數學蘇教版七年級下冊期末必考知識點試題A卷答案_第1頁
數學蘇教版七年級下冊期末必考知識點試題A卷答案_第2頁
數學蘇教版七年級下冊期末必考知識點試題A卷答案_第3頁
數學蘇教版七年級下冊期末必考知識點試題A卷答案_第4頁
數學蘇教版七年級下冊期末必考知識點試題A卷答案_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

數學蘇教版七年級下冊期末必考知識點試題A卷答案一、選擇題1.下列各式計算正確的是()A.5a﹣3a=3 B.a2·a5=a10 C.a6÷a3=a2 D.(a2)3=a6答案:D解析:D【分析】由合并同類項判斷由同底數冪的乘法判斷由同底數冪的除法判斷由冪的乘方判斷從而可得答案.【詳解】解:故不符合題意;故不符合題意;故不符合題意;故符合題意;故選:【點睛】本題考查的是合并同類項,同底數冪的乘法,同底數冪的除法,冪的乘方,掌握以上運算的運算法則是解題的關鍵.2.如圖所示,下列說法正確的是()A.和是內錯角 B.和是同旁內角C.和是同位角 D.和是內錯角答案:B解析:B【分析】利用“三線八角”的定義分別判斷后即可確定正確的選項.【詳解】解:A、∠1和∠2是同旁內角,故錯誤;B、∠1和∠2是同旁內角,正確;C、∠1和∠5不是同位角,故錯誤;D、∠1和∠4不是同旁內角,故錯誤,故選:B.【點睛】本題考查了同位角、內錯角及同旁內角的定義,解題的關鍵是了解三類角的定義,難度不大.3.已知x,y互為相反數且滿足二元一次方程組,則k的值是()A.﹣1 B.0 C.1 D.2答案:A解析:A【分析】根據,互為相反數得到,然后與原方程組中的方程聯立新方程組,解二元一次方程組,求得和的值,最后代入求值.【詳解】解:由題意可得,②﹣①,得:y=﹣1,把y=﹣1代入①,得:x﹣1=0,解得:x=1,把x=1,y=﹣1代入2x+3y=k中,k=2×1+3×(﹣1)=2﹣3=﹣1,故選:A.【點睛】本題考查解二元一次方程組,掌握消元法(加減消元法和代入消元法)解二元一次方程組的步驟是解題關鍵.4.若多項式9x2﹣mx+16是一個完全平方式,則m的值為()A.±24 B.±12 C.24 D.12答案:A解析:A【分析】利用完全平方公式的結構特征判斷即可.【詳解】解:∵是一個完全平方式∴∴∴∴故選B.【點睛】本題主要考查完全平方公式,熟練掌握公式是解題的關鍵.5.關于的不等式組有解,那么的取值范圍是()A. B. C. D.答案:A解析:A【詳解】【考點】一元一次不等式組有解的問題.【分析】分別解出兩個不等式,有解就可以把兩個解集寫在一起,再觀察右邊的數比左邊的數大,即可求出的范圍.【解答】解:由①得,由②得,有解故選A.6.給出下列四個命題,①多邊形的外角和小于內角和;②如果a>b,那么(a+b)(a-b)>0;③兩直線平行,同位角相等;④如果a,b是實數,那么,其中真命題的個數為()A.1 B.2 C.3 D.4答案:A解析:A【分析】根據多邊形的內角和、不等式的性質、平行線的性質和零指數冪判斷即可.【詳解】解:①多邊形的外角和不一定小于內角和,四邊形的內角和等于外角和,原命題是假命題;②如果0>a>b,那么(a+b)(a-b)<0,原命題是假命題;③兩直線平行,同位角相等,是真命題;④如果a,b是實數,且a+b≠0,那么(a+b)0=1,原命題是假命題.故選:A.【點睛】本題考查了命題與定理的知識,解題的關鍵是了解多邊形的內角和、不等式的性質、平行線的性質和零指數冪,難度較?。?.一列數,其中為不小于2的整數,則()A. B.2 C. D.答案:B解析:B【分析】由題意易得,,,…..;由此可得規(guī)律為按照三個一循環(huán)進行下去,因此問題可求解.【詳解】解:由為不小于2的整數可得:,,,…..;∴該列數的規(guī)律為按照三個一循環(huán)排列下去,∴,∴2;故選B.【點睛】本題主要考查數字規(guī)律,關鍵是由題意得到數字的一般規(guī)律,進而問題可求解.8.如圖,,,將紙片的一角折疊,使點落在外.若,則的度數為()A. B. C. D.答案:B解析:B【分析】先根據三角形的內角和定理得出∠C=180°-∠A-∠B=180°-60°-70°=50°;再根據折疊的性質得到∠C′=∠C=50°,再利用三角形的內角和定理以及外角性質得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+50°,即可得到∠3+∠4=62°,然后利用平角的定義即可求出∠1.【詳解】∵∠A=60°,∠B=70°,∴∠C=180°-∠A-∠B=180°-60°-70°=50°;又∵將三角形紙片的一角折疊,使點C落在△ABC外,∴∠C′=∠C=50°,而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+50°,∠2=18°,∴∠3+18°+∠4+50°+50°=180°,∴∠3+∠4=62°,∴∠1=180°-62°=118°.故選:B.【點睛】本題綜合考查了三角形內角和定理、外角定理以及翻折變換的問題,而翻折變換實際上就是軸對稱變換,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.明確各個角之間的等量關系,是解決本題的關鍵.二、填空題9.計算:﹣2a2b3?(﹣3a)=_____.解析:6a3b3【分析】系數相乘時,負負為正,即符號要變號;其中,a的次數為2+1=3,b的次數為3+0=3即可.【詳解】根據單項式乘以單項式法則求出即可.解:﹣2a2b3?(﹣3a)=6a3b3,故答案為:6a3b3.【點睛】單項式乘單項式,掌握單項式乘以單項式的運算法則是解題的關鍵,解題過程中一定要注意最終結果的符號問題,要注意負負為正.10.命題:“任意兩個負數之和是負數”的逆命題是______命題.(填“真”或“假”).解析:假【分析】寫出原命題的逆命題后判斷正誤即可.【詳解】解:命題:“任意兩個負數之和是負數”的逆命題是負數是兩個負數之和,錯誤,為假命題,故答案為:假.【點睛】考查了命題與定理的知識,解題的關鍵是了解如何寫出一個命題的逆命題,難度不大.11.已知一個多邊形的每個內角都是,則這個多邊形的邊數是_______.解析:18【分析】首先計算出多邊形的外角的度數,再根據外角和÷外角度數=邊數可得答案.【詳解】解:多邊形每一個內角都等于多邊形每一個外角都等于邊數故答案為【點睛】此題主要考查了多邊形的外角與內角,關鍵是掌握多邊形的外角與它相鄰的內角互補,外角和為360°.12.若,則___________.解析:10【分析】利用平方差公式分解因式后化簡可求解.【詳解】解:∵,∴=故答案為10.【點睛】本題主要考查因式分解的應用,將分子分解因式是解題的關鍵.13.已知關于的方程組的解為,則的平方根為________.解析:【分析】根據方程組的解,可以把解代入方程組,構成新的方程組,求出m、n,再代入求平方根.【詳解】將代入方程組得,解得.所以所以的平方根為故答案為:【點睛】考核知識點:解方程組,平方根.解方程組,理解平方根的定義是關鍵.14.如圖,是線段外一點,連接,,過點作線段的垂線,垂足為.在、、這三條線段中,是最短的線段,依據是_______.解析:垂線段最短【分析】根據垂線段最短的定義求解即可.【詳解】解:∵點到直線的距離,垂線段最短,∴依據是垂線段最短,故答案為:垂線段最短.【點睛】本題主要考查了垂線段最短的定義,解題的關鍵在于能夠熟記定義.15.已知的兩條邊長分別為3和5,則第三邊c的取值范是________答案:2<c<8.【分析】根據三角形三邊關系,可得5-3<c<5+3,即2<c<8,問題可求.【詳解】解:由題意,可得5-3<c<5+3,即2<c<8,故答案為:2<c<8【點睛】此題主要解析:2<c<8.【分析】根據三角形三邊關系,可得5-3<c<5+3,即2<c<8,問題可求.【詳解】解:由題意,可得5-3<c<5+3,即2<c<8,故答案為:2<c<8【點睛】此題主要考查了三角形三邊關系,熟練掌握三角形的三邊關系是解決此類問題的關鍵.16.一副直角三角板如圖放置,其中∠B=∠D=90°,∠E=45°,∠A=30°,將三角板CDE繞點C順時針旋轉α度(0°<α<180°).若DE所在直線與三角板ABC各邊所在直線平行,則α的度數為___.答案:90°,30°,45°【分析】分4種情況:①當CD∥AB時,②當ED∥AC時,③當ED∥BC時,④當EC∥AB時,分類討論,即可求解.【詳解】解:①當CD∥AB時,則∠DCB=90°,即:α解析:90°,30°,45°【分析】分4種情況:①當CD∥AB時,②當ED∥AC時,③當ED∥BC時,④當EC∥AB時,分類討論,即可求解.【詳解】解:①當CD∥AB時,則∠DCB=90°,即:α=90°;②當ED∥AC時,則∠DCA=90°,即:α=120°-90°=30°;③當ED∥BC時,則∠DCB=90°,即:α=90°;④當EC∥AB時,則∠ECB=90°,即:α=90°-45°=45°.故答案是:90°,30°,45°.【點睛】本題主要考查平行線的性質,關鍵是分類討論,掌握平行線的性質.17.計算:(1)(2)答案:(1);(2)9【分析】(1)根據冪的乘方和積的乘方法則計算,再合并同類項;(2)根據零指數冪,乘方和負指數冪法則計算,再作加減法.【詳解】解:(1)==;(2)==9【點睛】解析:(1);(2)9【分析】(1)根據冪的乘方和積的乘方法則計算,再合并同類項;(2)根據零指數冪,乘方和負指數冪法則計算,再作加減法.【詳解】解:(1)==;(2)==9【點睛】本題考查了整式的混合運算,實數的混合運算,解題的關鍵是掌握運算法則和運算順序.18.因式分解:(1)2m2﹣4mn+2n2;(2)x4﹣1.答案:(1)2(m﹣n)2;(2)(x2+1)(x+1)(x﹣1).【分析】(1)綜合利用提取公因式法和公式法進行因式分解即可;(2)利用兩次平方差公式進行因式分解即可.【詳解】解:(1)2m2解析:(1)2(m﹣n)2;(2)(x2+1)(x+1)(x﹣1).【分析】(1)綜合利用提取公因式法和公式法進行因式分解即可;(2)利用兩次平方差公式進行因式分解即可.【詳解】解:(1)2m2﹣4mn+2n2=2(m2﹣2mn+n2)=2(m﹣n)2;(2)x4﹣1=(x2+1)(x2﹣1)=(x2+1)(x+1)(x﹣1).【點睛】本題考查了綜合提取公因式法和公式法、公式法進行因式分解,因式分解的主要方法包括:提取公因式法、公式法、十字相乘法、分組分解法等,熟記各方法是解題關鍵.19.解方程組:(1).(2).答案:(1);(2)【分析】(1)應用加減消元法,由①×2+②×3,消去y,求出x,即可得出答案;(2)應用加減消元法,由①×12+②,消去y,求出x,即可得出答案.【詳解】解:(1),①×2解析:(1);(2)【分析】(1)應用加減消元法,由①×2+②×3,消去y,求出x,即可得出答案;(2)應用加減消元法,由①×12+②,消去y,求出x,即可得出答案.【詳解】解:(1),①×2+②×3,得2x+9x=﹣2+24,解得x=2,把x=2代入②,得3×2﹣2y=8,解得y=﹣1,所以方程組的解為;(2),①×12+②,得6x+3x=﹣24+6解得x=﹣2,把x=﹣2代入②式,得3×(﹣2)﹣4y=6,解得y=﹣3,所以方程組得解為.【點睛】本題主要考查了解二元一次方程組,熟練掌握解二元一次方程組的解法——加減消元法和代入消元法,是解題的關鍵.20.已知,以二元一次方程組的解為坐標的點在第一象限,求的取值范圍.答案:【分析】解關于x、y的二元一次方程組,得x與y,再根據點在第一象限的坐標特征即可得到關于k的一元一次不等式組,解不等式組即可.【詳解】解方程組得,由題意知,,∴,解不等式組得,.【點解析:【分析】解關于x、y的二元一次方程組,得x與y,再根據點在第一象限的坐標特征即可得到關于k的一元一次不等式組,解不等式組即可.【詳解】解方程組得,由題意知,,∴,解不等式組得,.【點睛】本題考查了二元一次方程組的解法,一元一次不等式的解法,點在各個象限的坐標特征等知識,難點在于解含有參數k的二元一次方程組.三、解答題21.如圖,已知∠3=∠B,且∠AEF=∠ABC.(1)求證:∠1+∠2=180°;(2)若∠1=60°,∠AEF=2∠FEC,求∠ECB的度數.答案:(1)見解析;(2)20°【分析】(1)根據平行線的判定與性質即可證明;(2)結合(1)和已知條件,利用平行線的判定與性質即可求出結果.【詳解】(1)證明:∵∠3=∠B,∠AEF=∠ABC解析:(1)見解析;(2)20°【分析】(1)根據平行線的判定與性質即可證明;(2)結合(1)和已知條件,利用平行線的判定與性質即可求出結果.【詳解】(1)證明:∵∠3=∠B,∠AEF=∠ABC,∴∠3=∠AEF,∴ABFD,∴∠2=∠FDE,∵∠1+∠FDE=180°,∴∠1+∠2=180°;(2)解:∵∠1+∠2=180°,∠1=60°,∴∠2=180°﹣60°=120°,∵∠AEF=2∠FEC,∠AEF+∠FEC+∠2=180°,∴3∠FEC+120°=180°,∴∠FEC=20°,∵∠AEF=∠ABC,∴EFBC,∴∠CEF=∠ECB,∴∠ECB=20°.【點睛】本題綜合考查平行線的判定與性質,等式的性質,角的和差等相關知識點,重點掌握平行線的判定與性質,混淆點學生在書寫時易將平行線的判定與性質寫錯.22.某數碼專營店銷售A,B兩種品牌智能手機,這兩種手機的進價和售價如表所示:AB進價(元/部)33003700售價(元/部)38004300(1)該店銷售記錄顯示,三月份銷售A、B兩種手機共34部,且銷售A種手機的利潤恰好是銷售B種手機利潤的2倍,求該店三月份售出A種手機和B種手機各多少部?(2)根據市場調研,該店四月份計劃購進這兩種手機共40部,要求購進B種手機數不低于A種手機數的,用于購買這兩種手機的資金低于140000元,請通過計算設計所有可能的進貨方案.答案:(1)該店三月份售出A種手機24部,B種手機10部;(2)共有5種進貨方案,分別是A種手機21部,B種手機19部;A種手機22部,B種手機18部;A種手機23部,B種手機17部;A種手機24部,B種解析:(1)該店三月份售出A種手機24部,B種手機10部;(2)共有5種進貨方案,分別是A種手機21部,B種手機19部;A種手機22部,B種手機18部;A種手機23部,B種手機17部;A種手機24部,B種手機16部;A種手機25部,B種手機15部【分析】(1)設該店三月份售出A種手機x部,B種手機y部,由“三月份銷售A、B兩種手機共34部,且銷售A種手機的利潤恰好是銷售B種手機利潤的2倍”列出方程組,可求解;(2)設A種手機a部,B種手機(40﹣a)部,由“購進B種手機數不低于A種手機數的,用于購買這兩種手機的資金低于140000元”列出不等式組,即可求解.【詳解】解:(1)設該店三月份售出A種手機x部,B種手機y部,由題意可得:,解得:,答:該店三月份售出A種手機24部,B種手機10部;(2)設A種手機a部,B種手機(40﹣a)部,由題意可得,解得:20<a≤25,∵a為整數,∴a=21,22,23,24,25,∴共有5種進貨方案,分別是A種手機21部,B種手機19部;A種手機22部,B種手機18部;A種手機23部,B種手機17部;A種手機24部,B種手機16部;A種手機25部,B種手機15部.【點睛】本題考查了一元一次不等式組解實際問題的運用,二元一次方程組解實際問題的運用,找準等量關系,正確列出二元一次方程組是解題的關鍵.23.某文具店準備購進甲,乙兩種鋼筆,若購進甲種鋼筆100支,乙種鋼筆50支,需要1000元,若購進甲種鋼筆50支,乙種鋼筆30支,需要550元.(1)求購進甲,乙兩種鋼筆每支各需多少元?(2)若購進了甲種鋼筆80支,乙種鋼筆60支,求需要多少元?(3)若該文具店準備拿出1000元全部用來購進這兩種鋼筆,考慮顧客需求,要求購進甲種鋼筆的數量不少于乙種鋼筆數量的6倍,且不超過乙種鋼筆數量的8倍,那么該文具店共有幾種購進方案.答案:(1)甲種鋼筆每支需5元,乙種鋼筆每支需10元;(2)1000元;(3)6種【分析】(1)設購進甲種鋼筆每支需元,購進乙種鋼筆每支需元,根據“若購進甲種鋼筆100支,乙種鋼筆50支,需要1000解析:(1)甲種鋼筆每支需5元,乙種鋼筆每支需10元;(2)1000元;(3)6種【分析】(1)設購進甲種鋼筆每支需元,購進乙種鋼筆每支需元,根據“若購進甲種鋼筆100支,乙種鋼筆50支,需要1000元,若購進甲種鋼筆50支,乙種鋼筆30支,需要550元”,即可得出關于,的二元一次方程組,解之即可得出甲、乙兩種鋼筆的單價;(2)利用總價單價數量,即可求出購進甲種鋼筆80支、乙種鋼筆60支所需費用;(3)設購進甲種鋼筆支,則購進乙種鋼筆支,根據“購進甲種鋼筆的數量不少于乙種鋼筆數量的6倍,且不超過乙種鋼筆數量的8倍”,即可得出關于的一元一次不等式組,解之即可得出的取值范圍,結合,均為正整數,即可得出進貨方案的數量.【詳解】解:(1)設購進甲種鋼筆每支需元,購進乙種鋼筆每支需元,依題意得:,解得:.答:購進甲種鋼筆每支需5元,購進乙種鋼筆每支需10元.(2)(元.答:需要1000元.(3)設購進甲種鋼筆支,則購進乙種鋼筆支,依題意得:,解得:.又,均為正整數,可以為150,152,154,156,158,160,該文具店共有6種購進方案.【點睛】本題考查了二元一次方程組的應用、有理數的混合運算以及一元一次不等式組的應用,解題的關鍵是:(1)找準等量關系,正確列出二元一次方程組;(2)根據各數量之間的關系,列式計算;(2)根據各數量之間的關系,找出關于的一元一次不等式組.24.如圖1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.(1)求證:∠BED=90°;(2)如圖2,延長BE交CD于點H,點F為線段EH上一動點,∠EDF=α,∠ABF的角平分線與∠CDF的角平分線DG交于點G,試用含α的式子表示∠BGD的大?。唬?)如圖3,延長BE交CD于點H,點F為線段EH上一動點,∠EBM的角平分線與∠FDN的角平分線交于點G,探究∠BGD與∠BFD之間的數量關系,請直接寫出結論:.答案:(1)見解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根據角平分線的性質求出∠EBD+∠EDB=(∠ABD+∠BDC),根據平行線的性質∠ABD+∠BDC=180°解析:(1)見解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根據角平分線的性質求出∠EBD+∠EDB=(∠ABD+∠BDC),根據平行線的性質∠ABD+∠BDC=180°,從而根據∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;(2)過點G作GP∥AB,根據AB∥CD,得到GP∥AB∥CD,從而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根據∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分線的定義求出2∠ABG+2∠CDG=90°﹣α即可得到答案;(3)過點F、G分別作FM∥AB、GM∥AB,從而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根據BG平分∠FBP,DG平分∠FDQ,∠4=∠FBP=(180°﹣∠3),∠6=∠FDQ=(180°﹣∠5),即可求解.【詳解】解:(1)證明:∵BE平分∠ABD,∴∠EBD=∠ABD,∵DE平分∠BDC,∴∠EDB=∠BDC,∴∠EBD+∠EDB=(∠ABD+∠BDC),∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠EBD+∠EDB=90°,∴∠BED=180°﹣(∠EBD+∠EDB)=90°.(2)解:如圖2,由(1)知:∠EBD+∠EDB=90°,又∵∠ABD+∠BDC=180°,∴∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,∵BG平分∠ABE,DG平分∠CDF,∴∠ABE=2∠ABG,∠CDF=2∠CDG,∴2∠ABG+2∠CDG=90°﹣α,過點G作GP∥AB,∵AB∥CD,∴GP∥AB∥CD∴∠ABG=∠BGP,∠PGD=∠CDG,∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=;(3)如圖,過點F、G分別作FN∥AB、GM∥AB,∵AB∥CD,∴AB∥GM∥FN∥CD,∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,∴∠BFD=∠BFN+∠DFN=∠3+∠5,∠BGD=∠BGM+∠DGM=∠4+∠6,∵BG平分∠FBP,DG平分∠FDQ,∴∠4=∠FBP=(180°﹣∠3),∠6=∠FDQ=(180°﹣∠5),∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,=∠3+∠5+(180°﹣∠3)+(180°﹣∠5),=180°+(∠3+∠5),=180°+∠BFD,整理得:2∠BGD+∠BFD=360°.【點睛】本題主要考查了平行線的性質與判定,角平分線的性質和三角形內角和定理,解題的關鍵在于能夠熟練掌握相關知識進行求解.25.在△ABC中,∠ABC=∠ACB,點D在直線BC上(不與B、C重合),點E在直線AC上(不與A、C重合),且∠ADE=∠AED.(1)如圖1,若∠ABC=50°,∠AED=80°,則∠CDE=°,此時,=.(2)若點D在BC邊上(點B、C除外)運動(如圖1),試探究∠BAD與∠CDE的數量關系,并說明理由;(3)若點D在線段BC的延長線上,點E在線段AC的延長線上(如圖2),其余條件不變,請直接寫出∠BAD與∠CDE的數量關系:.(4)若點D在線段CB的延長線上(如圖3),點E在直線AC上,∠BAD=26°,其余條件不變,則∠CDE=(友情提醒:可利用圖3畫圖分析).答案:(1)30,2;(2)∠BAD=2∠CDE,理由見解析;(3)∠BAD=2∠CDE;(4)77°或13°.【分析】(1)利用三角形內角和定理以及三角形的外角的性質解決問題即可;(2)結論:∠B解析:(1)30,2;(2)∠BAD=2∠CDE,理由見解析;(3)∠BAD=2∠CDE;(4)77°或13°.【分析】(1)利用三角形內角和定理以及三角形的外角的性質解決問題即可;(2)結論:∠BAD=2∠CDE.設∠B=∠C=x,∠AED=∠ADE=y,則∠BAC=180°-2x,∠CDE=yx,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論