingthatcompletetransformationunlocksqualitativelydifferentgrowthregimes+

?Onaverage,theeconomicopportunitycostofforgoingAgentWorlddevelopment

through2045wouldrequirenonmodeledbenefits(suchassafety,stability,or

distributionaladvantages)thatareequivalentto1+2–2+8timestheexistingannualGDP,dependingonriskpreference+

vii

Contents

AboutThisReport++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++iiiSummary+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++vFiguresandTables+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++viiiPutaNumberonIt:ValuingAIAgencyintheTrade-OffBetweenAIBenefitsandRisk+++++++++++++++++++++++++++++1 Model++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++4 EmpiricalCalibrationandSimulationMethods+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++14 Results+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++15 Limitations+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++25 Conclusion++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++28Appendix+ParameterCalibrationandJustification+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++30Abbreviations++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++35References+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++36

viii

FiguresandTables

Figures

Figure1+ModelSchematic++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++6Figure2+TrajectoriesofAgentWorldGDPRelativetoToolWorldGDP+++++++++++++++++++++++++++++++++++++++++++++++++++15Figure3+DistributionofGrowthDifferentialsBetweenAgentandToolWorlds+++++++++++++++++++++++++++++++++++++++++16Figure4+GrowthRateDifferentialsandNumberofAIAgents+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++18Figure5+FactorImportanceinExplainingGrowthDifferentials++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++19Figure6+GrowthDynamicsandAIAgentWorkforce+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++20Figure7+AgentWorldTFPGrowth++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++21

Tables

Table1+KeyModelParameters,Interpretation,andCalibration+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++13Table2+GrowthResultsbyScenario++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++16Table3+RequiredBoostforToolWorldRelativetoAgentWorldThrough2045+++++++++++++++++++++++++++++++++++++++23Table4+PresentValueofPullingtheTakeoffYearForward++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++24

1

QuantifyingAI’sEconomicPotential:GrowthDifferentialsBetween

AssistiveandAutonomousDevelopmentScenarios

Recentbreakthroughsinartificialintelligence(AI)havesparkedadebateoverhowAIshouldbeintegratedintoeconomiesandsociety+SomeexpertsadvocateforAIasapowerfulbutstrictlyassistivetoolthatshouldremainundertighthumansupervision+Othersforesee(orwarnof)AIasanautonomousagentthatiscapableofmakingdecisionsandperformingtaskswithoutdirect

humanoversight+Thisdividedefinesthefollowingpolicychallenge:ShouldweaccelerateagenticAItocaptureitsunprecedentedupsidesorlimitAItobeingonlyatooltoguardagainst

potentiallycatastrophicorevenexistentialrisks?

ThedegreeofautonomythatispermittedinAIsystemsrepresentsapolicydimensionwithsignificantimplicationsforeconomicgrowth,labormarkets,globalcompetitivedynamics,and

humanity’slong-termsafety+Asofthiswriting,thisdebatehaslimitedempiricalgrounding,whileseeminglyunboundedpotentialforscientificadvancementandgrowthisweighedagainst

potentiallycatastrophiccosts+ThisreportcontributestothisdiscoursebymodelingthepotentialeconomicimplicationsofdifferentlevelsofconstraintonAI+Init,Iestablishquantitative

referencepointsthatmayhelppolicymakersunderstandthemagnitudeoftheeconomictrade-offsthatareinvolvedinvariousapproachestoAIgovernance,alongsidesafetyconcerns,transition

costs,anddistributionaleffectsthatarenotcapturedinthisanalysis+

Economistshavelongrecognizedthattechnologyisaprimarydriverofeconomicgrowth+Inclassicalgrowththeory,advancesintotalfactorproductivity(TFP)(whichisofteninterpretedastechnology)arenecessarytosustainlong-termgrowthbecausecapitalaccumulationfaces

diminishingreturns(Solow,1956)+EndogenousgrowthmodelsfurtherformalizehowintentionalresearchandinnovationinvestmentscanproducenewideasthatdriveTFPupward(Romer,

1990)+Akeyinsightfromthisliteratureisthataneffectivesupplyofresearchers(ormore

generally,problem-solvers)iscriticalforinnovation+Ifmoremindsaredevotedtoresearchanddevelopment(R&D),moreideascanbedeveloped,althoughwithdiminishingreturnsasexistingknowledgegrows(Bloometal+,2020;Jones,1995)+1However,intheexistinghuman-centric

paradigm,thestockofresearchersisultimatelyconstrainedbypopulation,demographics,andtrainingpipelines+Thisobservationhasledtoconcernsthatideaproductionisslowingdown+

1AdvancedAIsystemsmightpotentiallyalterthisdynamicbyexcellingatknowledgesynthesisacrossincreasingly

fragmentedandspecializedresearchfrontiers,whichwouldchangethequantityofresearchinputsandtheefficiencyoftheresearchprocessitself+However,evensuperintelligentAIresearchersmightencounterdiminishingreturns,whethertothefundamentalcomplexityofremainingunsolvedproblems,thetimerequiredforreal-worldexperimentationandvalidation,orevencoordinationcostsasresearchteams’scaleup+Theanalysistreatssuchstructuralresearchrelationshipsasfixed

parametersthatarecalibratedtohistoricalexperience,but,asdiscussedinthelimitationssection,transformativeAImightendogenouslyaltertheserelationshipsinwaysthatcouldamplifythegrowtheffectsestimatedhere+

2

Evidencesuggeststhat,despiterisingR&Deffort(orspending),researchproductivityper

researcherisdeclininginmanyfields(Bloometal+,2020)+2Inotherwords,ideasaregettinghardertoadvance,andtheexponentialgrowthofknowledgemaybedeceleratingunderhuman-only

research+

AIhasthepotentialtoalterthisequation+IfAIsystemscantakeonresearchtasksorevenimproveAIitself,thenumberofeffective“researchers”couldincreasefarbeyondthehumanworkforce+Historically,eachmajortechnologicalera(e+g+,steam,electricity,computing)

acceleratedgrowthforatimebuteventuallyfaceddiminishingreturnsinpartbecausehumansremainedthecentralactorsininnovation+AdvancedAIthatcaneithersignificantlyaugmenthumanresearchers(intheToolparadigm)orreplicateandreplacehumanresearchers(intheAgentparadigm)mightbreakthroughsomeoftheselimits+

Recentresearchhasbegunexploringthesepossibilities+Aghion,Jones,andJones(2019)

considersAIasaformofautomationinR&Dandaskwhetheritcouldleadtoever-acceleratinggrowthorevena“singularity”scenario+Theauthors’analysissuggeststhatAI-drivengrowthcouldsharplyincreaseinnovation+However,variousbottlenecks(includingtheneedforhumaninputinsomestagesofinnovation)mightstillcapgrowthrates(Aghion,Jones,andJones,2019)+

Similarly,Nordhaus(2021)examineswhetherrapidprogressinAIandcomputingcouldleadtoaneconomicsingularity(essentiallyunboundedgrowth)andconcludesthatsucharegimeshiftisnotimminentunderbase-caseassumptions,althoughitremainsalonger-termpossibility+Morerecently,Jones(2024)framesthesituationasthe“AIdilemma”:Ononehand,removingthe

humanconstraintsoninnovationviaAIcouldusherinaperiodofunprecedentedeconomic

growth;ontheotherhand,suchadevelopmentraisesconcernsofexistentialriskifAIsystemsbecometoopowerfulormisaligned+JonesarguesthatifhumanlaborisabottleneckforAI

progress,growthwillremainsomewhatconstrainedandmanageable;ifAIgainstheabilityto

effectivelyself-replicate(intermsofresearchefforts),thenexplosivegrowthandlossofhumancontrolbecomereal+Similarly,AcemogluandLensman(2024)examinesoptimaladoptionpathsfortransformativetechnologiesthatofferproductivitygainsbutposepotentialdisasterrisks,

findingthatgradualadoptioncanbeoptimaltoenablelearningaboutrisksovertime+

ThisreportcontributestothisdiscoursebyprovidingaquantitativemodelingexercisefocusedontheeconomicgrowthimplicationsofAItoolsversusAIagents+Iconstructanendogenous

growthmodelinthespiritofRomer(1990),Jones(1995),andBloometal+(2020),withthefollowingtwomodifications:

1+AIcancontributetotheproductionofgoodsandserviceseitherindirectlyasatoolraisinghumanproductivityordirectlyasrobotlaborreplacinghumans(AIinproduction)+

2+AIcancontributetoideagenerationeitherasaresearch-augmentingtoolorasanautonomousresearcherthataddstothetotalR&Dworkforce(AIininnovation)+

Idefinetwostylizedscenariosforthefuture:oneinwhichAIisneverallowed(orneverable)tofullyreplacehumanworkersorresearchers(ToolWorld)andoneinwhichAIisfreeto

substituteforhumanlaborandcanbereplicatedasneeded(AgentWorld)+ToolWorld

representsthecontinuationofexistingAIdevelopmenttrajectories,havingpowerfulbutnarrowsystemsthataugmenthumancapabilitiesthatstillrequiresomedegreeofhumanoversightand

2SomeresearchsuggeststhatthedecliningresearchproductivitydocumentedinBloometal+(2020)isoverstatedandthatapproximatelyhalfofthestateddeclinecanbeexplainedbyselectioneffects+Forinstance,EkerdtandWu(2025)findthattheabilityoftheaverageresearcherhasdeclinedbyroughly48percentastheR&Dworkforcehasexpandedovertime+

3

control+AgentWorldrepresentsapotentiallyfundamentalshifttowardartificialgeneral

intelligence(AGI),orevenartificialsuperintelligence,inwhichAIsystemsachievehuman-levelorsuperhumancognitivecapabilitiesacrossalldomainsandcanoperatefullyautonomously+

Althoughamixofthesescenariosmayunfold,examiningextremesisusefultoboundthepotentialoutcomes+Importantly,myaimisnottoadvocateonepathortheotherbuttoilluminatethe

economicstakesinvolved+

ThisreportcontributesempiricalanalysistotheToolAIversusAgentA(G)Idebate,whichoftenproceedsonnormativegroundsalone+MaxTegmarkhasemphasizedthevalueof

controllableToolAIsystemsthatcandelivertransformativeadvancesinhealthcare,climate,anddevelopmentwhileavoidingtheexistentialrisksofunboundedAGI+3Conversely,Gwern(the

independentresearcherknownforinfluentialwritingonAIdevelopmentandcapabilities)arguesthatAgentAIsystemsinherentlyoutperformToolAIacrossvarioustasks,yieldingsuperior

economicefficiency(Gwern,2019)+Imodeltwoextremefutures(AgentWorldversusTool

World)andquantifytheireconomicgrowthdifferentialundertheassumptionthattechnical

safetyandalignmentchallengescanbesuccessfullyresolvedintheAgentWorldscenario+Ratherthanadjudicatingwhichparadigmispreferablefromawelfareorpolicyperspective,Iaimto

establishthescaleofpotentialeconomicgainsfromautonomousAIsystems,providingoneinputforpolicymakersweighingthesebenefitsagainstsafetyrisks,transitioncosts,anddistributionalconcerns+

Giventhemodelsetup,undermostparameterranges,AgentWorldgrowsatasignificantly

fasterpacethanToolWorld,whichisunsurprisingbecausethemodelexplicitlydefinesTool

Worldasbottleneckedbythehumanpopulationgrowthrate,aconstraintthatisresolvedin

AgentWorld+However,thisgrowthdifferenceisnotahardandfastlaw+Inapproximately2

percentofsimulations,ToolWorldoutgrowsAgentWorldoverthe20-yearhorizon+ThesecasesemergeonlywhenAgentWorldispopulatedbyrelativelyinefficientagentsandcompute-starved+However,inthevastmajorityofcases,AgentWorldoffersasignificantgrowthboostrelativetoToolWorld+Theaveragegrowthdifferentialbetweenthetwoworldsisnearly4percentagepointsperyear,andthemediandifferentialisslightlylower+By2045,AgentWorld’sgrossdomestic

product(GDP)isapproximatelythreetimeslargerthanToolWorld’sonaverage+

TheprojectedgrowthratesalignwiththebroaderliteratureonAGI’spotentialeconomic

impact+AgentWorld’saverageannualgrowthof4–6percentmatchesscenariosdiscussedby

leadingresearchers+Forexample,JackClarkofAnthropichassuggestedthatAGIcouldplausiblydriveapproximately5percentofannualGDPgrowth(Cowen,2025)+Therighttailofthe

distributionofmodelsimulationsreflectsscenariosofeconomicsingularitiesand

superintelligence-drivenacceleration(Davidson,2021;ErdilandBesiro?lu,2024;Korinekand

Suh,2024)+Attheconservativeend,theaverageToolWorldscenarioprojectsanadditional0+2percentagepointsofgrowthabovebaseline,whichisclosetoAcemoglu’s(2024)estimateof0+10–0+16percentagepointsoveradecade+Inthisreport,theMonteCarlosimulationsspanthe

spectrumfromconservativeestimatestotransformativeAGIscenarios,providingacomprehensiveassessmentofplausibleeconomicfutures+

IalsoevaluatewhichfactorscontributethemosttothegrowthratedifferencesbetweenToolWorldandAgentWorld,findingthatfactorsrelatingtotherateatwhichsocietyinvestsinAI-specificcapital(e+g+,compute,datacenters)andtheconversionbetweencomputeandfull-time

3MaxTegmarkhaswrittenandspokenextensivelyonthistopic,includingonsocialmedia(Tegmark,2025),ininterviews(Tegmark,2024),andinwriting(TegmarkandOmohundro,2023)+

4

equivalent(FTE)AIagentsarethemostimportantpredictivefactors+ThisfindingsuggeststhateveninaworldinwhichAIagentscanfullyreplacehumanworkersandrapidlymultiply,therearestilltangibleconstraintsongrowth+4

Ialsoassessmechanisms+Specifically,themodelsuggeststhatthebenefitsofAI-research

integrationexhibitsharpthresholdeffects,witheconomiesthatachieveover90percentoftheAI-agentresearchershareexperiencinggrowthrateadvantagesexceeding15percentannuallyby

2045,whilepartialintegration(10–50percent)deliversmarginalimprovements+Thisnonlinearityreflectsthe“burdenofknowledge”mechanismbywhichonlyAgentWorldsthatreachsufficientagenticscalecanovercomethisconstraintandachievetransformativeaccelerationafter2040+

Theseresultsareconditionalonmodelingassumptions;however,theysuggestthatpartialAIagentintegrationstrategiesmaycaptureonlyafractionofthepotentialbenefits,whilecompletetransformationcancreatequalitativelydifferentgrowthregimes+

Beyondquantifyinggrowthdifferentials,theanalysisprovidestentativeeconomicbenchmarksforweighingsafetyagainstdevelopmentspeedoverthenexttwodecades+DespitemodelingAgentWorldwithmaximumeconomicbenefitswhileassumingawayimplementationchallenges,the

analysisfindsthatsafetybenefitsworthapproximatelyonetothreetimesexistingGDP

(dependingonriskaversion)wouldjustifychoosingmore-restrictiveAIdevelopmentpolicies

through2045+Althoughthisresultishighlycontingentonmodelingassumptions,itissimilartothoseinJones(2024),whichfindsthatevenexplosiveeconomicgrowthscenariosmaynotjustifyextremerisksundercertainriskpreferences+TheanalysisalsosuggeststhatadvancingAgent

Worlddevelopmentbyoneyearcouldbeworthapproximately60percentofGDP(withsubstantialuncertainty),revealingstrongeconomicincentivesforrapiddeployment+

Inwhatfollows,Ifirstoutlinethemodel’sstructureandassumptions,includinghowI

incorporateAIintothegrowthmodel+Ithendescribethecalibrationofparametersandempiricalfoundationsofthesimulation+Next,IpresentsimulationresultsthatcompareGDPgrowthinthetwoscenarios+Idiscussthepolicyandeconomicinsightsfromthesefindingsandaddressthe

model’slimitationsandsimplifyingassumptions+IconcludebyreflectingonwhattheanalysisimpliesforeconomicpolicyinaneraofrapidAIprogress+

Model

Idevelopatwo-sectorendogenousgrowthmodelthatextendstheclassicsemi-endogenous

growthframework(Jones,1995;Romer,1990)byexplicitlyincludingAIasafactorofproductionandinnovation+ThemodeldistinguishesbetweenhumanandAIcontributionsinboththe

productionofoutput(goodsandservices)andintheproductionofnewideas(R&D)+Inessence,themodelisastandardgrowthmodelthatisaugmentedwithanAIworkforceandanAI-drivenresearchprocess+

Theanalysismodelstwostylizedextremesboundbypotentialeconomicoutcomesratherthanforecastingrealisticscenarios+TheAgentWorldscenarioassumesthattechnicalsafety,alignment,andcontrolchallengesaresuccessfullyresolved,allowingA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論