2024-2025學年遼寧省營口市站前區(qū)中考押題數(shù)學預測卷含解析_第1頁
2024-2025學年遼寧省營口市站前區(qū)中考押題數(shù)學預測卷含解析_第2頁
2024-2025學年遼寧省營口市站前區(qū)中考押題數(shù)學預測卷含解析_第3頁
2024-2025學年遼寧省營口市站前區(qū)中考押題數(shù)學預測卷含解析_第4頁
2024-2025學年遼寧省營口市站前區(qū)中考押題數(shù)學預測卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024-2025學年遼寧省營口市站前區(qū)中考押題數(shù)學預測卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在平面直角坐標系中,點是線段上一點,以原點為位似中心把放大到原來的兩倍,則點的對應點的坐標為()A. B.或C. D.或2.如圖,四邊形ABCD中,AB=CD,AD∥BC,以點B為圓心,BA為半徑的圓弧與BC交于點E,四邊形AECD是平行四邊形,AB=3,則的弧長為()A. B.π C. D.33.如圖,△ABC中,AB=2,AC=3,1<BC<5,分別以AB、BC、AC為邊向外作正方形ABIH、BCDE和正方形ACFG,則圖中陰影部分的最大面積為()A.6 B.9 C.11 D.無法計算4.《九章算術》中的算籌圖是豎排的,為看圖方便,我們把它改為橫排,如圖1,圖2所示,圖中各行從左到右列出的算籌數(shù)分別表示未知數(shù)x,y的系數(shù)與相應的常數(shù)項.把圖1表示的算籌圖用我們現(xiàn)在所熟悉的方程組形式表述出來,就是.類似地,圖2所示的算籌圖我們可以表述為()A. B. C. D.5.下列各數(shù):π,sin30°,﹣,其中無理數(shù)的個數(shù)是()A.1個 B.2個 C.3個 D.4個6.下面運算結果為的是A. B. C. D.7.四張分別畫有平行四邊形、菱形、等邊三角形、圓的卡片,它們的背面都相同?,F(xiàn)將它們背面朝上,從中任取一張,卡片上所畫圖形恰好是中心對稱圖形的概率是()A. B.1 C. D.8.一艘在南北航線上的測量船,于A點處測得海島B在點A的南偏東30°方向,繼續(xù)向南航行30海里到達C點時,測得海島B在C點的北偏東15°方向,那么海島B離此航線的最近距離是()(結果保留小數(shù)點后兩位)(參考數(shù)據(jù):3≈1.732,2≈1.414)A.4.64海里B.5.49海里C.6.12海里D.6.21海里9.下列實數(shù)0,,,π,其中,無理數(shù)共有()A.1個 B.2個 C.3個 D.4個10.在實數(shù)0,-π,,-4中,最小的數(shù)是()A.0 B.-π C. D.-4二、填空題(共7小題,每小題3分,滿分21分)11.如圖,點A是反比例函數(shù)y=﹣(x<0)圖象上的點,分別過點A向橫軸、縱軸作垂線段,與坐標軸恰好圍成一個正方形,再以正方形的一組對邊為直徑作兩個半圓,其余部分涂上陰影,則陰影部分的面積為______.12.已知關于x的方程x2+mx+4=0有兩個相等的實數(shù)根,則實數(shù)m的值是______.13.已知兩圓內切,半徑分別為2厘米和5厘米,那么這兩圓的圓心距等于_____厘米.14.若實數(shù)a、b在數(shù)軸上的位置如圖所示,則代數(shù)式|b﹣a|+化簡為_____.15.如果點P1(2,y1)、P2(3,y2)在拋物線上,那么y1______y2.(填“>”,“<”或“=”).16.如圖,在正方形ABCD中,O是對角線AC、BD的交點,過O點作OE⊥OF,OE、OF分別交AB、BC于點E、點F,AE=3,F(xiàn)C=2,則EF的長為_____.17.把多項式a3-2a2+a分解因式的結果是三、解答題(共7小題,滿分69分)18.(10分)某學校為了解學生的課余活動情況,抽樣調查了部分學生,將所得數(shù)據(jù)處理后,制成折線統(tǒng)計圖(部分)和扇形統(tǒng)計圖(部分)如圖:(1)在這次研究中,一共調查了學生,并請補全折線統(tǒng)計圖;(2)該校共有2200名學生,估計該校愛好閱讀和愛好體育的學生一共有多少人?19.(5分)如圖,AC⊥BD,DE交AC于E,AB=DE,∠A=∠D.求證:AC=AE+BC.20.(8分)某學校要開展校園文化藝術節(jié)活動,為了合理編排節(jié)目,對學生最喜愛的歌曲、舞蹈、小品、相聲四類節(jié)目進行了一次隨機抽樣調查(每名學生必須選擇且只能選擇一類),并將調查結果繪制成如下不完整的統(tǒng)計圖.請你根據(jù)圖中信息,回答下列問題:(1)求本次調查的學生人數(shù),并補全條形統(tǒng)計圖;(2)在扇形統(tǒng)計圖中,求“歌曲”所在扇形的圓心角的度數(shù);(3)九年一班和九年二班各有2名學生擅長舞蹈,學校準備從這4名學生中隨機抽取2名學生參加舞蹈節(jié)目的編排,那么抽取的2名學生恰好來自同一個班級的概率是多少?21.(10分)如圖,矩形ABCD的對角線AC、BD交于點O,且DE∥AC,CE∥BD.(1)求證:四邊形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面積.22.(10分)如圖所示,直線y=﹣2x+b與反比例函數(shù)y=交于點A、B,與x軸交于點C.(1)若A(﹣3,m)、B(1,n).直接寫出不等式﹣2x+b>的解.(2)求sin∠OCB的值.(3)若CB﹣CA=5,求直線AB的解析式.23.(12分)如圖,在平面直角坐標系xOy中,已知點A(3,0),點B(0,3),點O為原點.動點C、D分別在直線AB、OB上,將△BCD沿著CD折疊,得△B'CD.(Ⅰ)如圖1,若CD⊥AB,點B'恰好落在點A處,求此時點D的坐標;(Ⅱ)如圖2,若BD=AC,點B'恰好落在y軸上,求此時點C的坐標;(Ⅲ)若點C的橫坐標為2,點B'落在x軸上,求點B'的坐標(直接寫出結果即可).24.(14分)如圖,將邊長為m的正方形紙板沿虛線剪成兩個小正方形和兩個矩形,拿掉邊長為n的小正方形紙板后,將剩下的三塊拼成新的矩形.用含m或n的代數(shù)式表示拼成矩形的周長;m=7,n=4,求拼成矩形的面積.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】分析:根據(jù)位似變換的性質計算即可.詳解:點P(m,n)是線段AB上一點,以原點O為位似中心把△AOB放大到原來的兩倍,則點P的對應點的坐標為(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),故選B.點睛:本題考查的是位似變換、坐標與圖形的性質,在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或-k.2、B【解析】∵四邊形AECD是平行四邊形,

∴AE=CD,

∵AB=BE=CD=3,

∴AB=BE=AE,

∴△ABE是等邊三角形,

∴∠B=60°,∴的弧長=.故選B.3、B【解析】

有旋轉的性質得到CB=BE=BH′,推出C、B、H'在一直線上,且AB為△ACH'的中線,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到陰影部分面積之和為S△ABC的3倍,于是得到結論.【詳解】把△IBE繞B順時針旋轉90°,使BI與AB重合,E旋轉到H'的位置,∵四邊形BCDE為正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直線上,且AB為△ACH'的中線,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以陰影部分面積之和為S△ABC的3倍,又∵AB=2,AC=3,∴圖中陰影部分的最大面積為3××2×3=9,故選B.本題考查了勾股定理,利用了旋轉的性質:旋轉前后圖形全等得出圖中陰影部分的最大面積是S△ABC的3倍是解題的關鍵.4、A【解析】

根據(jù)圖形,結合題目所給的運算法則列出方程組.【詳解】圖2所示的算籌圖我們可以表述為:.故選A.本題考查了由實際問題抽象出二元一次方程組,解答本題的關鍵是讀懂題意,設出未知數(shù),找出合適的等量關系,列出方程組.5、B【解析】

根據(jù)無理數(shù)的三種形式:①開方開不盡的數(shù),②無限不循環(huán)小數(shù),③含有π的數(shù),找出無理數(shù)的個數(shù)即可.【詳解】sin30°=,=3,故無理數(shù)有π,-,故選:B.本題考查了無理數(shù)的知識,解答本題的關鍵是掌握無理數(shù)的三種形式:①開方開不盡的數(shù),②無限不循環(huán)小數(shù),③含有π的數(shù).6、B【解析】

根據(jù)合并同類項法則、同底數(shù)冪的除法、同底數(shù)冪的乘法及冪的乘方逐一計算即可判斷.【詳解】.,此選項不符合題意;.,此選項符合題意;.,此選項不符合題意;.,此選項不符合題意;故選:.本題考查了整式的運算,解題的關鍵是掌握合并同類項法則、同底數(shù)冪的除法、同底數(shù)冪的乘法及冪的乘方.7、A【解析】∵在:平行四邊形、菱形、等邊三角形和圓這4個圖形中屬于中心對稱圖形的有:平行四邊形、菱形和圓三種,∴從四張卡片中任取一張,恰好是中心對稱圖形的概率=.故選A.8、B【解析】

根據(jù)題意畫出圖如圖所示:作BD⊥AC,取BE=CE,根據(jù)三角形內角和和等腰三角形的性質得出BA=BE,AD=DE,設BD=x,Rt△ABD中,根據(jù)勾股定理得AD=DE=

3x,AB=BE=CE=2x,由AC=AD+DE+EC=2

3x+2x=30,解之即可得出答案.【詳解】根據(jù)題意畫出圖如圖所示:作BD⊥AC,取BE=CE,

∵AC=30,∠CAB=30°∠ACB=15°,

∴∠ABC=135°,

又∵BE=CE,

∴∠ACB=∠EBC=15°,

∴∠ABE=120°,

又∵∠CAB=30°

∴BA=BE,AD=DE,

設BD=x,

在Rt△ABD中,

∴AD=DE=

3x,AB=BE=CE=2x,

∴AC=AD+DE+EC=2

3x+2x=30,

∴x=153+1

=

15本題考查了三角形內角和定理與等腰直角三角形的性質,解題的關鍵是熟練的掌握三角形內角和定理與等腰直角三角形的性質.9、B【解析】

根據(jù)無理數(shù)的概念可判斷出無理數(shù)的個數(shù).【詳解】解:無理數(shù)有:,.故選B.本題主要考查了無理數(shù)的定義,注意帶根號的要開不盡方才是無理數(shù),無限不循環(huán)小數(shù)為無理數(shù).10、D【解析】

根據(jù)正數(shù)都大于0,負數(shù)都小于0,兩個負數(shù)絕對值大的反而小即可求解.【詳解】∵正數(shù)大于0和一切負數(shù),∴只需比較-π和-1的大小,∵|-π|<|-1|,∴最小的數(shù)是-1.故選D.此題主要考查了實數(shù)的大小的比較,注意兩個無理數(shù)的比較方法:統(tǒng)一根據(jù)二次根式的性質,把根號外的移到根號內,只需比較被開方數(shù)的大?。⑻羁疹}(共7小題,每小題3分,滿分21分)11、4﹣π【解析】

由題意可以假設A(-m,m),則-m2=-4,求出點A坐標即可解決問題.【詳解】由題意可以假設A(-m,m),則-m2=-4,∴m=≠±2,∴m=2,∴S陰=S正方形-S圓=4-π,故答案為4-π.本題考查反比例函數(shù)圖象上的點的特征、正方形的性質、圓的面積公式等知識,解題的關鍵是靈活運用所學知識解決問題12、±4【解析】分析:由方程有兩個相等的實數(shù)根,得到根的判別式等于0,列出關于m的方程,求出方程的解即可得到m的值.詳解:∵方程有兩個相等的實數(shù)根,∴解得:故答案為點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數(shù)根.當時,方程有兩個相等的實數(shù)根.當時,方程沒有實數(shù)根.13、1【解析】

由兩圓的半徑分別為2和5,根據(jù)兩圓位置關系與圓心距d,兩圓半徑R,r的數(shù)量關系間的聯(lián)系和兩圓位置關系求得圓心距即可.【詳解】解:∵兩圓的半徑分別為2和5,兩圓內切,∴d=R﹣r=5﹣2=1cm,故答案為1.此題考查了圓與圓的位置關系.解題的關鍵是掌握兩圓位置關系與圓心距d,兩圓半徑R,r的數(shù)量關系間的聯(lián)系.14、2a﹣b.【解析】

直接利用數(shù)軸上a,b的位置進而得出b﹣a<0,a>0,再化簡得出答案.【詳解】解:由數(shù)軸可得:b﹣a<0,a>0,則|b﹣a|+=a﹣b+a=2a﹣b.故答案為2a﹣b.此題主要考查了二次根式的性質與化簡,正確得出各項符號是解題關鍵.15、>【解析】分析:首先求得拋物線y=﹣x2+2x的對稱軸是x=1,利用二次函數(shù)的性質,點M、N在對稱軸的右側,y隨著x的增大而減小,得出答案即可.詳解:拋物線y=﹣x2+2x的對稱軸是x=﹣=1.∵a=﹣1<0,拋物線開口向下,1<2<3,∴y1>y2.故答案為>.點睛:本題考查了二次函數(shù)圖象上點的坐標特征,二次函數(shù)的性質,求得對稱軸,掌握二次函數(shù)圖象的性質解決問題.16、【解析】

由△BOF≌△AOE,得到BE=FC=2,在直角△BEF中,從而求得EF的值.【詳解】∵正方形ABCD中,OB=OC,∠BOC=∠EOF=90°,∴∠EOB=∠FOC,在△BOE和△COF中,,∴△BOE≌△COF(ASA)∴BE=FC=2,同理BF=AE=3,在Rt△BEF中,BF=3,BE=2,∴EF==.故答案為本題考查了正方形的性質、三角形全等的性質和判定、勾股定理,在四邊形中常利用三角形全等的性質和勾股定理計算線段的長.17、.【解析】要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續(xù)分解因式.因此,.三、解答題(共7小題,滿分69分)18、(1)200名;折線圖見解析;(2)1210人.【解析】

(1)由“其他”的人數(shù)和所占百分數(shù),求出全部調查人數(shù);先由“體育”所占百分數(shù)和全部調查人數(shù)求出體育的人數(shù),進一步求出閱讀的人數(shù),補全折線統(tǒng)計圖;(2)利用樣本估計總體的方法計算即可解答.【詳解】(1)調查學生總人數(shù)為40÷20%=200(人),體育人數(shù)為:200×30%=60(人),閱讀人數(shù)為:200﹣(60+30+20+40)=200﹣150=50(人).補全折線統(tǒng)計圖如下:.(2)2200×=1210(人).答:估計該校學生中愛好閱讀和愛好體育的人數(shù)大約是1210人.本題考查了統(tǒng)計知識的應用,試題以圖表為載體,要求學生能從中提取信息來解題,與實際生活息息相關,符合新課標的理念.19、見解析.【解析】

由“SAS”可證△ABC≌△DEC,可得BC=CE,即可得結論.【詳解】證明:∵AB=DE,∠A=∠D,∠ACB=∠DCE=90°∴△ABC≌△DEC(SAS)∴BC=CE,∵AC=AE+CE∴AC=AE+BC本題考查了全等三角形的判定和性質,熟練運用全等三角形的性質是本題的關鍵.20、(1)共調查了50名學生;統(tǒng)計圖見解析;(2)72°;(3)13【解析】

(1)用最喜愛相聲類的人數(shù)除以它所占的百分比即可得到調查的總人數(shù),先計算出最喜歡舞蹈類的人數(shù),然后補全條形統(tǒng)計圖;(2)用360°乘以最喜愛歌曲類人數(shù)所占的百分比得到“歌曲”所在扇形的圓心角的度數(shù);

(3)畫樹狀圖展示所有12種等可能的結果數(shù),再找出抽取的2名學生恰好來自同一個班級的結果數(shù),然后根據(jù)概率公式求解.【詳解】解:(1)14÷28%=50,∴本次共調查了50名學生.補全條形統(tǒng)計圖如下.(2)在扇形統(tǒng)計圖中,“歌曲”所在扇形的圓心角的度數(shù)為360°×1050(3)設一班2名學生為數(shù)字“1”,“1”,二班2名學生為數(shù)字“2”,“2”,畫樹狀圖如下.共有12種等可能的結果,其中抽取的2名學生恰好來自同一個班級的結果有4種,∴抽取的2名學生恰好來自同一個班級的概率P=412=1本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.也考查了統(tǒng)計圖.21、(1)證明見解析;(1).【解析】

(1)由平行四邊形的判定得出四邊形OCED是平行四邊形,根據(jù)矩形的性質求出OC=OD,根據(jù)菱形的判定得出即可.(1)解直角三角形求出BC=1.AB=DC=1,連接OE,交CD于點F,根據(jù)菱形的性質得出F為CD中點,求出OF=BC=1,求出OE=1OF=1,求出菱形的面積即可.【詳解】證明:,,四邊形OCED是平行四邊形,矩形ABCD,,,,,四邊形OCED是菱形;在矩形ABCD中,,,,,,連接OE,交CD于點F,四邊形OCED為菱形,為CD中點,為BD中點,,,.本題主要考查了矩形的性質和菱形的性質和判定的應用,能靈活運用定理進行推理是解此題的關鍵,注意:菱形的面積等于對角線積的一半.22、(1)x<﹣3或0<x<1;(2);(3)y=﹣2x﹣2.【解析】

(1)不等式的解即為函數(shù)y=﹣2x+b的圖象在函數(shù)y=上方的x的取值范圍.可由圖象直接得到.(2)用b表示出OC和OF的長度,求出CF的長,進而求出sin∠OCB.(3)求直線AB的解析式關鍵是求出b的值.【詳解】解:(1)如圖:由圖象得:不等式﹣2x+b>的解是x<﹣3或0<x<1;(2)設直線AB和y軸的交點為F.當y=0時,x=,即OC=﹣;當x=0時,y=b,即OF=﹣b,∴CF==,∴sin∠OCB=sin∠OCF===.(3)過A作AD⊥x軸,過B作BE⊥x軸,則AC=AD=,BC=,∴AC﹣BC=(yA+yB)=(xA+xB)=﹣5,又﹣2x+b=,所以﹣2x2+bx﹣k=0,∴,∴×b=﹣5,∴b=,∴y=﹣2x﹣2.這道題主要考查反比例函數(shù)的圖象與一次函數(shù)的交點問題,借助圖象分析之間的關系,體現(xiàn)數(shù)形結合思想的重要性.23、(1)D(0,);(1)C(11﹣6,11﹣18);(3)B'(1+,0),(1﹣,0).【解析】

(1)設OD為x,則BD=AD=3,在RT△ODA中應用勾股定理即可求解;(1)由題意易證△BDC∽△BOA,再利用A、B坐標及BD=AC可求解出BD長度,再由特殊角的三角函數(shù)即可求解;(3)過點C作CE⊥AO

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論