綿陽市高中2023級第一次診斷性考試數學(綿陽A卷)_第1頁
綿陽市高中2023級第一次診斷性考試數學(綿陽A卷)_第2頁
綿陽市高中2023級第一次診斷性考試數學(綿陽A卷)_第3頁
綿陽市高中2023級第一次診斷性考試數學(綿陽A卷)_第4頁
綿陽市高中2023級第一次診斷性考試數學(綿陽A卷)_第5頁
免費預覽已結束,剩余5頁可下載查看

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

綿陽市高中2023級第一次診斷性考試

數學參考答案及評分標準

一、選擇題:本題共8小題,每小題5分,共40分.

1.B2.D3.C4.A5.B6.A7.D8.C

二、選擇題:本大題共3小題,每小題6分,共18分.全部選對的得6分,選對但不

全的得部分分,有選錯的得0分.

9.ACD10.AC11.ABD

三、填空題:本題共3個小題,每小題5分,共15分.

12.;13.2;14.(—1,0)U(0,1)

四、解答題:本題共5小題,第15題13分,第16、17小題15分,第18、19小題17

分,共77分.解答應寫出文字說明、證明過程或演算步驟.

15.解:(1)∵f=cos則cos······························2分

又φ∈(0,兀),∴,·································································4分

∴f=cos·······································································6分

(2)由題知:g=fcossinx,

∴h.g=2sinxcos············································7分

∴hsin2xcos2xsin···························9分

∵y=sinx的單調遞增區(qū)間為,k∈Z,···················11分

數學參考答案及評分標準第1頁,共6頁

k兀≤2x2k兀,k∈Z·············································10分

k?!躼k兀,k∈Z······················································12分

∴函數h(x)的單調遞增區(qū)間為k兀k兀],k∈Z.···················13分

16.解:(1)∵f(x)為R上的奇函數,

∴必有f(0)=—b=0,則b=0,·························································2分

∴f(x)=x|x+a|,同理由f(1)=—f(—1),∴|1+a|=|—1+a|,故a=0,

此時,f(x)=x|x|,對任意實數x,都滿足f(x)=—f(—x),···················4分

∴f(x)為R上的奇函數,

∴f(x)=xx;················································································6分

(2)思路一:∵當x≥1時,f(x)>0,

∴f(1)=|a+1|—(a2+1)>0,解得:0<a<1,·······································9分

∴f(x)=x(x+a)—(a2+1)=x2+ax—a2—1,

易知f(x)在[1,+∞)上單調遞增,······················································12分

∴當0<a<1時,f(x)≥f(1)=a(1—a)>0,········································14分

∴實數a的取值范圍(0,1).·····························································15分

思路二:∵當x≥1時,f(x)>0,且b=a2+1,即對任意x≥1,都有x|x+a|>a2+1

恒成立,即|x+a·····································································7分

∴x+a或x+a對任意的x≥1恒成立,·······················8分

∴x或x+a對任意的x≥1恒成立,·················10分

令g=xa,易知g(x)在[1,+∞)單調遞增,························11分

數學參考答案及評分標準第2頁,共6頁

2

故g(x)min=g(1)=a—a>0,···························································12分

∴0<a<1,··················································································13分

令h=xa,易知h(x)在[1,+∞)無最大值,故不滿足h(x)<0恒成立,

···································································································14分

綜上:0<a<1.···········································································15分

17.解:(1)設公差為d,則由題意可得:···········3分

解得:=1d=所以:································6分

a1,,an

(2)不能構成等比數列,··································································7分

其理由如下:在數列{an}中任取三項分別為:=m+1—

am·、·、,

=n+1—=·t+1—·················································9分

an·、·、,at·、,

2

若am,an,at成等比數列,則an=am.at,

即:(·、n+1—·、)2=(·、m+1—·、).(·、+1—·、),····························10分

整理得:3n2—3mt—6n+3(m+t)=·(m+t—2n),······························11分

因為m,n,t為正整數,所以:·················12分

化簡整理得:(m—t)2=0,所以m=n=t與題意矛盾,·························14分

所以,在數列{an}中取三個不同的項,均不能構成等比數列.··················15分

18.解:(1)f(x)=—x3+ax2+x=—x(x2—ax—1),

可知有一個零點一定是0,且對于方程:x2—ax—1=0,Δ=a2+4>0,且0一定不

是方程x2—ax—1=0的根,

∴f(x)有3個相異零點;··································································3分

(2)f,(x)=—3x2+2ax+1,其中Δ=4a2+12>0,

2

故x1,x2是方程—3x+2ax+1=0的兩根,················································4分

數學參考答案及評分標準第3頁,共6頁

222

由韋達定理可得:,故x1+x2=—2x1x······5分

3232

f(x1)+f(x2)=—x1+ax1+x1—x2+ax2+x2

2222

—(x1+x2)(x1—x1x2+x2)+a(x1+x2)+(x1+x2),··············7分

帶入得解得:a=1;······9分

另解:由f,(x)=—3x2+2ax+1,f,,(x)=—6x+2a,

令f,,(x)=—6x+2a=0,解得:x

a

又f故函數f(x)圖像關于點(,)成中心對稱,又三次函數

3

的極值點關于對稱中心對稱,故f+f解得:a=1;

(3)由三次函數圖象可知,f(x)=f(x2)有且僅有兩根為x2,m,

則m<x1<0<x2,

3232

即—x+ax+x=—x2+ax2+x2,有且僅有兩根為x2,m,

22

整理得:(x—x2)[x+x2x+x2—a(x+x2)—1]=0,

22

所以x3是方程x+x2x+x2—a(x+x2)—1=0的根,······························12分

2

又x2是方程—3x+2ax+1=0的根,故a,·································13分

222

代入上式整理得到:2x2x—(x2—1)x—x2(x2+1)=0,

2

即(x—x2)(2x2x+x2+1)=0,·······························································15分

故m······················································16分

故m的最大值為?1.·······································································17分

19.解:(1)證明:f,(x)=—a(ex—1)+(1—ax)ex—1,注意到f,(0)=0,

數學參考答案及評分標準第4頁,共6頁

f(x)=(—ax+1—2a)ex,x≥0.························································2分

因為a,則f(x)≤0,

因此f(x)在[0,+∞)單調遞減,故f(x)≤f(0)=0,·····························3分

故f(x)在[0,+∞)單調遞減,因此f(x)≤f(0)=0;·······························4分

(2)(i)證明:g故g(x)在點An處的切線方程為y+lnean,

·······························································································5分

與ex—1聯(lián)立,可得ex,

h(x)=lnan=0

令ex,則ex

u=lnanu=

故u(x)在(0,1—lnan)單調遞減,在(1—lnan,+∞)單調遞增,··················6分

因為an<1,則1—lnan>1,且ulnanln

an—1

而u(an)=e—1—lnan>an—1—lnan>0,

故u(x)在(an,1)上存在唯一零點,即為bn,故an<bn<1,······················7分

b—1b—1

同理,在點處的切線方程為enen,分

h(x)Bny=(x—bn)+·····················8

b—1

與聯(lián)立,有en,

g(x)(x+1—bn)—lnx—1=0

令ebn—1,ebn

v(x)=(x+1—bn)—lnx—1v=

1—b1—bn

則v(x)在(0,en)單調遞減,在(e,+∞)單調遞增,

1—b

因為,故en,分

0<bn<1>1······························································9

b—1x—1x—1

en.考慮e,e,

v(1)=(2—bn)—1w(x)=(2—x)—1w(x)=(1—x)

則w(x)在(0,1)單調遞增,故w(x)<w(1)=0,故v(1)<0,

且ebn—1,

v(bn)=—lnbn—1>bn—lnbn—1>0

數學參考答案及評分標準第5頁,共6頁

故v(x)在(bn,1)存在唯一零點,即an+1,故bn<an+1<1,

因此an<bn<an+1<1,故an<an+1;··················································

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論