山東省青島市城陽區(qū)2024-2025學(xué)年八上11月期中數(shù)學(xué)試題(解析版)_第1頁
山東省青島市城陽區(qū)2024-2025學(xué)年八上11月期中數(shù)學(xué)試題(解析版)_第2頁
山東省青島市城陽區(qū)2024-2025學(xué)年八上11月期中數(shù)學(xué)試題(解析版)_第3頁
山東省青島市城陽區(qū)2024-2025學(xué)年八上11月期中數(shù)學(xué)試題(解析版)_第4頁
山東省青島市城陽區(qū)2024-2025學(xué)年八上11月期中數(shù)學(xué)試題(解析版)_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

-2025學(xué)年度第一學(xué)期階段質(zhì)量檢測八年級數(shù)學(xué)試題(考試時間:120分鐘;滿分:120分)說明:1.本試題分第Ⅰ卷和第Ⅱ卷兩部分,共24題,第Ⅰ卷為選擇題,共10小題,30分;第Ⅱ卷為填空題、解答題,共14小題,90分.2.所有題目均在答題卡上作答,在試題上作答無效.第Ⅰ卷(共30分)一、選擇題(本大題共10小題,每小題3分,共30分)在每小題給出的四個選項中,只有一項是符合題目要求的.1.在實數(shù)3.14,0,,,1.1010016…(相鄰兩個1之間0個數(shù)逐次加1)中,其中無理數(shù)的個數(shù)是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】本題考查無理數(shù)的識別,解題的關(guān)鍵是掌握:無限不循環(huán)小數(shù)為無理數(shù),整數(shù)和分?jǐn)?shù)統(tǒng)稱為有理數(shù).據(jù)此判斷即可.也考查了算術(shù)平方根.【詳解】解:,∴無理數(shù)有,1.1010016…(相鄰兩個1之間0的個數(shù)逐次加1),共2個故選:B.2.下列條件中,不能確定是直角三角形的是()A. B.C. D.【答案】C【解析】【分析】本題主要考查了勾股定理的逆定理和三角形內(nèi)角和定理;根據(jù)勾股定理的逆定理和三角形內(nèi)角和定理分析判斷即可.【詳解】解:A.若,則有,則,故是直角三角形,該選項不符合題意;B.若,設(shè),則,由勾股定理的逆定理可知是直角三角形,該選項不符合題意;C.若,設(shè),,,則有,解得,則,,,故不是直角三角形,該選項符合題意;D.若,則有,由勾股定理的逆定理可知是直角三角形,該選項不符合題意.故選:C.3.下列計算正確的是()A. B.C. D.【答案】D【解析】【分析】本題考查了二次根式的化簡,二次根式的減法和乘法運算,根據(jù)運算法則逐一計算進(jìn)行判斷即可.【詳解】解:A、與不是同類二次根式,不能合并,故計算錯誤,不符合題意;B、,故計算錯誤,不符合題意;C、,故計算錯誤,不符合題意;D、,故計算正確,符合題意;故選:D.4.一個正方體的體積為35,估計這個正方體的棱長在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間【答案】B【解析】【分析】本題考查了估算無理數(shù)的大小,解決本題的關(guān)鍵是估算無理數(shù)的范圍.根據(jù)正方體的體積,求出正方體的棱長,估算的范圍.【詳解】解:∵正方體的體積為35,∴正方體的棱長為,∵,∴,故選:B.5.下列各點在一次函數(shù)的圖象上的是()A. B. C. D.【答案】D【解析】【分析】分別將各個選項的橫坐標(biāo)代入求解.【詳解】把代入得,不在圖像上,A選項錯誤;把代入得,不在圖像上,B選項錯誤;把代入得,不在圖像上,C選項錯誤;把代入得,在圖像上,D選項正確;故選:D.【點睛】本題考查一次函數(shù)圖象上點的坐標(biāo)特征,解題關(guān)鍵是掌握一次函數(shù)與方程的關(guān)系.6.觀察下表,被開方數(shù)a的小數(shù)點的位置移動和它的算術(shù)平方根的小數(shù)點的位置移動符合一定的規(guī)律.a(chǎn)11001000010000001101001000若,則()A. B. C. D.1414【答案】B【解析】【分析】此題考查的是算術(shù)平方根的探索規(guī)律題,掌握被開方數(shù)的小數(shù)點位置移動和它的算術(shù)平方根的小數(shù)點位置移動規(guī)律是解決此題的關(guān)鍵.根據(jù)題意和表格中數(shù)據(jù)的變化規(guī)律,可以求得的值.【詳解】解:∵,∴,故選:B.7.已知點,都在直線上,則,大小關(guān)系是()A. B. C. D.不能比較【答案】A【解析】【分析】本題考查了一次函數(shù)的增減性,熟練掌握函數(shù)的性質(zhì)是解題的關(guān)鍵.根據(jù)得到y(tǒng)隨x的增大而增大,比較判斷選擇即可.【詳解】解:∵點,都在直線上,且,,∴y隨x的增大而增大,,故選:A.8.計算所得結(jié)果是()A.3 B. C. D.【答案】C【解析】【分析】本題考查化簡二次根式,根據(jù)二次根式的性質(zhì),化簡即可.【詳解】解:;故選C.9.將常溫中的溫度計插入一杯的熱水(恒溫)中,溫度計的讀數(shù)與時間的關(guān)系用圖象可近似表示為()A. B. C. D.【答案】C【解析】【分析】本題考查了函數(shù)圖象,根據(jù)溫度計上升到一定的溫度后不變,可得答案;注意溫度計的溫度升高到時溫度不變.【詳解】解:將常溫中的溫度計插入一杯(恒溫)的熱水中,注意溫度計的溫度升高到時溫度不變,故C選項圖象符合條件,故選:C.10.如圖,在中,,,在數(shù)軸上,以原點為圓心,斜邊的長為半徑畫弧,交負(fù)半軸于一點,則這個點表示的實數(shù)是()A. B. C. D.2【答案】B【解析】【分析】本題考查了勾股定理和用數(shù)軸上的點表示無理數(shù),熟練掌握知識點是解題的關(guān)鍵,先利用勾股定理求出的長度,再根據(jù)在數(shù)軸的正負(fù)半軸求解即可.【詳解】在中,,,∴,∵以原點為圓心,斜邊的長為半徑畫弧,交負(fù)半軸于一點,∴這個點表示的實數(shù)是,故選:B.第Ⅱ卷(共90分)二、填空題(本大題共6小題,每小題3分,共18分)11.的算術(shù)平方根是_________.【答案】0.1【解析】【分析】如果一個非負(fù)數(shù)x的平方等于a,那么x是a的算術(shù)平方根,根據(jù)此定義即可求出結(jié)果.【詳解】解:根據(jù)算術(shù)平方根的定義可得:0.01的算術(shù)平方根為0.1;故答案為:0.1.【點睛】此題主要考查了算術(shù)平方根的定義,算術(shù)平方根的概念易與平方根的概念混淆而導(dǎo)致錯誤,弄清概念是解決本題的關(guān)鍵.12.如圖①,用一個平面截長方體,得到如圖②的幾何體,它在我國古代數(shù)學(xué)名著《九章算術(shù)》中被稱為“塹堵”,若長方體的長、寬、高分別為5,2,3,則圖①中截面的周長為_____________.【答案】【解析】【分析】本題考查勾股定理求線段長,由題意,數(shù)形結(jié)合,利用勾股定理得到截面長方形的長,進(jìn)而由長方形周長公式得出答案,掌握勾股定理是解決問題的關(guān)鍵.【詳解】解:如圖所示:,,圖①中截面的周長為,故答案為:.13.如圖①,“燕幾”即宴幾,是世界上最早的一套組合桌,由北宋進(jìn)士黃伯思設(shè)計,全套“燕幾”一共有七張桌子,包括兩張長桌、兩張中桌和三張小桌,每張桌面的寬都相等.七張桌面分開可組合成不同的圖形.如圖②給出了《燕幾圖》中名稱為“回文”的桌面拼合方式,若設(shè)每張桌面的寬為x尺,長桌的長為y尺,則y與x的關(guān)系可以表示為_______.【答案】【解析】【分析】本題主要考查了列函數(shù)關(guān)系式,觀察可知,小桌的長是小桌寬的兩倍,則小桌的長是,再根據(jù)長桌的長等于小桌的長加上2倍的小桌的寬列出對應(yīng)的函數(shù)關(guān)系式即可.【詳解】解:由題意可得,小桌的長是小桌寬的兩倍,則小桌的長是,∴,故答案為:.14.如圖,一次函數(shù)的圖象與軸相交于點,則點關(guān)于軸的對稱點是_____________.【答案】【解析】【分析】本題考查一次函數(shù)與坐標(biāo)軸交點坐標(biāo)的求法、點的對稱等知識,先求出直線與軸的交點的坐標(biāo),再由點的對稱性質(zhì)求解即可得到答案,熟連掌握一次函數(shù)圖象與性質(zhì)、點的對稱性質(zhì)是解決問題的關(guān)鍵.【詳解】解:一次函數(shù)的圖象與軸相交于點,當(dāng)時,,解得,即,點關(guān)于軸的對稱點是,故答案為:.15.如圖,由20個邊長為1的小正方體搭成一個組合體,螞蟻從左下角點A爬到右上角點B的最短路線長度是_____________.【答案】【解析】【分析】本題主要考查平面展開—最短路徑問題,涉及勾股定理,熟練掌握勾股定理是解題的關(guān)鍵.根據(jù)幾何體畫展開圖,構(gòu)建直角,再根據(jù)勾股定理計算即可.【詳解】解:將組合體展開,如圖,∵,,∴,∴,故答案為:.16.任取一個正整數(shù),若是奇數(shù),就將該數(shù)乘3再加上1;若是偶數(shù),就將該數(shù)除以2.反復(fù)進(jìn)行上述兩種運算,經(jīng)過有限次運算后,必進(jìn)入循環(huán)圈1→4→2→1,這就是“冰雹猜想”.在平面直角坐標(biāo)系中,將點中的,分別按照“冰雹猜想”同步進(jìn)行運算得到新的點的橫、縱坐標(biāo),其中,均為正整數(shù).例如,點經(jīng)過第1次運算得到點,經(jīng)過第2次運算得到點,以此類推.則點1,4經(jīng)過2024次運算后得到點________.【答案】【解析】【分析】本題考查了新定義,點的規(guī)律,根據(jù)新定義依次計算出各點的坐標(biāo),然后找出規(guī)律,最后應(yīng)用規(guī)律求解即可.【詳解】解:點1,4經(jīng)過1次運算后得到點為,即為,經(jīng)過2次運算后得到點為,即為,經(jīng)過3次運算后得到點為,即為,……,發(fā)現(xiàn)規(guī)律:點1,4經(jīng)過3次運算后還是1,4,∵,∴點1,4經(jīng)過2024次運算后得到點,故答案為:.三、解答題(本大題共6小題,共72分)17.計算:(1);(2);(3);(4).【答案】(1)(2)(3)4(4)【解析】【分析】本題主要考查了二次根式的加減乘除混合運算,二次根式的化簡,熟練掌握二次根式的加減乘除混合運算法則和運算順序是解題的關(guān)鍵.(1)先計算,再進(jìn)行化簡;(2)先轉(zhuǎn)化為乘法,然后利用乘法分配律進(jìn)行計算;(3)利用除法的性質(zhì)進(jìn)行計算;(4)利用乘法公式進(jìn)行計算.【小問1詳解】解:原式【小問2詳解】解:原式【小問3詳解】解:原式【小問4詳解】解:原式18.某小區(qū)在社區(qū)管理人員及社區(qū)居民的共同努力之下,在臨街的拐角建造了一塊綠化地(陰影部分).如圖,已知,,,.技術(shù)人員通過測量確定了.(1)小區(qū)內(nèi)部分居民每天必須從點A經(jīng)過點B再到點C位置,為了方便居民出入,技術(shù)人員打算在綠地中開辟一條從點A直通點C的小路,請問如果方案落實施工完成,居民從點A到點C將少走多少路程?(2)這片綠地的面積是多少?【答案】(1)(2)【解析】【分析】(1)連接,利用勾股定理求出,問題隨之得解;(2)先利用勾股定理逆定理證明是直角三角形,,再根據(jù)三角形的面積公式即可求解.小問1詳解】如圖,連接,∵,,,∴,∴,答:居民從點A到點C將少走路程.【小問2詳解】∵,.,∴,∴是直角三角形,,∴,,∴,答:這片綠地的面積是.【點睛】本題主要考查了勾股定理及其逆定理,掌握勾股定理及其逆定理是解答本題的關(guān)鍵.19.如圖,猴山的坐標(biāo)為,孔雀園的坐標(biāo)為0,2.(1)車站的坐標(biāo)為;(2)現(xiàn)要建一個小涼亭,到猴山、大門、車站的距離都相等,則小涼亭的坐標(biāo)為;(3)在(2)的條件下,若一位游客游玩路線為:大門→小涼亭→虎山→孔雀園→車站,則這一總路線的長度為單位長度.【答案】(1)(2)(3)【解析】【分析】本題主要考查了坐標(biāo)確定位置,兩點間距離公式,線段垂直平分線的判定,解題關(guān)鍵是根據(jù)已知條件,畫出平面直角坐標(biāo)系.(1)根據(jù)猴山的坐標(biāo)確定坐標(biāo)原點,然后根據(jù)坐標(biāo)原點畫出平面直角坐標(biāo)系,觀察就能得出答案;(2)可知小涼亭在猴山、大門確定的線段垂直平分線和大門、車站確定的線段的垂直平分線的交點,即可求解;(3)根據(jù)兩點間距離公式求出各路線長,再相加即可.【小問1詳解】解:由題意得,建立平面直角坐標(biāo)系,如圖:∴車站的坐標(biāo)為1,0,故答案為:1,0;【小問2詳解】解:∵小涼亭到猴山、大門、車站的距離都相等,∴小涼亭在猴山、大門確定的線段垂直平分線和大門、車站確定的線段的垂直平分線的交點,∴小涼亭的坐標(biāo)為,故答案為:【小問3詳解】解:由坐標(biāo)系得大門坐標(biāo)為,虎山坐標(biāo)為0,4,而孔雀園坐標(biāo)0,2,車站的坐標(biāo)1,0,小涼亭的坐標(biāo)∴大門到小游亭的距離為:,小游亭到虎山的距離為:,虎山到孔雀園的距離為:,孔雀園到車站的距離為:,∴總路線的長度為:,故答案為:.20.如圖,五一假期,數(shù)學(xué)興趣小組的同學(xué)來到城陽區(qū)瀾灣藝術(shù)公園露營、放風(fēng)箏,他們想知道風(fēng)箏離地面的垂直高度,于是利用所學(xué)數(shù)學(xué)知識來解決實際問題,實踐報告如下:活動課題探究風(fēng)箏離地面垂直高度活動工具直角三角板、皮尺等活動過程小組成員測量了相關(guān)數(shù)據(jù),并畫出了如圖所示的示意圖,測得水平距離的長為15米,根據(jù)手中剩余線的長度計算出風(fēng)箏線的長為17米,牽線放風(fēng)箏的手到地面的距離為1.5米.(即米)問題解決(1)求風(fēng)箏離地面的垂直高度.(2)如果小明想要把風(fēng)箏沿射線方向再上升12米,且長度不變,那么他應(yīng)該再放出多少米線?請你幫助興趣小組解決以上問題.【答案】(1)9.5米;(2)8米【解析】【分析】本題考查了用勾股定理解決實際問題,解題的關(guān)鍵是熟練掌握勾股定理.(1)利用勾股定理求出的長,再加上的長度,即可求解;(2)根據(jù)勾股定理計算即可得到結(jié)論.【詳解】解:(1)由題意得,,米,米,在中,由勾股定理得,,∴米,則米,∴風(fēng)箏離地面的垂直高度為9.5米.(2)如圖,當(dāng)風(fēng)箏沿方向再上升12米時,∴米,在中,由勾股定理得,,∴米,∴米,∴他應(yīng)該再放出8米線.21.在平面直角坐標(biāo)系中描出下列各點,并將這些點依次用線段連接起來.,,.(1)觀察得到的圖形,它位于第象限;(2)將上面各點的橫坐標(biāo)不變,縱坐標(biāo)分別乘,按同樣的方法將所得各點連接起來(畫出符合題意的圖形).所得圖形與原圖形的位置關(guān)系是;(3)在該平面內(nèi)找一點P,使它到點A,O,C,B四個頂點的距離之和最小,則點P的坐標(biāo)為.【答案】(1)作圖見解析,一(2)作圖見解析,關(guān)于x軸對稱(3)【解析】【分析】(1)描出各點,再順次連接即可,可確定在第一象限;(2)此時點的對應(yīng)點為,,,順次連接各點即可得到符合題意的圖形,由橫坐標(biāo)不變,縱坐標(biāo)變?yōu)橄喾磾?shù),則所得圖形與原圖形的位置關(guān)系是關(guān)于x軸對稱,(3)先確定點P為與交點時,最小,求出直線的表達(dá)式,聯(lián)立即可求解點P坐標(biāo).【小問1詳解】解:描出點,順次連接后如圖:由圖可知,位于第一象限,故答案為:一;【小問2詳解】解:由題意得,此時點的對應(yīng)點為,,順次連接后,如圖:∵對應(yīng)點橫坐標(biāo)不變,縱坐標(biāo)變?yōu)橄喾磾?shù),則所得圖形與原圖形的位置關(guān)系是:關(guān)于x軸對稱,故答案為:關(guān)于x軸對稱;【小問3詳解】解:如圖:∵,∴,當(dāng)且僅當(dāng)點P為與交點時,等號成立,如圖:設(shè)直線表達(dá)式為:,則,解得:,∴直線:,同理可求直線,∴聯(lián)立得,解得,∴故答案為:.【點睛】本題考查了坐標(biāo)與圖形,軸對稱變換,三角形的三邊關(guān)系,待定系數(shù)法求一次函數(shù)解析式等知識點,熟練掌握知識點是解題的關(guān)鍵.22.我國新能源汽車快速健康發(fā)展,續(xù)航里程不斷提升,王師傅駕駛一輛純電動汽車從A市前往B市,他駕車從A市一高速公路入口駛?cè)霑r,該車的剩余電量是,行駛了后,從B市一高速公路出口駛出,已知該車在高速公路上行駛的過程中,剩余電量與行駛路程之間的關(guān)系如圖所示.(1)求y與x之間的關(guān)系式;(2)已知這輛車的“滿電量”為,求王師傅駕車從B市這一高速公路出口駛出時,該車的剩余電量占“滿電量”的百分之多少.【答案】(1)y與x之間的關(guān)系式為;(2)該車的剩余電量占“滿電量”的.【解析】【分析】本題考查了一次函數(shù)的應(yīng)用,正確理解題意、求出函數(shù)關(guān)系式是解題的關(guān)鍵.(1)利用待定系數(shù)法求解即可;(2)先求得當(dāng)時,y的值,再計算即可求解.【小問1詳解】解:設(shè)y與x之間的關(guān)系式為,將,代入得,解得,∴y與x之間的關(guān)系式為;【小問2詳解】解:當(dāng)時,,,答:該車的剩余電量占“滿電量”的.23.【問題提出】以長方形的4個頂點和它內(nèi)部的n個點,共個點作為頂點,可把原長方形分割成多少個互不重疊的小三角形?【問題探究】為了解決上面的問題,我們將一般問題特殊化,先從簡單的情形入手:探究一:以長方形的4個頂點和它內(nèi)部的1個點P(如圖①),共5個點為頂點,此時可把長方形分割成個互不重疊的小三角形.探究二:以長方形的4個頂點和它內(nèi)部的2個點P、Q,共6個點為頂點,可把長方形分割成多少個互不重疊的小三角形?在探究一的基礎(chǔ)上,我們可看作在圖①長方形的內(nèi)部,再添加1個點Q,那么點Q的位置會有兩種情況:(1)點Q在圖①分割成的小三角形的某條公共邊上,不妨設(shè)點Q在上(如圖②);(2)點Q在圖①分割成的某個小三角形內(nèi)部,不妨設(shè)點Q在的內(nèi)部(如圖③).顯然,不管哪種情況,都可把長方形分割成個互不重疊的小三角形.探究三:長方形的4個頂點和它內(nèi)部的3個點P、Q、R,共7個點為頂點,可把長方形分割成個互不重疊的小三角形.【問題解決】以長方形的4個頂點和它內(nèi)部的n個點,共個點作為頂點,可把原長方形分割成個互不重疊的小三角形.【實際應(yīng)用】以梯形的4個頂點和它內(nèi)部的2024個點作為頂點,可把梯形分割成個互不重疊的小三角形.【拓展延伸】以m邊形的m個頂點和它內(nèi)部的n個點,共個點作為頂點,可把原m邊形分割成個互不重疊的小三角形.【答案】探究一:4;探究二:6;探究三:8;[問題解決]:;[實際應(yīng)用]:4050;[拓展延伸]:【解析】【分析】本題考查了應(yīng)用與設(shè)計作圖,圖形的變化規(guī)律的問題,讀懂題目信息,根據(jù)前四個探究得到每多一個點,則三角形的個數(shù)增加2是解題的關(guān)鍵.探究一:根據(jù)圖形可回答;探究二:根據(jù)圖形可回答;探究三:根據(jù)圖形可回答;問題解決:由探究活動可得規(guī)律為,進(jìn)而解決問題;實際應(yīng)用:把2024代入所得規(guī)律,求值即可;拓展延伸:由四邊形的規(guī)律可得m邊形的規(guī)律.【詳解】解:探究一:以長方形的4個頂點和它內(nèi)部的1個點(如圖①),共5個點為頂點,此時可把長方形分割成4個互不重疊的小三角形.故答案為:4;探究二:在探究一的基礎(chǔ)上,我們可看作在圖①長方形的內(nèi)部,再添加1個點,那么點的位置會有兩種情況:一種情況是,點在圖①分割成的小三角形的某條公共邊上,不妨設(shè)點在上(如圖②);另一種情況是,點在圖①分割成的某個小三角形內(nèi)部.不妨設(shè)點在△的內(nèi)部(如圖③).不管哪種情況,都可把長方形分割成6個互不重疊的小三角形.故答案:6;探究三:長方形的4個頂點和它內(nèi)部的3個點、、,共7個點為頂點,可把長方形分割成8個互不重疊的小三角形.如圖所示.故答案為:8;[問題解決]以長方形的4個頂點和它內(nèi)部的1個點,共5個點作為頂點,可把原長方形分割成互不重疊的小三角形個數(shù)為:,以長方形的4個頂點和它內(nèi)部的2個點,共6個點作為頂點,可把原長方形分割成互不重疊的小三角形個數(shù)為:,以長方形的4個頂點和它內(nèi)部的3個點,共7個點作為頂點,可把原長方形分割成互不重疊的小三角形個數(shù)為:,所以,以長方形的4個頂點和

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論