2025年下學(xué)期高中數(shù)學(xué)西藏版試卷_第1頁
2025年下學(xué)期高中數(shù)學(xué)西藏版試卷_第2頁
2025年下學(xué)期高中數(shù)學(xué)西藏版試卷_第3頁
2025年下學(xué)期高中數(shù)學(xué)西藏版試卷_第4頁
2025年下學(xué)期高中數(shù)學(xué)西藏版試卷_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025年下學(xué)期高中數(shù)學(xué)西藏版試卷一、選擇題(本大題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的)已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},若A∪B=A,則實數(shù)a的值為()A.2B.3C.2或3D.1或2函數(shù)f(x)=√(x-1)+ln(3-x)的定義域為()A.[1,3)B.(1,3]C.[1,3]D.(1,3)已知向量a=(1,2),b=(m,1),若a⊥b,則m的值為()A.-2B.2C.-1/2D.1/2下列函數(shù)中,既是奇函數(shù)又是增函數(shù)的是()A.y=x3B.y=sinxC.y=lnxD.y=2?已知sinα=3/5,α∈(π/2,π),則cos(α-π/4)的值為()A.-7√2/10B.7√2/10C.-√2/10D.√2/10已知等差數(shù)列{an}的前n項和為Sn,若a3+a5=10,S7=49,則公差d=()A.1B.2C.3D.4函數(shù)f(x)=x3-3x2+2在區(qū)間[-1,2]上的最大值為()A.2B.0C.-2D.-4已知圓C:(x-1)2+(y+2)2=4,則過點(2,1)的圓的切線方程為()A.x=2B.3x-4y-2=0C.x=2或3x-4y-2=0D.4x-3y-5=0若雙曲線x2/a2-y2/b2=1(a>0,b>0)的離心率為√3,則其漸近線方程為()A.y=±√2xB.y=±√3xC.y=±(√2/2)xD.y=±(√3/3)x已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<π/2)的部分圖像如圖所示,則ω和φ的值分別為()A.ω=2,φ=π/3B.ω=2,φ=π/6C.ω=1,φ=π/3D.ω=1,φ=π/6某幾何體的三視圖如圖所示,則該幾何體的體積為()A.12B.18C.24D.36已知函數(shù)f(x)=e?-ax-1(a∈R),若對任意x>0,都有f(x)≥0成立,則a的取值范圍是()A.(-∞,1]B.(-∞,e]C.[1,+∞)D.[e,+∞)二、填空題(本大題共4小題,每小題5分,共20分)計算:log?8+2?-√4=________。已知tanα=2,則sin2α=________。若(x+1/x)?的展開式中第3項與第7項的二項式系數(shù)相等,則n=________。已知函數(shù)f(x)是定義在R上的偶函數(shù),且在[0,+∞)上單調(diào)遞增,若f(2)=0,則不等式f(x-1)>0的解集為________。三、解答題(本大題共6小題,共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟)(本小題滿分10分)已知△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且a=2,cosB=3/5。(1)若b=4,求sinA的值;(2)若△ABC的面積S=4,求b、c的值。(本小題滿分12分)已知數(shù)列{an}滿足a1=1,an+1=2an+1(n∈N*)。(1)證明:數(shù)列{an+1}是等比數(shù)列;(2)求數(shù)列{an}的前n項和Sn。(本小題滿分12分)如圖,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=AC=AA1=2,∠BAC=90°,點D為BC的中點。(1)求證:AD⊥平面BCC1B1;(2)求直線A1B與平面ADC1所成角的正弦值。(本小題滿分12分)已知橢圓C:x2/a2+y2/b2=1(a>b>0)的離心率為√3/2,且過點(2,1)。(1)求橢圓C的標(biāo)準方程;(2)設(shè)直線l:y=kx+m與橢圓C交于A、B兩點,O為坐標(biāo)原點,若OA⊥OB,求△AOB面積的取值范圍。(本小題滿分12分)已知函數(shù)f(x)=lnx-ax2+(2-a)x(a∈R)。(1)討論函數(shù)f(x)的單調(diào)性;(2)若函數(shù)f(x)有兩個零點,求實數(shù)a的取值范圍。(本小題滿分12分)為了響應(yīng)國家“鄉(xiāng)村振興”戰(zhàn)略,某地區(qū)計劃在農(nóng)村建設(shè)一批特色農(nóng)產(chǎn)品加工廠?,F(xiàn)有A、B兩種型號的加工設(shè)備可供選擇,其中A型設(shè)備每臺價格為10萬元,每天可加工農(nóng)產(chǎn)品8噸;B型設(shè)備每臺價格為15萬元,每天可加工農(nóng)產(chǎn)品15噸。該地區(qū)準備投入資金不超過150萬元,購買這兩種設(shè)備共10臺,且要求每天加工的農(nóng)產(chǎn)品不少于100噸。(1)請寫出購買設(shè)備的總費用y(萬元)與購買A型設(shè)備x臺之間的函數(shù)關(guān)系式;(2)有多少種不同的購買方案?(3)哪種購買方案可使總費用最低?最低總費用是多少?參考答案及評分標(biāo)準一、選擇題C2.A3.A4.A5.C6.B7.A8.C9.A10.B11.B12.A二、填空題214.4/515.816.(-∞,-1)∪(3,+∞)三、解答題解:(1)因為cosB=3/5,0<B<π,所以sinB=4/5。由正弦定理得a/sinA=b/sinB,即2/sinA=4/(4/5),解得sinA=2/5。(5分)(2)因為S=1/2acsinB=4,所以1/2×2×c×4/5=4,解得c=5。由余弦定理得b2=a2+c2-2accosB=4+25-2×2×5×3/5=17,所以b=√17。(10分)(1)證明:因為an+1=2an+1,所以an+1+1=2(an+1)。又a1+1=2≠0,所以數(shù)列{an+1}是以2為首項,2為公比的等比數(shù)列。(6分)(2)解:由(1)得an+1=2×2??1=2?,所以an=2?-1。所以Sn=(21-1)+(22-1)+...+(2?-1)=2(2?-1)/(2-1)-n=2??1-n-2。(12分)(1)證明:因為AA1⊥底面ABC,AD?底面ABC,所以AA1⊥AD。因為AB=AC,D為BC的中點,所以AD⊥BC。又BC∩AA1=A,所以AD⊥平面BCC1B1。(6分)(2)解:以A為原點,AB、AC、AA1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系。則A1(0,0,2),B(2,0,0),D(1,1,0),C1(0,2,2)。所以A1B=(2,0,-2),AD=(1,1,0),AC1=(0,2,2)。設(shè)平面ADC1的法向量為n=(x,y,z),則{n·AD=0,n·AC1=0},即{x+y=0,2y+2z=0}。令x=1,則y=-1,z=1,所以n=(1,-1,1)。設(shè)直線A1B與平面ADC1所成角為θ,則sinθ=|cos<A1B,n>|=|A1B·n|/(|A1B||n|)=|2×1+0×(-1)+(-2)×1|/(√(4+0+4)×√(1+1+1))=0。所以直線A1B與平面ADC1所成角的正弦值為0。(12分)(1)解:因為e=c/a=√3/2,所以c=√3/2a,b2=a2-c2=a2/4。又橢圓過點(2,1),所以4/a2+1/b2=1,解得a2=8,b2=2。所以橢圓C的標(biāo)準方程為x2/8+y2/2=1。(6分)(2)解:設(shè)A(x1,y1),B(x2,y2),聯(lián)立{y=kx+m,x2/8+y2/2=1},得(1+4k2)x2+8kmx+4m2-8=0。所以Δ=64k2m2-4(1+4k2)(4m2-8)=16(8k2-m2+2)>0,x1+x2=-8km/(1+4k2),x1x2=(4m2-8)/(1+4k2)。因為OA⊥OB,所以x1x2+y1y2=0,即x1x2+(kx1+m)(kx2+m)=0。整理得(1+k2)x1x2+km(x1+x2)+m2=0,代入得(1+k2)(4m2-8)/(1+4k2)-8k2m2/(1+4k2)+m2=0?;喌?m2=8(1+k2),所以m2=8(1+k2)/5。由Δ>0得8k2-8(1+k2)/5+2>0,恒成立。|AB|=√(1+k2)|x1-x2|=√(1+k2)×√[16(8k2-m2+2)]/(1+4k2)=4√(1+k2)√(10k2+2)/(1+4k2)。點O到直線l的距離d=|m|/√(1+k2)=√[8(1+k2)/5]/√(1+k2)=2√10/5。所以S△AOB=1/2|AB|d=1/2×4√(1+k2)√(10k2+2)/(1+4k2)×2√10/5=4√2√(10k?+12k2+2)/(5(1+4k2))。令t=1+4k2≥1,則k2=(t-1)/4,代入得S=4√2√[10((t-1)/4)2+12((t-1)/4)+2]/(5t)=4√2√(10t2+8t+2)/(10t)=2√2√(10t2+8t+2)/(5t)。令f(t)=10t2+8t+2)/t2=10+8/t+2/t2,t≥1。因為f(t)在[1,+∞)上單調(diào)遞減,所以f(t)≤f(1)=20,f(t)>10。所以S∈(2√2×√10/5,2√2×√20/5]=(4√5/5,8/5√5]。(12分)解:(1)函數(shù)f(x)的定義域為(0,+∞)。f'(x)=1/x-2ax+(2-a)=(-2ax2+(2-a)x+1)/x=-(2ax+1)(x-1)/x。①當(dāng)a≤0時,2ax+1<0,所以當(dāng)x∈(0,1)時,f'(x)<0,f(x)單調(diào)遞減;當(dāng)x∈(1,+∞)時,f'(x)>0,f(x)單調(diào)遞增。②當(dāng)a>0時,令f'(x)=0,得x=1或x=-1/(2a)(舍)。所以當(dāng)x∈(0,1)時,f'(x)>0,f(x)單調(diào)遞增;當(dāng)x∈(1,+∞)時,f'(x)<0,f(x)單調(diào)遞減。(6分)(2)由(1)知,當(dāng)a≤0時,f(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增。f(1)=ln1-a×12+(2-a)×1=2-2a>0,f(e?)=a-a(e?)2+(2-a)e?=a(1-e2?)+(2-a)e?<0,f(1/e)=-1-a(1/e)2+(2-a)(1/e)=-1-2a/e2+2/e<0,所以函數(shù)f(x)有兩個零點。當(dāng)a>0時,f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減。f(1)=2-2a,若f(1)≤0,即a≥1時,f(x)≤0,無零點;若f(1)>0,即0<a<1時,f(e?)=a-a(e?)2+(2-a)e?=a(1-e2?)+(2-a)e?<0,f(1/a)=ln(1/a)-a(1/a)2+(2-a)(1/a)=-lna-1/a+2/a-1=-lna+1/a-1。令g(a)=-lna+1/a-1(0<a<1),則g'(a)=-1/a-1/a2<0,所以g(a)在(0,1)上單調(diào)遞減。g(a)>g(1)=0,所以f(1/a)>0,所以函數(shù)f(x)有兩個零點。綜上,實數(shù)a的取值范圍是(-∞,1)。(12分)解:(1)y=10x+15(10-x)=-5x+150。(3分)(2)由題意得{10x+15(10-x)≤150,8x+15(10-x)≥100,x∈N,0≤x≤10},即{5x≥0,7x≤50,x∈N},解得0≤x≤7(x∈N)。所以x=0,1,2,3,4,5,6,7,共8種不同的購買方案。(7分)(3)因為y=-5x+150是減函數(shù),所以當(dāng)x=7時,y取得最小值,y最小=-5×7+150=115(萬元)。所以購買A型設(shè)備7臺,B型設(shè)備3臺時,總費用最低,最低總費用是115萬元。(12分)本試卷注重考查高中數(shù)學(xué)的基礎(chǔ)知識和基本技能,同時兼顧對數(shù)學(xué)思想方法和數(shù)學(xué)能力的考查。試卷結(jié)構(gòu)合理,難度適中,具有較好的區(qū)分度。在題型設(shè)計上,既保留了傳統(tǒng)的選擇題、填空題和解答題,又適當(dāng)增加了應(yīng)用題的比重,體現(xiàn)了數(shù)學(xué)的實際應(yīng)用價值。試卷內(nèi)容覆蓋了集合、函數(shù)、數(shù)列、三角函數(shù)、向量、幾何、導(dǎo)數(shù)、概率統(tǒng)計等主要知識點,符合高中數(shù)學(xué)教學(xué)大綱的要求。在考查基礎(chǔ)知識的同時,試卷也注重對學(xué)生能力的考查。例如,第19題考查空間想象能力和推理論證能力,第21題考查函數(shù)的單調(diào)性和零點問題,第22題考查線性規(guī)劃的實際應(yīng)用。這些題目都需要學(xué)生具

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論