版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
TheEnormousEconomicPotentialofGenerativeAI
October2025
JosephBriggsGoldman,Sachs&Co.+1212-902-2163joseph.briggs@
SeniorEconomist
Investorsshouldconsiderthisreportasonlyasinglefactorinmakingtheirinvestmentdecision.ForRegACcerti?cationandotherimportantdisclosures,seetheDisclosureAppendix,orgoto
/research/hedge.html
.
FortheexclusiveuseofNEIL.WANG@TROWEPRICE.COM
AnOverviewofGenerativeAI
Step1:TrainingDatatoNeural
Network
Step3:AIOutputtoHuman
Interface
Step2:NeuralNetworktoAI
Step4:Applications
Output
PreviousMLmethods:
PreviousMLmethods:
Datatrainedonspecialized
databasesforspecificpurposes
(e.g.,makestatisticalpredictions
aboutelectionresults,answer
questionsaboutbiomedical
literature,etc.)
GenerativeAI:
Datatrainedonlarge,generalized
databases(i.e.,theentireinternet);
thus1)widerrangeofusecasesand
2)moreeasilyabletospawn
complementaryinnovationswith
specializedusecases("deepening
ofAI").
Modelsgeneratestatistical
PreviousMLmethods:
-Textclassification
-Facialandimagerecognition
-Statisticalpredictionandinference
GenerativeAI:
-Answercomplextextualquestions
withhuman-likelanguageand
structure
-Createoriginalimages,graphics,andvideobasedonuserqueries
-Generateandexplaincodewhichcanbeusedforotherprogramming
anddatascienceapplications
PreviousMLmethods:
Usersmustusespecificcodeor
syntaxtomakenarrowrequests
basedonthemodel'sintended
function.
GenerativeAI:
Useoflargelanguagemodels
(LLMs)allowsforadvancednatural
languageprocessing(NLP)that
incorporatescontextinlargerswaths
oftext,enablingawidervarietyof
requestsandamoreaccessible
interfaceforhuman-AIinteraction.
predictionsbasedonrelationshipsin
trainingdata.
GenerativeAI:
Modelsseektogeneratenew
informationthatisindistinguishable
fromhumandata.Achievedviathe
introductionofasecond
"discriminative"neuralnet,which
evaluatestheoutputoftheprimary
"generative"neuralnetfor
authenticityrelativetohumanoutput.
This"adversarialneuralnetworks"
approachforcesthegenerative
networktoreviseitsoutputandlearn
toconsistently"fool"the
discriminativenetwork.
Threekeychanges:
1.Generalizedratherthanspecialized-widerusecasesandmorecomplementaryinnovations
2.Generativeratherthandescriptive-canproduceoriginalresultsindistinguishablefromhumanoutput
3.Approachableratherthantechnical-caninterfaceviacomplexandcontextualnaturallanguage
Source:GoldmanSachsGlobalInvestmentResearch.
2
3
O*NETdata:OurBaselineAssumes13TaskCategoriesUptoDifficultyLevelof4CouldBeAutomated
Source:GoldmanSachsGlobalInvestmentResearch.
4
Two-ThirdsofCurrentOccupationsCouldbePartiallyAutomatedbyAI
FortheexclusiveuseofNEIL.WANG@TROWEPRICE.COM
Source:GoldmanSachsGlobalInvestmentResearch.
5
One-FourthofCurrentWorkTasksCouldBeAutomatedbyAIintheUS…
ShareofIndustryEmploymentExposedtoAutomationbyAI:US
PercentPercent
50
40
30
20
10
0
46
44
32
37363533
312928282827262625
19
9
1211
6
4
OfficeandAdministrative
Support
Legal
ArchitectureandEngineering
Life,Physical,andSocial
Science
BusinessandFinancial
Operations
CommunityandSocialService
Management
SalesandRelated
ComputerandMathematical
Farming,Fishing,andForestry
ProtectiveService
HealthcarePractitionersand
Technical
EducationalInstructionand
Library
HealthcareSupport
Arts,Design,Entertainment,
Sports,andMedia
AllIndustries
PersonalCareandService
FoodPreparationandServing
Related
TransportationandMaterial
Moving
Production
ConstructionandExtraction
Installation,Maintenance,and
Repair
BuildingandGroundsCleaning
andMaintenance
1
50
40
30
20
10
0
Source:GoldmanSachsGlobalInvestmentResearch.
6
…AndinEurope
ShareofIndustryEmploymentExposedtoAutomationbyAI:EuroArea
FortheexclusiveuseofNEIL.WANG@TROWEPRICE.COM
PercentPercent
50
40
30
20
10
0
45
34
3129
242221
15
87
ClericalSupportWorkers
Professionals
TechniciansandAssociate
Professionals
Managers
Total
ArmedForcesOccupations
SkilledAgricultural,Forestryand
FisheryWorkers
ServiceandSalesWorkers
ElementaryOccupations
PlantandMachineOperators,
andAssemblers
CraftandRelatedTrades
Workers
4
50
40
30
20
10
0
Source:GoldmanSachsGlobalInvestmentResearch.
7
Globally,18%ofWorkCouldbeAutomatedbyAI,withLargerEffectsinDMsthanEMs
FortheexclusiveuseofNEIL.WANG@TROWEPRICE.COM
Source:GoldmanSachsGlobalInvestmentResearch.
8
LargerEstimatesAssumetheAutomationofPhysicalTasksLessThatSeemLikelyintheNear-Term
FortheexclusiveuseofNEIL.WANG@TROWEPRICE.COM
Source:GoldmanSachsGlobalInvestmentResearch.
9
ReplacementinLegalandAdministrativeFields,Productivity-EnhancementElsewhere
FortheexclusiveuseofNEIL.WANG@TROWEPRICE.COM
Source:GoldmanSachsGlobalInvestmentResearch.
10
StudiesofEarlyAdoptersFindThatAIAdoption
IncreasesWorkerProductivityby27-31%onAverage
FortheexclusiveuseofNEIL.WANG@TROWEPRICE.COM
Source:GoldmanSachsGlobalInvestmentResearch.
11
SomeRiskofFrictionalUnemployment…
FortheexclusiveuseofNEIL.WANG@TROWEPRICE.COM
Source:GoldmanSachsGlobalInvestmentResearch.
12
…butTechnologicalInnovationDrivesEmploymentGrowthOvertheLongRun
MillionsEmployment,byNewandPre-ExistingOccupationsMillions
FortheexclusiveuseofNEIL.WANG@TROWEPRICE.COM
200
175
150
125
100
75
50
25
0
OccupationsThatExistedin1940
Professionals
Managers
Clerical&Admin
Production
Construction
PersonalServices
Transportation
Technicians
Sales
CleaningServices
Health
Farming
Total
OccupationsThatDidNotExistin1940
200
175
150
125
100
75
50
25
0
Source:GoldmanSachsGlobalInvestmentResearch.
13
Historically,WorkerDisplacementfromAutomationHasBeenRoughlyOffsetbyCreationofNewRoles
PercentagepointsContributionstoTotalWageBillGrowth*Percentagepoints
FortheexclusiveuseofNEIL.WANG@TROWEPRICE.COM
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
DisplacementofWorkersFromOldRolesRemploymentofWorkersinNewRoles
*Linesindicate10-yearmovingaveragesof
Greenshading=
ITautomationboom
reinstatement(green)anddisplacement(red)effects
1950196019701980199020002010
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
Source:GoldmanSachsGlobalInvestmentResearch.
14
GenerativeAICouldBoostAggregateLaborProductivityGrowthby1.5ppintheUS
PercentagepointsEffectofAIAdoptiononAnnualLaborPercentagepoints
FortheexclusiveuseofNEIL.WANG@TROWEPRICE.COM
66
55
44
33
22
11
00
-1-1
ProductivityGrowth,10-YearAdoptionPeriod
ReemploymentofDisplacedWorkersLaborDisplacement
IncreasedProductivityofNon-DisplacedWorkers
2.4
1.30.8
0.3
2.92.4
0.7
0.5
1.5
MuchLessPowerfulAI
SlowerAdoption(30Years)
SlowerAdoption(20Years)
SlighltyLessPowerfulAI
NoLaborDisplacement
Baseline
SlightlyMorePowerfulAI
MoreLaborDisplacement
MuchMorePowerfulAI
Source:GoldmanSachsGlobalInvestmentResearch.
15
MorePessimisticEstimatesNotthatDifferent;DrivenbyOutlookforTimelineandNewTaskCreation
FortheexclusiveuseofNEIL.WANG@TROWEPRICE.COM
Source:GoldmanSachsGlobalInvestmentResearch.
16
ProductivityGrowthBoostsCouldBeSizableinOtherCountriesAsWell
FortheexclusiveuseofNEIL.WANG@TROWEPRICE.COM
Source:GoldmanSachsGlobalInvestmentResearch.
17
ASizableInvestmentCycle
FortheexclusiveuseofNEIL.WANG@TROWEPRICE.COM
Source:GoldmanSachsGlobalInvestmentResearch.
18
MarketsHaveAlreadyUpgradedAIHardware
RevenuesbyOver$300bnAnnuallySince2023
FortheexclusiveuseofNEIL.WANG@TROWEPRICE.COM
Source:FactSet,GoldmanSachsGlobalInvestmentResearch.
19
ModelsandComputationalDemandsAreGrowingMuchFasterThanCostorEnergyEfficiencies
Percent
Percent
AIGrowthTrends,Annual
FortheexclusiveuseofNEIL.WANG@TROWEPRICE.COM
500
450
400
350
300
250
200
150
100
50
0
IncreaseCostsDecreaseCosts
500
450
400
350
300
250
200
150
100
50
0
LLMQueriesNumberof
LargeScaleModels
TrainingFLOPsperModel
FLOPsperWattFLOPsperDollar
Source:EpochAI,GoldmanSachsGlobalInvestmentResearch.
20
FortheexclusiveuseofNEIL.WANG@TROWEPRICE.COM
LargerModelsAreStillLeadingtoImprovedPerformance
Log(Perplexity)
ModelSizevs.Performance,
Log(Perplexity)
Inverted
2012-2023
Inverted
1
1.5
2
1
1.5
2
2.5
2.5
3
3
3.5
3.5
4
4
4.5
5
4.5
5-●-5.5
5.5iiiiiiiiiiiiiir6
131415161718192021222324252627log(NumberofParameters)
Source:EpochAI,GoldmanSachsGlobalInvestmentResearch.
MMLUScoreModelSizevs.Performance,MMLUScore
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
CurrentMMLU-ProLeaderboard
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
202122232425262728
log(NumberofParameters)
21
PriorGPTInvestmentCyclesHaveExceededtheAIBuildoutasaShareofGDP
FortheexclusiveuseofNEIL.WANG@TROWEPRICE.COM
PercentofGDP
PercentofGDP
PeakHistoricalInvestmentImpulse,
EmergingTechnologiesinFrontierEconomies
5
4
3
2
1
0
5
4
3
2
1
0
UKRailroads
(1860s)
USRailroads
(1880s)
USAuto
Infrastructure(1910s)
USElectricMotor
(1920s)
USICTHardware
(1990s)
USTelecom
(1990s)
USGenerative
AI(2020s)
PercentagePoints
PercentagePoints
InvestmentinGeneralPurposeTechnologies,ShareofGDPvs.Pre-ProductivityBoomLevel
2.5
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
Startoflabor
productivityboom
ElectricMotor-ManufacturingPlants&EquipmentInformationTech-ICTEquipmentandSoftware
GenAI-Semis,Compute,DataCenters,Power
-5-4-3-2-1012345678910
2.5
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
YearsSinceProductivityBoom(t=0)
Source:BureauofEconomicAnalysis,GoldmanSachsGlobalInvestmentResearch.
22
TheExpectedPresentDiscountedValueofCapitalRevenuefromAIExceedsCapexProjections
FortheexclusiveuseofNEIL.WANG@TROWEPRICE.COM
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
15
10
25
20
$bn
600
500
400
300
200
100
0
PresentValueofFutureAICapitalRevenue,
GSBaselineAssumptions
600
500
400
300
200
100
0
$bn
$tn
PresentDiscountedValueof
AICapitalRevenues,AlterativeScenarios
-25
$tn
-20
19
-15
12
12
11
-10
8
7
6
5
5
-5
5
r0
High(20%)
High(24%)
High(60%)
FasterSlower
Low(10%)
Low
(8%)
Low(28%)
0
GSDiscountProductivity
Capital
Adoption
Base-Rate
Share
Rate
Source:GoldmanSachsGlobalInvestmentResearch.
23
FortheexclusiveuseofNEIL.WANG@TROWEPRICE.COM
FirstMoversHaveShownMixedPerformanceinPriorInfrastructureBuilds
HistoricalEpisode
FirstMoverReturns
FastFollowerReturns
Explanation
UKTurnpikes
Neitherabnormallyhighorlow
Neitherabnormallyhighorlow
Regulationlimitedreturns.
UKCanals
High
Low
Investmentvaluableforfirstmovers;Introductionofrailroadslimitedreturnstolaterentrants.
UKRailways
Low
High
Post-bustconsolidatorswereabletopurchaseassetsatlowvaluations,long-runvaluecreationdrovehealthyreturnsforcompaniesthatboughtrailroadsatdeepdiscounts.
USRailroads
Mixed
High
Insomecasesearlymoverswereabletocaptureoutsizedreturnsvialocalmonopoly(e.g.,PennsylvaniaRailroadbecametheworld's
largestcorporations),butothershadnegativereturns(halfofallrailroadmileagebuiltbefore1870wentbankruptorreorganized).
Laterconsolidators(e.g.NYCentral,UnionPacific)wereabletogenerateoutsizedreturnviapurchasesatlowvaluations.
USElectricity
Neitherabnormallyhighorlow
Neitherabnormallyhighorlow
Firstmoverskeptmarketshare,butregulationandorganizationasutilitieslimitedreturns.
USIT
High
High
Firstmoverswereabletograbmarketshareinmainframes(IBM),
operatingsystems(Microsoft),networking(Cisco),andcloud
computing(AWS),althoughthelate1990ssawoverexuberanceandoverinvestment.Laterentrantsalsofaredwellinmanyareasgiventransformativeeffectoftechoneconomy.
GlobalFiber-OpticCables
Low
High
Overbuildledtolowreturnsforfirstmovers,laterbuyerscapturedfinancialupsidebypurchasingassetsatlowvaluations.
USTelecom
Low
High
Overbuildledtolowreturnsforfirstmovers,laterbuyerscapturedfinancialupsidebypurchasingassetsatlowvaluations.
Note:Redshadingindicatesunderperformance,greenoutperformance,yellowneutralperformance.
Source:GoldmanSachsGlobalInvestmentResearch.
24
FirstMoversHaveShownMixedPerformanceinPriorInfrastructureBuilds
FirstMoverDominantFastFollowerDominantImplicationsForAILeadersToday
Highswitchingcosts
Lowswitchingcosts
Uncertain
AILeadersOutperform
AILeadersUnderperform
Networkeffectsestablishedbyfirst-moverproductdeterminestandards
Productmarketstandardsundetermined
Networkeffectsimproveproductquality
Productqualitydeterminedindependentlyofnetworkeffects
Scarceassetsnecessaryforproductdevelopment
Complementaryassetsabundant
Thetechonologystackisverticallyintegrated
Thetechnologicalstackisseparatelyownedandeasilyredeployed
Highcostofimitation
Lowcostofimitation
Slowtechnologicalchange
Fasttechnologicalchange
Slowmarketgrowth
Fastmarketgrowth
Patent/IPprotectionsstrong
Patent/IPprotectionsweak
Customeruncertaintyonuselow
Customeruncertaintyonusehigh
Note:Redshadingindicatesreasonforpotentialunderperformance,greenoutperformance,yellowneutralperformance.
Source:GoldmanSachsGlobalInvestmentResearch.
25
SomeSignsofVerticalIntegration
Source:AndreessenHorowitz,GoldmanSachsGlobalInvestmentResearch.
26
SoftwareProvidersBenefitedFromHighSwitchingCosts,CompaniesTodayAdoptingMultipleModels
Percentagepoints
Percentagepoints
AnnualContributionstoPrivateSector
OutputGrowthFrom:
0.6
0.5
0.4
0.3
0.2
0.1
0.0
-0.1
-0.2
Software(Total)SoftwareInvestment
AverageInvestment
ShareofTotal:27%
8182838485868788899091929394959697989900010203040506070809101112
0.6
0.5
0.4
0.3
0.2
0.1
0.0
-0.1
-0.2
Note:SoftwarecontributionsestimatedbasedonresultsfromByrneetal.(2013)andOlinerandSichel(2000).
PercentNumberofModelsDeployed,Percent
100
80
60
40
20
0
byCompanyRevenue
5+
4
3
2
1
0
100
80
60
40
20
0
$500mn-$50bn$5bn-20bn$>20bn
Source:AndreessenHorowitz,GoldmanSachsGlobalInvestmentResearch.
27
PreviousMilestoneTechnologiesHaveLedtoLaborProductivityBooms,buttheTimingIsHardtoPredict
PercentTechnologyAdoptionRatesforHouseholdsandFirmsPercent19811986199119962001200620112016
100
80
60
40
20
0
Personalcomputerinvented
Productivity
boombegins
50%AdoptionThreshold
Electricity:Manufacturing(Bottom)
Electricity:Household(Bottom)
PC:Workplace(Top)
PC:Household(Top)
Developmentofelectricmotor
100
80
60
40
20
0
1899190819171926193519441953
USLaborProductivity
Percentchange,10-yearannualrate
Percentchange,
10-yearannualrate
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
Personal
computer
invented:1981
Developmentofelectric
motor:
~1890
Green=Resultingproductivityboom
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
18851905192519451965198520052025
Source:GoldmanSachsGlobalInvestmentResearch.
28
Economy-wideAIAdoptionCurrentlyStandsat9.7%
Source:CensusBureau,GoldmanSachsGlobalInvestmentResearch.
29
AdoptionRatesVaryWidelyAcrossSectors
Source:CensusBureau,GoldmanSachsGlobalInvestmentResearch.
30
AdoptionRatesAreHigherAmongComputing,WebSearch,andMotionPictureCompanies
Source:CensusBureau,GoldmanSachsGlobalInvestmentResearch.
31
LargeCompaniesHaveLedtheAdoptionSurge
Source:CensusBureau,GoldmanSachsGlobalInvestmentResearch.
32
AdoptionisHigherinIndustriesSettoBenefittheMost
Source:GoldmanSachsGlobalInvestmentResearch.
33
JobPostingsHavePulledBackMoreinAI-ExposedIndustries…
Source:IndeedHiringLab,GoldmanSachsGlobalInvestmentResearch.
34
…ButtheImpactonLaborMarketOutcomesAppearsSmallandInsignificantSoFar
Source:GoldmanSachsGlobalInvestmentResearch.
35
EmploymentIsContractinginSomeSectorsWhereAnecdotesSuggestAIIsSubstitutingforLabor
Source:BureauofLaborStatistics,HaverAnalytics,GoldmanSachsGlobalInvestmentResearch.
36
TechísEmploymentShareHasDeclinedBelowTrend
Source:BureauofLaborStatistics,HaverAnalytics,GoldmanSachsGlobalInvestmentResearch.
37
YouthUnemploymentinTechExposedSectorsHasRisenRecently
Source:BureauofLaborStatistics,iPUMS,GoldmanSachsGlobalInvestmentResearch.
38
AlsoNoSignofAI-RelatedLayoffsorUnemploymentYet
Source:CensusBureau,GoldmanSachsGlobalInvestmentResearch.
39
LaborReplacementTendstoAccelerateDuringEconomicDownturns
Source:JaimovichSiu2018,GoldmanSachsGlobalInvestmentResearch.
40
FiveDimensionsofOurLaborDisplacementRiskScores
1.ConsequenceofError
2.TaskRepetitiveness
3.TaskCohesion
4.ValueofAI-ExposedTasksvs.OverallWage
5.Backvs.FrontOffice
Source:GoldmanSachsGlobalInvestmentResearch.
41
OurLaborDisplacementRiskMetricsVaryAcrossOccupationsinanIntuitiveManner…
Source:O*NET,GoldmanSachsGlobalInvestmentResearch.
42
…AndPredictJobsThatAreMoreorLessatRiskofAutomationinaMannerthatAlignsWithAnecdotes
Source:O*NET,GoldmanSachsGlobalInvestmentResearch.
43
OurScoresSuggesta6.4%DisplacementRateifthe20%MostAt-RiskJobsAreFullyAutomated
Source:GoldmanSachsGlobalInvestmentResearch.
44
FasterAdoptioninDMs,SlowerAdoptioninEMs
GSAIAdoptionScenarios
PercentCumulativeAdoptionPercent
100
90
80
70
60
50
40
30
20
10
0
US
OtherDMs
AdvancedEMsOtherEMs
100
90
80
70
60
50
40
30
20
10
0
2020202520302035204020452050
PercentMarginalAdoptionPercent
9
8
7
6
5
4
3
2
1
0
US
OtherDMs
AdvancedEMsOtherEMs
9
8
7
6
5
4
3
2
1
0
2020202520302035204020452050
Note:AdoptionratesshownasashareofeconomywidefirmsexposedtoAIautomation.
Source:GoldmanSachsGlobalInvestmentResearch.
45
OurBaselineImpliesa0.4ppPeakIncreaseintheUnemploymentRate
PercentagepointsEffectofAI-DrivenLaborDisplacementonthePercentagepoints
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
UnemploymentRatebyScenario
Baseline
——FasterAdoption
LargerDisplacement
FrontloadedDisplacementFasterxLarger
FrontloadedxLarger
2020202520302035204020452050
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
Source:GoldmanSachsGlobalInvestmentResearch.
46
MarketImplicationsofAI:EquitiesBiggestBeneficiary;EffectonRatesDependsonWhetherAnticipated
Source:GoldmanSachsGlobalInvestmentResearch.
47
DisclosureAppendix
October16,2025
48
DisclosureAppendix
RegAC
I,JosephBriggs,herebycertifythatalloftheviewsexpressedinthisreportaccuratelyre?ectmypersonalviews,whichhavenotbeenin?uencedbyconsiderationsofthe?rmísbusinessorclientrelationships.
Unlessotherwisestated,theindividualslistedonthecoverpageofthisreportareanalystsinGoldmanSachsíGlobalInvestmentResearchdivision.
Disclosures
Regulatorydisclosures
DisclosuresrequiredbyUnitedStateslawsandregulations
Seecompany-speci?cregulatorydisclosuresaboveforanyofthefollowingdisclosuresrequiredastocompaniesreferredtointhisreport:managerorco-managerinapendingtransaction;1%orotherownership;
compensationforcertainservices;typesofclientrelationships;managed/co-managedpublicofferingsinpriorperiods;directorships;forequitysecurities,marketmakingand/orspecialistrole.GoldmanSachstradesormaytradeasaprincipalindebtsecurities(orinrelatedderivatives)ofissuersdiscussedinthisreport.
Thefollowingareadditionalrequireddisclosures:Ownershipandmaterialcon?ictsofinterest:GoldmanSachspolicyprohibitsitsanalysts,professionalsreportingtoanalystsandmembersoftheir
householdsfromowningsecuritiesofanycompanyintheanalystísareaofcoverage.Analystcompensation:Analystsarepaidinpartbasedonthepro?tabilityofGoldmanSachs,whichincludesinvestment
bankingrevenues.Analystasof?cerordirector:GoldmanSachspolicygenerallyprohibitsitsanalysts,personsreportingtoanalystsormembersoftheirhouseholdsfromservingasanof?cer,directoror
advisorofanycompanyintheanalystísareaofcoverage.Non-U.S.Analysts:Non-U.S.analystsmaynotbeassociatedpersonsofGoldmanSachs&Co.LLCandthereforemaynotbesubjecttoFINRARule2241orFINRARule2242restrictionsoncommunicationswithasubjectcompany,publicappearancesandtradinginsecuritiescoveredbytheanalysts.
AdditionaldisclosuresrequiredunderthelawsandregulationsofjurisdictionsotherthantheUnitedStates
Thefollowingdisclosuresarethoserequiredbythejurisdictionindicated,excepttotheextentalreadymadeabovepursuanttoUnitedStateslawsandregulations.Australia:GoldmanSachsAustraliaPtyLtdanditsaf?liatesarenotauthoriseddeposit-takinginstitutions(asthattermisde?nedintheBankingAct1959(Cth))inAustraliaanddonotprovidebankingservices,norcarryonabankingbusiness,inAustralia.Thisresearch,andanyaccesstoit,isintendedonlyforìwholesaleclients?withinthemeaningoftheAustralianCorporationsAct,unlessotherwiseagreedbyGoldmanSachs.Inproducingresearchreports,membersofGlobalInvestmentResearchofGoldmanSachsAustraliamayattendsitevisitsandothermeetingshostedbythecompaniesandotherentitieswhicharethesubjectofitsresearchreports.Insomeinstancesthe
costsofsuchsitevisitsormeetingsmaybemetinpartorinwholebytheissuersconcernedifGoldmanSachsAustraliaconsidersitisappropriateandreasonableinthespeci?ccircumstancesrelatingtothesitevisitormeeting.Totheextentthatthecontentsofthisdocumentcontainsany?nancialproductadvice,itisgeneraladviceonlyandhasbeenpreparedbyGoldmanSachswithouttakingintoaccountaclientísobjectives,?nancialsituationorneeds.Aclientshould,beforeactingonanysuchadvice,considertheappropriatenessoftheadvicehavingregardtotheclientísownobjectives,?nancialsituationandneeds.AcopyofcertainGoldmanSachsAustraliaandNewZealanddisclosureofinterestsandacopyofGoldmanSachsíAustralianSell-SideResearchIndependencePolicyStatementareavailableat:
/disclosures/australia-new-zealand/index.html.B
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職美容美體藝術(shù)(化妝造型設(shè)計(jì))試題及答案
- 2025年大學(xué)大一(地理科學(xué))自然地理學(xué)基礎(chǔ)理論測(cè)試題及答案
- 2025年高職(服裝設(shè)計(jì)與工藝)服裝結(jié)構(gòu)設(shè)計(jì)階段測(cè)試試題及答案
- 2025年大學(xué)第二學(xué)年(酒店管理)酒店品牌建設(shè)試題及答案
- 2026年泳池安全防護(hù)網(wǎng)項(xiàng)目公司成立分析報(bào)告
- 2025年高職椰韻紋眉(眉形設(shè)計(jì)與上色技巧)試題及答案
- 2025年大學(xué)大四(生物醫(yī)學(xué)工程產(chǎn)業(yè))醫(yī)療器械產(chǎn)業(yè)發(fā)展分析綜合測(cè)試題及答案
- 2025年中職(皮革制品設(shè)計(jì)與制作)皮鞋制作工藝階段測(cè)試題及答案
- 2025年大學(xué)海洋漁業(yè)科學(xué)與技術(shù)(漁業(yè)技術(shù))試題及答案
- 2025年中職(珠寶玉石加工與營(yíng)銷)玉石雕刻工藝階段測(cè)試題及答案
- 2024版裝修公司軟裝合同范本
- IABP主動(dòng)脈球囊反搏課件
- 加壓站清水池建設(shè)工程勘察設(shè)計(jì)招標(biāo)文件
- 工會(huì)制度匯編
- 喪假國(guó)家規(guī)定
- 2023年醫(yī)務(wù)科工作計(jì)劃-1
- 乒乓球社團(tuán)活動(dòng)記錄
- 地基與基礎(chǔ)分項(xiàng)工程質(zhì)量驗(yàn)收記錄
- 一文多用作文課公開(kāi)課課件
- 水運(yùn)工程施工課程設(shè)計(jì)指導(dǎo)書(shū)
- 驚恐障礙診治課件
評(píng)論
0/150
提交評(píng)論