版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一、解答題1.在平面直角坐標(biāo)系中,點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為,過(guò)點(diǎn)作直線軸,垂足為,交線段于點(diǎn).(1)如圖1,過(guò)點(diǎn)作,垂足為,連接.①填空:的面積為______;②點(diǎn)為直線上一動(dòng)點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo);(2)如圖2,點(diǎn)為線段延長(zhǎng)線上一點(diǎn),連接,,線段交于點(diǎn),若,請(qǐng)直接寫出點(diǎn)的坐標(biāo)為______.2.如圖,直線,一副直角三角板中,.(1)若如圖1擺放,當(dāng)平分時(shí),證明:平分.(2)若如圖2擺放時(shí),則(3)若圖2中固定,將沿著方向平移,邊與直線相交于點(diǎn),作和的角平分線相交于點(diǎn)(如圖3),求的度數(shù).(4)若圖2中的周長(zhǎng),現(xiàn)將固定,將沿著方向平移至點(diǎn)與重合,平移后的得到,點(diǎn)的對(duì)應(yīng)點(diǎn)分別是,請(qǐng)直接寫出四邊形的周長(zhǎng).(5)若圖2中固定,(如圖4)將繞點(diǎn)順時(shí)針旋轉(zhuǎn),分鐘轉(zhuǎn)半圈,旋轉(zhuǎn)至與直線首次重合的過(guò)程中,當(dāng)線段與的一條邊平行時(shí),請(qǐng)直接寫出旋轉(zhuǎn)的時(shí)間.3.綜合與實(shí)踐背景閱讀:在同一平面內(nèi),兩條不重合的直線的位置關(guān)系有相交、平行,若兩條不重合的直線只有一個(gè)公共點(diǎn),我們就說(shuō)這兩條直線相交,若兩條直線不相交,我們就說(shuō)這兩條直線互相平行兩條直線的位置關(guān)系的性質(zhì)和判定是幾何的重要知識(shí),是初中階段幾何合情推理的基礎(chǔ).已知:AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.問(wèn)題解決:(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系;(2)如圖2,過(guò)點(diǎn)B作BD⊥AM于點(diǎn)D,求證:∠ABD=∠C;(3)如圖3,在(2)問(wèn)的條件下,點(diǎn)E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,則∠EBC=.4.閱讀下面材料:小亮同學(xué)遇到這樣一個(gè)問(wèn)題:已知:如圖甲,ABCD,E為AB,CD之間一點(diǎn),連接BE,DE,得到∠BED.求證:∠BED=∠B+∠D.(1)小亮寫出了該問(wèn)題的證明,請(qǐng)你幫他把證明過(guò)程補(bǔ)充完整.證明:過(guò)點(diǎn)E作EFAB,則有∠BEF=.∵ABCD,∴,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)請(qǐng)你參考小亮思考問(wèn)題的方法,解決問(wèn)題:如圖乙,已知:直線ab,點(diǎn)A,B在直線a上,點(diǎn)C,D在直線b上,連接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直線交于點(diǎn)E.①如圖1,當(dāng)點(diǎn)B在點(diǎn)A的左側(cè)時(shí),若∠ABC=60°,∠ADC=70°,求∠BED的度數(shù);②如圖2,當(dāng)點(diǎn)B在點(diǎn)A的右側(cè)時(shí),設(shè)∠ABC=α,∠ADC=β,請(qǐng)你求出∠BED的度數(shù)(用含有α,β的式子表示).5.綜合與探究(問(wèn)題情境)王老師組織同學(xué)們開展了探究三角之間數(shù)量關(guān)系的數(shù)學(xué)活動(dòng)(1)如圖1,,點(diǎn)、分別為直線、上的一點(diǎn),點(diǎn)為平行線間一點(diǎn),請(qǐng)直接寫出、和之間的數(shù)量關(guān)系;(問(wèn)題遷移)(2)如圖2,射線與射線交于點(diǎn),直線,直線分別交、于點(diǎn)、,直線分別交、于點(diǎn)、,點(diǎn)在射線上運(yùn)動(dòng),①當(dāng)點(diǎn)在、(不與、重合)兩點(diǎn)之間運(yùn)動(dòng)時(shí),設(shè),.則,,之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.②若點(diǎn)不在線段上運(yùn)動(dòng)時(shí)(點(diǎn)與點(diǎn)、、三點(diǎn)都不重合),請(qǐng)你畫出滿足條件的所有圖形并直接寫出,,之間的數(shù)量關(guān)系.6.如圖1,已知直線m∥n,AB是一個(gè)平面鏡,光線從直線m上的點(diǎn)O射出,在平面鏡AB上經(jīng)點(diǎn)P反射后,到達(dá)直線n上的點(diǎn)Q.我們稱OP為入射光線,PQ為反射光線,鏡面反射有如下性質(zhì):入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,即∠OPA=∠QPB.(1)如圖1,若∠OPQ=82°,求∠OPA的度數(shù);(2)如圖2,若∠AOP=43°,∠BQP=49°,求∠OPA的度數(shù);(3)如圖3,再放置3塊平面鏡,其中兩塊平面鏡在直線m和n上,另一塊在兩直線之間,四塊平面鏡構(gòu)成四邊形ABCD,光線從點(diǎn)O以適當(dāng)?shù)慕嵌壬涑龊?,其傳播路徑為O→P→Q→R→O→P→…試判斷∠OPQ和∠ORQ的數(shù)量關(guān)系,并說(shuō)明理由.7.(閱讀材料)數(shù)學(xué)家華羅庚在一次出國(guó)訪問(wèn)途中,看到飛機(jī)上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根.華羅庚脫口而出:“39”.鄰座的乘客十分驚奇,忙間其中計(jì)算的奧妙.你知道怎樣迅速準(zhǔn)確的計(jì)算出結(jié)果嗎?請(qǐng)你按下面的步驟試一試:第一步:∵,,,∴.∴能確定59319的立方根是個(gè)兩位數(shù).第二步:∵59319的個(gè)位數(shù)是9,∴能確定59319的立方根的個(gè)位數(shù)是9.第三步:如果劃去59319后面的三位319得到數(shù)59,而,則,可得,由此能確定59319的立方根的十位數(shù)是3,因此59319的立方根是39.(解答問(wèn)題)根據(jù)上面材料,解答下面的問(wèn)題(1)求110592的立方根,寫出步驟.(2)填空:__________.8.先閱讀材料,再解答問(wèn)題:我國(guó)數(shù)學(xué)家華羅庚在一次出國(guó)訪問(wèn)途中,看到飛機(jī)上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根,華羅庚脫口而出,給出了答案,眾人十分驚訝,忙問(wèn)計(jì)算的奧妙,你知道華羅庚怎樣迅速而準(zhǔn)確地計(jì)算出結(jié)果嗎?請(qǐng)你按下面的步驟也試一試:(1)我們知道,,那么,請(qǐng)你猜想:59319的立方根是_______位數(shù)(2)在自然數(shù)1到9這九個(gè)數(shù)字中,________,________,________.猜想:59319的個(gè)位數(shù)字是9,則59319的立方根的個(gè)位數(shù)字是________.(3)如果劃去59319后面的三位“319”得到數(shù)59,而,,由此可確定59319的立方根的十位數(shù)字是________,因此59319的立方根是________.(4)現(xiàn)在換一個(gè)數(shù)103823,你能按這種方法得出它的立方根嗎?9.如果有一列數(shù),從這列數(shù)的第2個(gè)數(shù)開始,每一個(gè)數(shù)與它的前一個(gè)數(shù)的比等于同一個(gè)非零的常數(shù),這樣的一列數(shù)就叫做等比數(shù)列(GeometricSequences).這個(gè)常數(shù)叫做等比數(shù)列的公比,通常用字母q表示(q≠0).(1)觀察一個(gè)等比列數(shù)1,,…,它的公比q=;如果an(n為正整數(shù))表示這個(gè)等比數(shù)列的第n項(xiàng),那么a18=,an=;(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步驟進(jìn)行:令S=1+2+4+8+16+…+230…①等式兩邊同時(shí)乘以2,得2S=2+4+8+16++32+…+231…②由②﹣①式,得2S﹣S=231﹣1即(2﹣1)S=231﹣1所以請(qǐng)根據(jù)以上的解答過(guò)程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若數(shù)列a1,a2,a3,…,an,從第二項(xiàng)開始每一項(xiàng)與前一項(xiàng)之比的常數(shù)為q,請(qǐng)用含a1,q,n的代數(shù)式表示an;如果這個(gè)常數(shù)q≠1,請(qǐng)用含a1,q,n的代數(shù)式表示a1+a2+a3+…+an.10.觀察下列兩個(gè)等式:,給出定義如下:我們稱使等式成立的一對(duì)有理數(shù)為“白馬有理數(shù)對(duì)”,記為,如:數(shù)對(duì)都是“白馬有理數(shù)對(duì)”.(1)數(shù)對(duì)中是“白馬有理數(shù)對(duì)”的是_________;(2)若是“白馬有理數(shù)對(duì)”,求的值;(3)若是“白馬有理數(shù)對(duì)”,則是“白馬有理數(shù)對(duì)”嗎?請(qǐng)說(shuō)明理由.(4)請(qǐng)?jiān)賹懗鲆粚?duì)符合條件的“白馬有理數(shù)對(duì)”_________(注意:不能與題目中已有的“白馬有理數(shù)對(duì)”重復(fù))11.觀察下列各式:(x-1)(x+1)=x2-1(x-1)(x2+x+1)=x3-1(x-1)(x3+x2+x+1)=x4-1……(1)根據(jù)以上規(guī)律,則(x-1)(x6+x5+x4+x3+x2+x+1)=__________________.(2)你能否由此歸納出一般性規(guī)律(x-1)(xn+xn-1+xn-2+…+x+1)=____________.(3)根據(jù)以上規(guī)律求1+3+32+…+349+350的結(jié)果.12.觀察下列各式,并用所得出的規(guī)律解決問(wèn)題:(1),,,……,,,……由此可見,被開方數(shù)的小數(shù)點(diǎn)每向右移動(dòng)______位,其算術(shù)平方根的小數(shù)點(diǎn)向______移動(dòng)______位.(2)已知,,則_____;______.(3),,,……小數(shù)點(diǎn)的變化規(guī)律是_______________________.(4)已知,,則______.13.如圖,在平面直角坐標(biāo)系中,已知,,,,滿足.平移線段得到線段,使點(diǎn)與點(diǎn)對(duì)應(yīng),點(diǎn)與點(diǎn)對(duì)應(yīng),連接,.(1)求,的值,并直接寫出點(diǎn)的坐標(biāo);(2)點(diǎn)在射線(不與點(diǎn),重合)上,連接,.①若三角形的面積是三角形的面積的2倍,求點(diǎn)的坐標(biāo);②設(shè),,.求,,滿足的關(guān)系式.14.如圖1,已知直線CD∥EF,點(diǎn)A,B分別在直線CD與EF上.P為兩平行線間一點(diǎn).(1)若∠DAP=40°,∠FBP=70°,則∠APB=(2)猜想∠DAP,∠FBP,∠APB之間有什么關(guān)系?并說(shuō)明理由;(3)利用(2)的結(jié)論解答:①如圖2,AP1,BP1分別平分∠DAP,∠FBP,請(qǐng)你寫出∠P與∠P1的數(shù)量關(guān)系,并說(shuō)明理由;②如圖3,AP2,BP2分別平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代數(shù)式表示)15.如圖1,在平面直角坐標(biāo)系中,點(diǎn)A為x軸負(fù)半軸上一點(diǎn),點(diǎn)B為x軸正半軸上一點(diǎn),,,其中a、b滿足關(guān)系式:.______,______,的面積為______;如圖2,石于點(diǎn)C,點(diǎn)P是線段OC上一點(diǎn),連接BP,延長(zhǎng)BP交AC于點(diǎn)當(dāng)時(shí),求證:BP平分;提示:三角形三個(gè)內(nèi)角和等于如圖3,若,點(diǎn)E是點(diǎn)A與點(diǎn)B之間上一點(diǎn)連接CE,且CB平分問(wèn)與有什么數(shù)量關(guān)系?請(qǐng)寫出它們之間的數(shù)量關(guān)系并請(qǐng)說(shuō)明理由.16.閱讀材料:如果x是一個(gè)有理數(shù),我們把不超過(guò)x的最大整數(shù)記作.例如,,,,那么,,其中.例如,,,.請(qǐng)你解決下列問(wèn)題:(1)__________,__________;(2)如果,那么x的取值范圍是__________;(3)如果,那么x的值是__________;(4)如果,其中,且,求x的值.17.對(duì)于平面直角坐標(biāo)系xOy中的圖形G和圖形G上的任意點(diǎn)P(x,y),給出如下定義:將點(diǎn)P(x,y)平移到P'(x+t,y﹣t)稱為將點(diǎn)P進(jìn)行“t型平移”,點(diǎn)P'稱為將點(diǎn)P進(jìn)行“t型平移”的對(duì)應(yīng)點(diǎn);將圖形G上的所有點(diǎn)進(jìn)行“t型平移”稱為將圖形G進(jìn)行“t型平移”.例如,將點(diǎn)P(x,y)平移到P'(x+1,y﹣1)稱為將點(diǎn)P進(jìn)行“l(fā)型平移”,將點(diǎn)P(x,y)平移到P'(x﹣1,y+1)稱為將點(diǎn)P進(jìn)行“﹣l型平移”.已知點(diǎn)A(2,1)和點(diǎn)B(4,1).(1)將點(diǎn)A(2,1)進(jìn)行“l(fā)型平移”后的對(duì)應(yīng)點(diǎn)A'的坐標(biāo)為.(2)①將線段AB進(jìn)行“﹣l型平移”后得到線段A'B',點(diǎn)P1(1.5,2),P2(2,3),P3(3,0)中,在線段A′B′上的點(diǎn)是.②若線段AB進(jìn)行“t型平移”后與坐標(biāo)軸有公共點(diǎn),則t的取值范圍是.(3)已知點(diǎn)C(6,1),D(8,﹣1),點(diǎn)M是線段CD上的一個(gè)動(dòng)點(diǎn),將點(diǎn)B進(jìn)行“t型平移”后得到的對(duì)應(yīng)點(diǎn)為B',當(dāng)t的取值范圍是時(shí),B'M的最小值保持不變.18.如圖,在平面直角坐標(biāo)系xOy中,對(duì)于任意兩點(diǎn)A(x1,y1)與B(x2,y2)的“非常距離”,給出如下定義:若|x1﹣x2|≥|y1﹣y2|,則點(diǎn)A與點(diǎn)B的“非常距離”為|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,則點(diǎn)A與點(diǎn)B的“非常距離”為|y1﹣y2|.(1)填空:已知點(diǎn)A(3,6)與點(diǎn)B(5,2),則點(diǎn)A與點(diǎn)B的“非常距離”為;(2)已知點(diǎn)C(﹣1,2),點(diǎn)D為y軸上的一個(gè)動(dòng)點(diǎn).①若點(diǎn)C與點(diǎn)D的“非常距離”為2,求點(diǎn)D的坐標(biāo);②直接寫出點(diǎn)C與點(diǎn)D的“非常距離”的最小值.19.(閱讀感悟)一些關(guān)于方程組的問(wèn)題,若求的結(jié)果不是每一個(gè)未知數(shù)的值,而是關(guān)于未知數(shù)的式子的值,如以下問(wèn)題:已知實(shí)數(shù),滿足①,②,求和的值.本題的常規(guī)思路是將①②兩式聯(lián)立組成方程組,解得,的值再代入欲求值的式子得到答案,常規(guī)思路運(yùn)算量比較大.其實(shí),仔細(xì)觀察兩個(gè)方程未知數(shù)的系數(shù)之間的關(guān)系,本題還可以通過(guò)適當(dāng)變形整體求得式子的值,如由①-②可得,由①+②×2可得.這樣的解題思想就是通常所說(shuō)的“整體思想”.(解決問(wèn)題)(1)已知二元一次方程組,則,.(2)某班開展安全教育知識(shí)競(jìng)賽需購(gòu)買獎(jiǎng)品,買5支鉛筆、3塊橡皮、2本日記本共需32元,買9支鉛筆、5塊橡皮、3本日記本共需58元,則購(gòu)買20支鉛筆、20塊橡皮、20本日記本共需多少元?(3)對(duì)于實(shí)數(shù),,定義新運(yùn)算:,其中,,是常數(shù),等式右邊是通常的加法和乘法運(yùn)算.已知,,求的值.20.閱讀下面資料:小明遇到這樣一個(gè)問(wèn)題:如圖1,對(duì)面積為a的△ABC逐次進(jìn)行以下操作:分別延長(zhǎng)AB、BC、CA至A1、B1、C1,使得A1B2AB,B1C2BC,C1A2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1,求S1的值.小明是這樣思考和解決這個(gè)問(wèn)題的:如圖2,連接A1C、B1A、C1B,因?yàn)锳1B2AB,B1C2BC,C1A2CA,根據(jù)等高兩三角形的面積比等于底之比,所以2S△ABC2a,由此繼續(xù)推理,從而解決了這個(gè)問(wèn)題.(1)直接寫出S1(用含字母a的式子表示).請(qǐng)參考小明同學(xué)思考問(wèn)題的方法,解決下列問(wèn)題:(2)如圖3,P為△ABC內(nèi)一點(diǎn),連接AP、BP、CP并延長(zhǎng)分別交邊BC、AC、AB于點(diǎn)D、E、F,則把△ABC分成六個(gè)小三角形,其中四個(gè)小三角形面積已在圖上標(biāo)明,求△ABC的面積.(3)如圖4,若點(diǎn)P為△ABC的邊AB上的中線CF的中點(diǎn),求S△APE與S△BPF的比值.21.平面直角坐標(biāo)系中,A(a,0),B(0,b),a,b滿足,將線段AB平移得到CD,A,B的對(duì)應(yīng)點(diǎn)分別為C,D,其中點(diǎn)C在y軸負(fù)半軸上.(1)求A,B兩點(diǎn)的坐標(biāo);(2)如圖1,連AD交BC于點(diǎn)E,若點(diǎn)E在y軸正半軸上,求的值;(3)如圖2,點(diǎn)F,G分別在CD,BD的延長(zhǎng)線上,連結(jié)FG,∠BAC的角平分線與∠DFG的角平分線交于點(diǎn)H,求∠G與∠H之間的數(shù)量關(guān)系.22.如圖①,在平面直角坐標(biāo)系中,點(diǎn)A在x軸上,直線OC上所有的點(diǎn)坐標(biāo),都是二元一次方程的解,直線AC上所有的點(diǎn)坐標(biāo),都是二元一次方程的解,過(guò)C作x軸的平行線,交y軸與點(diǎn)B.(1)求點(diǎn)A、B、C的坐標(biāo);(2)如圖②,點(diǎn)M、N分別為線段BC,OA上的兩個(gè)動(dòng)點(diǎn),點(diǎn)M從點(diǎn)C以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí)點(diǎn)N從點(diǎn)O以每秒1.5個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,且0<t<4,試比較四邊形MNAC的面積與四邊形MNOB的面積的大?。?3.在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(a,0),B(b,0),且a,b滿足|a+b﹣2|+=0,現(xiàn)同時(shí)將點(diǎn)A,B分別向右平移1個(gè)單位,再向上平移2個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)為C,D.(1)請(qǐng)直接寫出A、B、C、D四點(diǎn)的坐標(biāo).(2)點(diǎn)E在坐標(biāo)軸上,且S△BCE=S四邊形ABDC,求滿足條件的點(diǎn)E的坐標(biāo).(3)點(diǎn)P是線段BD上的一個(gè)動(dòng)點(diǎn),連接PC,PO,當(dāng)點(diǎn)P在線段BD上移動(dòng)時(shí)(不與B,D重合)求:的值.24.在平面直角坐標(biāo)系中,若點(diǎn)P(x,y)的坐標(biāo)滿足x﹣2y+3=0,則我們稱點(diǎn)P為“健康點(diǎn)”:若點(diǎn)Q(x,y)的坐標(biāo)滿足x+y﹣6=0,則我們稱點(diǎn)Q為“快樂(lè)點(diǎn)”.(1)若點(diǎn)A既是“健康點(diǎn)”又是“快樂(lè)點(diǎn)”,則點(diǎn)A的坐標(biāo)為;(2)在(1)的條件下,若B是x軸上的“健康點(diǎn)”,C是y軸上的“快樂(lè)點(diǎn)”,求△ABC的面積;(3)在(2)的條件下,若P為x軸上一點(diǎn),且△BPC與△ABC面積相等,直接寫出點(diǎn)P的坐標(biāo).25.閱讀材料:關(guān)于x,y的二元一次方程ax+by=c有一組整數(shù)解,則方程ax+by=c的全部整數(shù)解可表示為(t為整數(shù)).問(wèn)題:求方程7x+19y=213的所有正整數(shù)解.小明參考閱讀材料,解決該問(wèn)題如下:解:該方程一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).因?yàn)榻獾茫驗(yàn)閠為整數(shù),所以t=0或-1.所以該方程的正整數(shù)解為和.(1)方程3x-5y=11的全部整數(shù)解表示為:(t為整數(shù)),則=;(2)請(qǐng)你參考小明的解題方法,求方程2x+3y=24的全部正整數(shù)解;(3)方程19x+8y=1908的正整數(shù)解有多少組?請(qǐng)直接寫出答案.26.在平面直角坐標(biāo)系xOy中,已知點(diǎn)M(a,b).如果存在點(diǎn)N(a′,b′),滿足a′=|a+b|,b′=|a﹣b|,則稱點(diǎn)N為點(diǎn)M的“控變點(diǎn)”.(1)點(diǎn)A(﹣1,2)的“控變點(diǎn)”B的坐標(biāo)為;(2)已知點(diǎn)C(m,﹣1)的“控變點(diǎn)”D的坐標(biāo)為(4,n),求m,n的值;(3)長(zhǎng)方形EFGH的頂點(diǎn)坐標(biāo)分別為(1,1),(5,1),(5,4),(1,4).如果點(diǎn)P(x,﹣2x)的“控變點(diǎn)”Q在長(zhǎng)方形EFGH的內(nèi)部,直接寫出x的取值范圍.27.我們把關(guān)于x的一個(gè)一元一次方程和一個(gè)一元一次不等式組合成一種特殊組合,且當(dāng)一元一次方程的解正好也是一元一次不等式的解時(shí),我們把這種組合叫做“有緣組合”;當(dāng)一元一次方程的解不是一元一次不等式的解時(shí),我們把這種組合叫做“無(wú)緣組合”.(1)請(qǐng)判斷下列組合是“有緣組合”還是“無(wú)緣組合”,并說(shuō)明理由;①;②.(2)若關(guān)于x的組合是“有緣組合”,求a的取值范圍;(3)若關(guān)于x的組合是“無(wú)緣組合”;求a的取值范圍.28.如圖①,在平直角坐標(biāo)系中,△ABO的三個(gè)頂點(diǎn)為A(a,b),B(﹣a,3b),O(0,0),且滿足|b﹣2|=0,線段AB與y軸交于點(diǎn)C.(1)求出A,B兩點(diǎn)的坐標(biāo);(2)求出△ABO的面積;(3)如圖②,將線段AB平移至B點(diǎn)的對(duì)應(yīng)點(diǎn)落在x軸的正半軸上時(shí),此時(shí)A點(diǎn)的對(duì)應(yīng)點(diǎn)為,記△的面積為S,若24<S<32,求點(diǎn)的橫坐標(biāo)的取值范圍.29.若關(guān)于x的方程ax+b=0(a≠0)的解與關(guān)于y的方程cy+d=0(c≠0)的解滿足﹣1≤x﹣y≤1,則稱方程ax+b=0(a≠0)與方程cy+d=0(c≠0)是“友好方程”.例如:方程2x﹣1=0的解是x=0.5,方程y﹣1=0的解是y=1,因?yàn)椹?≤x﹣y≤1,方程2x﹣1=0與方程y﹣1=0是“友好方程”.(1)請(qǐng)通過(guò)計(jì)算判斷方程2x﹣9=5x﹣2與方程5(y﹣1)﹣2(1﹣y)=﹣34﹣2y是不是“友好方程”.(2)若關(guān)于x的方程3x﹣3+4(x﹣1)=0與關(guān)于y的方程+y=2k+1是“友好方程”,請(qǐng)你求出k的最大值和最小值.30.如圖1,在平面直角坐標(biāo)系中,點(diǎn)A為x軸負(fù)半軸上一點(diǎn),點(diǎn)B為x軸正半軸上一點(diǎn),C(0,a),D(b,a),其中a,b滿足關(guān)系式:|a+3|+(b-a+1)2=0.(1)a=___,b=___,△BCD的面積為______;(2)如圖2,若AC⊥BC,點(diǎn)P線段OC上一點(diǎn),連接BP,延長(zhǎng)BP交AC于點(diǎn)Q,當(dāng)∠CPQ=∠CQP時(shí),求證:BP平分∠ABC;(3)如圖3,若AC⊥BC,點(diǎn)E是點(diǎn)A與點(diǎn)B之間一動(dòng)點(diǎn),連接CE,CB始終平分∠ECF,當(dāng)點(diǎn)E在點(diǎn)A與點(diǎn)B之間運(yùn)動(dòng)時(shí),的值是否變化?若不變,求出其值;若變化,請(qǐng)說(shuō)明理由.【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、解答題1.(1)①6;②的坐標(biāo)為,;(2).【解析】【分析】(1)①易證四邊形AECO為矩形,則點(diǎn)B到AE的距離為OA,AE=OC=3,OA=CE=4,S△ABE=AE?OA,即可得出結(jié)果;②設(shè)點(diǎn)的坐標(biāo)為,分兩種情況:點(diǎn)在點(diǎn)上方,連接,得=++=8,點(diǎn)在點(diǎn)的下方,得=8,分別列出方程解方程即可得出結(jié)果;(2)由S△AOF=S△QBF,則S△AOB=S△QOB,△AOB與△QOB是以AB為同底的三角形,高分別為:OA、QC,得出OA=CQ,即可得出結(jié)果.【詳解】解:(1)①∵CD⊥x軸,AE⊥CD,∴AE∥x軸,四邊形AECO為矩形,點(diǎn)B到AE的距離為OA,∵點(diǎn)A(0,4),點(diǎn)C(3,0),∴AE=OC=3,OA=CE=4,∴S△ABE=AE?OA=×3×4=6,故答案為:6;②設(shè)點(diǎn)的坐標(biāo)為.(i)∵點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為,∴.∵,∴.∴點(diǎn)在點(diǎn)上方,連接(如圖1).根據(jù)題意得∵,∴,∴,∴.∴當(dāng)點(diǎn)的坐標(biāo)為.(ii)點(diǎn)在點(diǎn)的下方,連接(如圖2).∵.∴.∴點(diǎn)在點(diǎn)的下方,根據(jù)題意得∵,∴,∴,∴.∴當(dāng)點(diǎn)的坐標(biāo)為.(2)(2)∵S△AOF=S△QBF,如圖3所示:∴S△AOB=S△QOB,∵△AOB與△QOB是以AB為同底的三角形,高分別為:OA、QC,∴OA=CQ,∴點(diǎn)Q的坐標(biāo)為(3,4),故答案為:(3,4).【點(diǎn)睛】本題是三角形綜合題,主要考查了圖形與點(diǎn)的坐標(biāo)、矩形的判定與性質(zhì)、三角形面積的計(jì)算等知識(shí),熟練掌握?qǐng)D形與點(diǎn)的坐標(biāo),靈活運(yùn)用割補(bǔ)法表示三角形面積列出方程是解題的關(guān)鍵.2.(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運(yùn)用角平分線定義及平行線性質(zhì)即可證得結(jié)論;(2)如圖2,過(guò)點(diǎn)E作EK∥MN,利用平行線性質(zhì)即可求得答案;(3)如圖3,分別過(guò)點(diǎn)F、H作FL∥MN,HR∥PQ,運(yùn)用平行線性質(zhì)和角平分線定義即可得出答案;(4)根據(jù)平移性質(zhì)可得D′A=DF,DD′=EE′=AF=5cm,再結(jié)合DE+EF+DF=35cm,可得出答案;(5)設(shè)旋轉(zhuǎn)時(shí)間為t秒,由題意旋轉(zhuǎn)速度為1分鐘轉(zhuǎn)半圈,即每秒轉(zhuǎn)3°,分三種情況:①當(dāng)BC∥DE時(shí),②當(dāng)BC∥EF時(shí),③當(dāng)BC∥DF時(shí),分別求出旋轉(zhuǎn)角度后,列方程求解即可.【詳解】(1)如圖1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°?∠PEF=180°?120°=60°,∴∠MFD=∠MFE?∠DFE=60°?30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如圖2,過(guò)點(diǎn)E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF?∠KEA,又∵∠DEF=60°.∴∠PDE=60°?45°=15°,故答案為:15°;(3)如圖3,分別過(guò)點(diǎn)F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA?∠LFA,∵∠FGQ和∠GFA的角平分線GH、FH相交于點(diǎn)H,∴∠QGH=∠FGQ,∠HFA=∠GFA,∵∠DFE=30°,∴∠GFA=180°?∠DFE=150°,∴∠HFA=∠GFA=75°,∴∠RHF=∠HFL=∠HFA?∠LFA=75°?45°=30°,∴∠GFL=∠GFA?∠LFA=150°?45°=105°,∴∠RHG=∠QGH=∠FGQ=(180°?105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如圖4,∵將△DEF沿著CA方向平移至點(diǎn)F與A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四邊形DEAD′的周長(zhǎng)為45cm;(5)設(shè)旋轉(zhuǎn)時(shí)間為t秒,由題意旋轉(zhuǎn)速度為1分鐘轉(zhuǎn)半圈,即每秒轉(zhuǎn)3°,分三種情況:BC∥DE時(shí),如圖5,此時(shí)AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF時(shí),如圖6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF時(shí),如圖7,延長(zhǎng)BC交MN于K,延長(zhǎng)DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°?∠ACB=90°,∴∠CAK=90°?∠BKA=15°,∴∠CAE=180°?∠EAM?∠CAK=180°?45°?15°=120°,∴3t=120,解得:t=40,綜上所述,△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)的時(shí)間為10s或30s或40s時(shí),線段BC與△DEF的一條邊平行.【點(diǎn)睛】本題主要考查了平行線性質(zhì)及判定,角平分線定義,平移的性質(zhì)等,添加輔助線,利用平行線性質(zhì)是解題關(guān)鍵.3.(1);(2)見解析;(3)105°【分析】(1)通過(guò)平行線性質(zhì)和直角三角形內(nèi)角關(guān)系即可求解.(2)過(guò)點(diǎn)B作BG∥DM,根據(jù)平行線找角的聯(lián)系即可求解.(3)利用(2)的結(jié)論,結(jié)合角平分線性質(zhì)即可求解.【詳解】解:(1)如圖1,設(shè)AM與BC交于點(diǎn)O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠AOB=90°,∠A+∠C=90°,故答案為:∠A+∠C=90°;(2)證明:如圖2,過(guò)點(diǎn)B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如圖3,過(guò)點(diǎn)B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,設(shè)∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案為:105°.【點(diǎn)睛】本題考查平行線性質(zhì),畫輔助線,找到角的和差倍分關(guān)系是求解本題的關(guān)鍵.4.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根據(jù)平行線的判定定理與性質(zhì)定理解答即可;(2)①如圖1,過(guò)點(diǎn)E作EF∥AB,當(dāng)點(diǎn)B在點(diǎn)A的左側(cè)時(shí),根據(jù)∠ABC=60°,∠ADC=70°,參考小亮思考問(wèn)題的方法即可求∠BED的度數(shù);②如圖2,過(guò)點(diǎn)E作EF∥AB,當(dāng)點(diǎn)B在點(diǎn)A的右側(cè)時(shí),∠ABC=α,∠ADC=β,參考小亮思考問(wèn)題的方法即可求出∠BED的度數(shù).【詳解】解:(1)過(guò)點(diǎn)E作EF∥AB,則有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案為:∠B;EF;CD;∠D;(2)①如圖1,過(guò)點(diǎn)E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度數(shù)為65°;②如圖2,過(guò)點(diǎn)E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=,∠EDC=∠ADC=,∴∠BED=180°﹣∠EBA+∠EDC=180°﹣.答:∠BED的度數(shù)為180°﹣.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),解決本題的關(guān)鍵是熟練掌握平行線的判定與性質(zhì).5.(1);(2)①,理由見解析;②圖見解析,或【分析】(1)作PQ∥EF,由平行線的性質(zhì),即可得到答案;(2)①過(guò)作交于,由平行線的性質(zhì),得到,,即可得到答案;②根據(jù)題意,可對(duì)點(diǎn)P進(jìn)行分類討論:當(dāng)點(diǎn)在延長(zhǎng)線時(shí);當(dāng)在之間時(shí);與①同理,利用平行線的性質(zhì),即可求出答案.【詳解】解:(1)作PQ∥EF,如圖:∵,∴,∴,,∵∴;(2)①;理由如下:如圖,過(guò)作交于,∵,∴,∴,,∴;②當(dāng)點(diǎn)在延長(zhǎng)線時(shí),如備用圖1:∵PE∥AD∥BC,∴∠EPC=,∠EPD=,∴;當(dāng)在之間時(shí),如備用圖2:∵PE∥AD∥BC,∴∠EPD=,∠CPE=,∴.【點(diǎn)睛】本題考查了平行線的性質(zhì),解題的關(guān)鍵是熟練掌握兩直線平行同旁內(nèi)角互補(bǔ),兩直線平行內(nèi)錯(cuò)角相等,從而得到角的關(guān)系.6.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根據(jù)∠OPA=∠QPB.可求出∠OPA的度數(shù);(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度數(shù),轉(zhuǎn)化為(1)來(lái)解決問(wèn)題;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,從而∠OPQ=∠ORQ.【詳解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)和入射角等于反射角的規(guī)定,解決本題的關(guān)鍵是注意問(wèn)題的設(shè)置環(huán)環(huán)相扣、前為后用的設(shè)置目的.7.(1)48;(2)28【分析】(1)根據(jù)題中所給的分析方法先求出這幾個(gè)數(shù)的立方根都是兩位數(shù),然后根據(jù)第二和第三步求出個(gè)位數(shù)和十位數(shù)即可.(2)根據(jù)題中所給的分析方法先求出這幾個(gè)數(shù)的立方根都是兩位數(shù),然后根據(jù)第二和第三步求出個(gè)位數(shù)和十位數(shù)即可.【詳解】解:(1)第一步:,,,,能確定110592的立方根是個(gè)兩位數(shù).第二步:的個(gè)位數(shù)是2,,能確定110592的立方根的個(gè)位數(shù)是8.第三步:如果劃去110592后面的三位592得到數(shù)110,而,則,可得,由此能確定110592的立方根的十位數(shù)是4,因此110592的立方根是48;(2)第一步:,,,,能確定21952的立方根是個(gè)兩位數(shù).第二步:的個(gè)位數(shù)是2,,能確定21952的立方根的個(gè)位數(shù)是8.第三步:如果劃去21952后面的三位952得到數(shù)21,而,則,可得,由此能確定21952的立方根的十位數(shù)是2,因此21952的立方根是28.即,故答案為:28.【點(diǎn)睛】本題主要考查了數(shù)的立方,理解一個(gè)數(shù)的立方的個(gè)位數(shù)就是這個(gè)數(shù)的個(gè)位數(shù)的立方的個(gè)位數(shù)是解題的關(guān)鍵,有一定難度.8.(1)兩;(2)125,343,729,9;(3)3,39;(4)47【分析】(1)根據(jù)夾逼法和立方根的定義進(jìn)行解答;(2)先分別求得1至9中奇數(shù)的立方,然后根據(jù)末位數(shù)字是幾進(jìn)行判斷即可;(3)先利用(2)中的方法判斷出個(gè)數(shù)數(shù)字,然后再利用夾逼法判斷出十位數(shù)字即可;(4)利用(3)中的方法確定出個(gè)位數(shù)字和十位數(shù)字即可.【詳解】(1)∵1000<59319<1000000,∴59319的立方根是兩位數(shù);(2)∵125,343,729,∴59319的個(gè)位數(shù)字是9,則59319的立方根的個(gè)位數(shù)字是9;(3)∵,且59319的立方根是兩位數(shù),∴59319的立方根的十位數(shù)字是3,又∵59319的立方根的個(gè)位數(shù)字是9,∴59319的立方根是39;(4)∵1000<103823<1000000,∴103823的立方根是兩位數(shù);∵125,343,729,∴103823的個(gè)位數(shù)字是3,則103823的立方根的個(gè)位數(shù)字是7;∵,且103823的立方根是兩位數(shù),∴103823的立方根的十位數(shù)字是4,又∵103823的立方根的個(gè)位數(shù)字是7,∴103823的立方根是47.【點(diǎn)睛】考查了立方根的概念和求法,解題關(guān)鍵是理解一個(gè)數(shù)的立方的個(gè)位數(shù)就是這個(gè)數(shù)的個(gè)位數(shù)的立方的個(gè)位數(shù).9.(1),,;(2);(3)【分析】(1)÷1即可求出q,根據(jù)已知數(shù)的特點(diǎn)求出a18和an即可;(2)根據(jù)已知先求出3S,再相減,即可得出答案;(3)根據(jù)(1)(2)的結(jié)果得出規(guī)律即可.【詳解】解:(1)÷1=,a18=1×()17=,an=1×()n﹣1=,故答案為:,,;(2)設(shè)S=3+32+33+…+323,則3S=32+33+…+323+324,∴2S=324﹣3,∴S=(3)an=a1?qn﹣1,a1+a2+a3+…+an=.【點(diǎn)睛】本題考查了整式的混合運(yùn)算的應(yīng)用,主要考查學(xué)生的理解能力和閱讀能力,題目是一道比較好的題目,有一定的難度.10.(1);(2)2;(3)不是;(4)(6,)【分析】(1)根據(jù)“白馬有理數(shù)對(duì)”的定義,把數(shù)對(duì)分別代入計(jì)算即可判斷;(2)根據(jù)“白馬有理數(shù)對(duì)”的定義,構(gòu)建方程即可解決問(wèn)題;(3)根據(jù)“白馬有理數(shù)對(duì)”的定義即可判斷;(4)根據(jù)“白馬有理數(shù)對(duì)”的定義即可解決問(wèn)題.【詳解】(1)∵-2+1=-1,而-2×1-1=-3,∴-2+1-3,∴(-2,1)不是“白馬有理數(shù)對(duì)”,∵5+=,5×-1=,∴5+=5×-1,∴是“白馬有理數(shù)對(duì)”,故答案為:;(2)若是“白馬有理數(shù)對(duì)”,則a+3=3a-1,解得:a=2,故答案為:2;(3)若是“白馬有理數(shù)對(duì)”,則m+n=mn-1,那么-n+(-m)=-(m+n)=-(mn-1)=-mn+1,∵-mn+1mn-1∴(-n,-m)不是“白馬有理數(shù)對(duì)”,故答案為:不是;(4)取m=6,則6+x=6x-1,∴x=,∴(6,)是“白馬有理數(shù)對(duì)”,故答案為:(6,).【點(diǎn)睛】本題考查了“白馬有理數(shù)對(duì)”的定義,有理數(shù)的加減運(yùn)算,一次方程的列式求解,理解“白馬有理數(shù)對(duì)”的定義是解題的關(guān)鍵.11.(1)x7-1;(2)xn+1-1;(3).【分析】(1)仿照已知等式寫出答案即可;(2)先歸納總結(jié)出規(guī)律,然后按規(guī)律解答即可;(3)先利用得出規(guī)律的變形,然后利用規(guī)律解答即可.【詳解】解:(1)根據(jù)題意得:(x-1)(x6+x5+x4+x3+x2+x+1)=x7-1;(2)根據(jù)題意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;(3)原式=×(3-1)(1+3+32+···+349+350)=×(x50+1-1)=故答案為:(1)x7-1;(2)xn+1-1;(3).【點(diǎn)睛】本題考查了平方差公式以及規(guī)律型問(wèn)題,弄清題意、發(fā)現(xiàn)數(shù)字的變化規(guī)律是解答本題的關(guān)鍵.12.(1)兩;右;一;(2)12.25;0.3873;(3)被開方數(shù)的小數(shù)點(diǎn)向右(左)移三位,其立方根的小數(shù)點(diǎn)向右(左)移動(dòng)一位;(4)-0.01【分析】(1)觀察已知等式,得到一般性規(guī)律,寫出即可;(2)利用得出的規(guī)律計(jì)算即可得到結(jié)果;(3)歸納總結(jié)得到規(guī)律,寫出即可;(4)利用得出的規(guī)律計(jì)算即可得到結(jié)果.【詳解】解:(1),,,……,,,……由此可見,被開方數(shù)的小數(shù)點(diǎn)每向右移動(dòng)兩位,其算術(shù)平方根的小數(shù)點(diǎn)向右移動(dòng)一位.故答案為:兩;右;一;(2)已知,,則;;故答案為:12.25;0.3873;(3),,,……小數(shù)點(diǎn)的變化規(guī)律是:被開方數(shù)的小數(shù)點(diǎn)向右(左)移三位,其立方根的小數(shù)點(diǎn)向右(左)移動(dòng)一位;(4)∵,,∴,∴,∴y=-0.01.【點(diǎn)睛】此題考查了立方根,以及算術(shù)平方根,弄清題中的規(guī)律是解本題的關(guān)鍵.13.(1);(2)①或;②點(diǎn)在B點(diǎn)左側(cè)時(shí),;點(diǎn)在B點(diǎn)右側(cè)時(shí),.【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)分別求出、,根據(jù)平移規(guī)律得到平移方式,再由平移的坐標(biāo)變化規(guī)律求出點(diǎn)的坐標(biāo);(2)①設(shè),根據(jù)三角形的面積公式列出方程,解方程求出,得到點(diǎn)P的坐標(biāo);②分點(diǎn)點(diǎn)在B點(diǎn)左側(cè)、點(diǎn)在B點(diǎn)右側(cè)時(shí),過(guò)點(diǎn)P作,根據(jù)平行線的性質(zhì)解答.【詳解】解:(1),,,,解得,,.,,平移線段得到線段,使點(diǎn)與點(diǎn)對(duì)應(yīng),∴平移線段向上平移4個(gè)單位,再向右平移2個(gè)單位得到線段,∴,即;(2)①設(shè),∵線段平移得到線段,∴,∵,∵,∴,∵,∴解得,當(dāng)P在B點(diǎn)左側(cè)時(shí),坐標(biāo)為(1,0),當(dāng)P在B點(diǎn)右側(cè)時(shí),坐標(biāo)為(7,0),或;②I、點(diǎn)在射線(不與點(diǎn),重合)上,點(diǎn)在B點(diǎn)左側(cè)時(shí),,,滿足的關(guān)系式是.理由如下:如圖1,過(guò)點(diǎn)作,,∴,由平移得到,點(diǎn)與點(diǎn)對(duì)應(yīng),點(diǎn)與點(diǎn)對(duì)應(yīng),,∴∴,;即,II、如圖2,點(diǎn)在射線(不與點(diǎn),重合)上,點(diǎn)在B點(diǎn)右側(cè)時(shí),,,滿足的關(guān)系式是.同①的方法得,,,;即:綜上所述:點(diǎn)在B點(diǎn)左側(cè)時(shí),.點(diǎn)在B點(diǎn)右側(cè)時(shí),.【點(diǎn)睛】本題考查了坐標(biāo)與圖形平移的關(guān)系,坐標(biāo)與平行四邊形性質(zhì)的關(guān)系,平行線的性質(zhì)及三角形、平行四邊形的面積公式.關(guān)鍵是理解平移規(guī)律,作平行線將相關(guān)角進(jìn)行轉(zhuǎn)化.14.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由見解析;(3)①∠P=2∠P1,理由見解析;②∠AP2B=.【分析】(1)過(guò)P作PM∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠APM=∠DAP,再根據(jù)平行公理求出CD∥EF然后根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠MPB=∠FBP,最后根據(jù)∠APM+∠MPB=∠DAP+∠FBP等量代換即可得證;(2)結(jié)論:∠APB=∠DAP+∠FBP.(3)①根據(jù)(2)的規(guī)律和角平分線定義解答;②根據(jù)①的規(guī)律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根據(jù)角平分線的定義和平角等于180°列式整理即可得解.【詳解】(1)證明:過(guò)P作PM∥CD,∴∠APM=∠DAP.(兩直線平行,內(nèi)錯(cuò)角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一條直線的兩條直線互相平行),∴∠MPB=∠FBP.(兩直線平行,內(nèi)錯(cuò)角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性質(zhì))即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)結(jié)論:∠APB=∠DAP+∠FBP.理由:見(1)中證明.(3)①結(jié)論:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分別平分∠CAP、∠EBP,∴∠CAP2=∠CAP,∠EBP2=∠EBP,∴∠AP2B=∠CAP+∠EBP,=(180°-∠DAP)+(180°-∠FBP),=180°-(∠DAP+∠FBP),=180°-∠APB,=180°-β.【點(diǎn)睛】本題考查了平行線的性質(zhì),角平分線的定義,熟記性質(zhì)與概念是解題的關(guān)鍵,此類題目,難點(diǎn)在于過(guò)拐點(diǎn)作平行線.15.(1);;6;(2)證明見解析;(3)
,理由見解析.【詳解】分析:(1)求出CD的長(zhǎng)度,再根據(jù)三角形的面積公式列式計(jì)算即可得解;(2)根據(jù)等角的余角相等解答即可;(3)首先證明∠ACD=∠ACE,推出∠DCE=2∠ACD,再證明∠ACD=∠BCO,∠BEC=∠DCE=2∠ACD即可解決問(wèn)題;【解答】(1)解:如圖1中,∵|a+4|+(b-a-1)2=0,∴a=-4,b=-3,∵點(diǎn)C(0,-4),D(-3,-4),∴CD=3,且CD∥x軸,∴△BCD的面積=×4×3=6;故答案為-4,-3,6.(2)如圖2中,∵∠CPQ=∠CQP=∠OPB,AC⊥BC,∴∠CBQ+∠CQP=90°,又∵∠ABQ+∠CPQ=90°,∴∠ABQ=∠CBQ,∴BQ平分∠CBA.(3)如圖3中,結(jié)論:∠BEC=2∠BCO.理由:∵AC⊥BC,∴∠ACB=90°,∴∠ACD+∠BCF=90°,∵CB平分∠ECF,∴∠ECB=∠BCF,∴∠ACD+∠ECB=90°,∵∠ACE+∠ECB=90°,∴∠ACD=∠ACE,∴∠DCE=2∠ACD,∵∠ACD+∠ACO=90°,∠BCO+∠ACO=90°,∴∠ACD=∠BCO,∵C(0,-4),D(-3,-4),∴CD∥AB,∠BEC=∠DCE=2∠ACD,∴∠BEC=2∠BCO,點(diǎn)睛:本題考查了坐標(biāo)與圖形性質(zhì),三角形的角平分線,三角形的面積,三角形的內(nèi)角和定理,三角形的外角性質(zhì)等知識(shí),熟記性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.16.(1)4,-7;(2);(3);(4)或或或【分析】(1)根據(jù)表示不超過(guò)x的最大整數(shù)的定義及例子直接求解即可;(2)根據(jù)表示不超過(guò)x的最大整數(shù)的定義及例子直接求解即可;(3)由材料中“,其中”得出,解不等式,再根據(jù)3x+1為整數(shù),即可計(jì)算出具體的值;(4)由材料中的條件可得,由,可求得的范圍,根據(jù)為整數(shù),分情況討論即可求得x的值.【詳解】(1),.故答案為:4,-7.(2)如果.那么x的取值范圍是.故答案為:.(3)如果,那么.解得:∵是整數(shù).∴.故答案為:.(4)∵,其中,∴,∵,∴.∵,∴,∴,∴,0,1,2.當(dāng)時(shí),,;當(dāng)時(shí),,;當(dāng)時(shí),,;當(dāng)時(shí),,;∴或或或.【點(diǎn)睛】本題考查了新定義下的不等式的應(yīng)用,關(guān)鍵是理解題中的意義,列出不等式求解;最后一問(wèn)要注意不要漏了情況.17.(1)(3,0);(2)①P1;②或;(3)【分析】(1)根據(jù)“l(fā)型平移”的定義解決問(wèn)題即可.(2)①畫出線段A1B1即可判斷.②根據(jù)定義求出t最大值,最小值即可判斷.(3)如圖2中,觀察圖象可知,當(dāng)B′在線段B′B″上時(shí),B'M的最小值保持不變,最小值為.【詳解】(1)將點(diǎn)A(2,1)進(jìn)行“l(fā)型平移”后的對(duì)應(yīng)點(diǎn)A'的坐標(biāo)為(3,0),故答案為:(3,0);(2)①如圖1中,觀察圖象可知,將線段AB進(jìn)行“﹣l型平移”后得到線段A'B',點(diǎn)P1(1.5,2),P2(2,3),P3(3,0)中,在線段A′B′上的點(diǎn)是P1,故答案為:P1;②若線段AB進(jìn)行“t型平移”后與坐標(biāo)軸有公共點(diǎn),則t的取值范圍是﹣4≤t≤﹣2或t=1.故答案為:﹣4≤t≤﹣2或t=1.(3)如圖2中,觀察圖象可知,當(dāng)B′在線段B′B″上時(shí),B'M的最小值保持不變,最小值為,此時(shí)1≤t≤3.故答案為:1≤t≤3.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了平移變換,“t型平移”的定義等知識(shí),解題的關(guān)鍵理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,學(xué)會(huì)利用圖象法解決問(wèn)題,屬于中考創(chuàng)新題型.18.(1)4;(2)①或;②1.【分析】(1)依照題意,分別求出和,比較大小,得出答案,(2)點(diǎn)在軸上所以橫坐標(biāo)為0,,所以點(diǎn)和點(diǎn)的縱坐標(biāo)差的絕對(duì)值應(yīng)為2,可得點(diǎn)坐標(biāo),(3)已知點(diǎn)和點(diǎn)的橫坐標(biāo)差的絕對(duì)值恒等于1,縱坐標(biāo)差的絕對(duì)是個(gè)動(dòng)點(diǎn)問(wèn)題,取值范圍和1比較,可得出最小值為1.【詳解】解:(1),,,,點(diǎn)與點(diǎn)的“非常距離”為4.故答案為:4.(2)①點(diǎn)在軸上所以橫坐標(biāo)為0,點(diǎn)和點(diǎn)的縱坐標(biāo)差的絕對(duì)值應(yīng)為2,設(shè)點(diǎn)的縱坐標(biāo)為,,解得或,點(diǎn)的坐標(biāo)為或,故點(diǎn)的坐標(biāo)為或;②最小值為1,理由為已知點(diǎn)和點(diǎn)的橫坐標(biāo)差的絕對(duì)值恒等于1,,設(shè)點(diǎn)的縱坐標(biāo)為,當(dāng)時(shí),,可得點(diǎn)與點(diǎn)的“非常距離”為1,當(dāng)或時(shí),,可得點(diǎn)與點(diǎn)的“非常距離”為.,點(diǎn)與點(diǎn)的“非常距離”的最小值為1,故點(diǎn)與點(diǎn)的“非常距離”的最小值為1.【點(diǎn)睛】本題考查了直角坐標(biāo)系坐標(biāo)結(jié)合絕對(duì)值的應(yīng)用,是新定義問(wèn)題,難點(diǎn)在于第三問(wèn)的動(dòng)點(diǎn)位置取值范圍討論,需要學(xué)生根據(jù)題意正確討論.19.(1)-4,4;(2)購(gòu)買20支鉛筆、20塊橡皮、20本日記本共需120元;(3)1【分析】(1)由①-②得2x-2y=-8,則x-y=-4,再由①+②得4x+4y=16,則x+y=4;(2)設(shè)1支鉛筆x元,1塊橡皮y元,1本日記本z元,由題意:買5支鉛筆、3塊橡皮、2本日記本共需32元,買9支鉛筆、5塊橡皮、3本日記本共需58元,列出方程組,再由整體思想”求出x+y+z=6,即可求解;(3)由定義新運(yùn)算:x※y=ax+by+c得1※4=a+4b+c=16①,1※5=a+5b+c=21②,求出a+b+c=1,即可求解.【詳解】解:(1),①-②得:2x-2y=-8,∴x-y=-4,①+②得:4x+4y=16,∴x+y=4,故答案為:-4,4;(2)設(shè)1支鉛筆x元,1塊橡皮y元,1本日記本z元,由題意得:,①×2-②得:x+y+z=6,∴20x+20y+20z=20(x+y+z)=20×6=120,即購(gòu)買20支鉛筆、20塊橡皮、20本日記本共需120元;(3)∵x※y=ax+by+c,∴1※4=a+4b+c=16①,1※5=a+5b+c=21②,②-①得:b=5,∴a+c=16-4b=-4,∴a+b+c=1,∴1※1=a+b+c=1.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用、整體思想以及新運(yùn)算等知識(shí);熟練掌握整體思想和新運(yùn)算,找準(zhǔn)等量關(guān)系,列出方程組是解題的關(guān)鍵.20.(1)19a;(2)315;(3).【解析】【分析】(1)首先根據(jù)題意,求得S△A1BC=2S△ABC,同理可求得S△A1B1C=2S△A1BC,依此得到S△A1B1C1=19S△ABC,則可求得面積S1的值;(2)根據(jù)等高不等底的三角形的面積的比等于底邊的比,求解,從而不難求得△ABC的面積;(3)設(shè)S△BPF=m,S△APE=n,依題意,得S△APF=S△APC=m,S△BPC=S△BPF=m.得出,從而求解.【詳解】解:(1)連接A1C,∵B1C=2BC,A1B=2AB,∴,,,∴,∴,同理可得出:,∴S1=6a+6a+6a+a=19a;故答案為:19a;(2)過(guò)點(diǎn)作于點(diǎn),設(shè),,;,.,即.同理,...①,,.②由①②,得,.(3)設(shè),,如圖所示.依題意,得,..,.,,...【點(diǎn)睛】此題考查了三角形面積之間的關(guān)系.(2)的關(guān)鍵是設(shè)出未知三角形的面積,然后根據(jù)等高不等底的三角形的面積的比等于底邊的比列式求解.21.(1);(2);(3)與之間的數(shù)量關(guān)系為.【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)和解二元一次方程組求解即可;(2)設(shè),先根據(jù)平移的性質(zhì)可得,過(guò)D作軸于P,再根據(jù)三角形ADP的面積得出,從而可得,然后根據(jù)線段的和差可得,由此即可得出答案;(3)設(shè)AH與CD交于點(diǎn)Q,過(guò)H,G分別作DF的平行線MN,KJ,設(shè),由平行線的性質(zhì)可得,由此即可得出結(jié)論.【詳解】(1)∵,且∴解得:則;(2)設(shè)∵將線段AB平移得到CD,∴由平移的性質(zhì)得如圖1,過(guò)D作軸于P∴∵∴即解得∴∴;(3)與之間的數(shù)量關(guān)系為,求解過(guò)程如下:如圖2,設(shè)AH與CD交于點(diǎn)Q,過(guò)H,G分別作DF的平行線MN,KJ∵HD平分,HF平分∴設(shè)∵AB平移得到CD∴∴,∴∵∴∴∵∴∴∴.【點(diǎn)睛】本題屬于一道較難的綜合題,考查了解二元一次方程組、平移的性質(zhì)、平行線的性質(zhì)等知識(shí)點(diǎn),較難的是題(3),通過(guò)作兩條輔助線,構(gòu)造平行線,從而利用平行線的性質(zhì)是解題關(guān)鍵.22.(1),,;(2)見解析.【分析】(1)令中的,求出相應(yīng)的x的值,即可得到A的坐標(biāo),將方程和方程聯(lián)立成方程組,解方程組即可得到C的坐標(biāo),進(jìn)而可得到B的坐標(biāo);(2)分別利用梯形的面積公式表示出四邊形MNAC的面積與四邊形MNOB的面積,然后根據(jù)t的范圍,分情況討論即可.【詳解】(1)令,則,解得,.解得.軸,∴點(diǎn)B的縱坐標(biāo)與點(diǎn)C的縱坐標(biāo)相同,;(2),,,.∵點(diǎn)M從點(diǎn)C以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí)點(diǎn)N從點(diǎn)O以每秒1.5個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),,,,.當(dāng)時(shí),即時(shí),;當(dāng)時(shí),即時(shí),;當(dāng)時(shí),即時(shí),.【點(diǎn)睛】本題主要考查二元一次方程及方程組的應(yīng)用,數(shù)形結(jié)合并分情況討論是解題的關(guān)鍵.23.(1)A(﹣1,0),B(3,0),C(0,2),D(4,2);(2),,(﹣5,0),(11,0);(3)1【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)求出、的值得出點(diǎn)、的坐標(biāo),再由平移可得點(diǎn)、的坐標(biāo),即可知答案;(2)分點(diǎn)在軸和軸上兩種情況,設(shè)出坐標(biāo),根據(jù)列出方程求解可得;(3)作,則,可得、,進(jìn)而得到∠DCP+∠BOP=∠CPO,即求解.【詳解】解:(1)根據(jù)題意得:,解得:a=﹣1,b=3.所以A(﹣1,0),B(3,0),C(0,2),D(4,2),(2)∵AB=3﹣(﹣1)=3+1=4,∴S四邊形ABDC=4×2=8;∵S△BCE=S四邊形ABDC,當(dāng)E在y軸上時(shí),設(shè)E(0,y),則?|y﹣2|?3=8,解得:y=﹣或y=,∴;當(dāng)E在x軸上時(shí),設(shè)E(x,0),則?|x﹣3|?2=8,解得:x=11或x=﹣5,∴E(﹣5,0),(11,0);(3)由平移的性質(zhì)可得AB∥CD,如圖,過(guò)點(diǎn)P作PF∥AB,則PF∥CD,∴∠DCP=∠CPF,∠BOP=∠OPF,∴∠CPO=∠CPF+∠OPF=∠DCP+∠BOP,即∠DCP+∠BOP=∠CPO,所以比值為1.【點(diǎn)睛】本題主要考查非負(fù)數(shù)的性質(zhì)、二元一次方程的解法、坐標(biāo)與平移及平行線的判定與性質(zhì),根據(jù)非負(fù)數(shù)性質(zhì)求得四點(diǎn)的坐標(biāo)是解題的根本,熟練掌握平行線的判定與性質(zhì)是解題的關(guān)鍵.24.(1)(3,3);(2);(3)(,0)或(,0)【分析】(1)點(diǎn)A既是“健康點(diǎn)”又是“快樂(lè)點(diǎn)”,則A坐標(biāo)應(yīng)該滿足x-2y+3=0和x+y-6=0,解即可得答案;(2)設(shè)直線AB交y軸于D,求出B、C、D的坐標(biāo),根據(jù)S△ABC=S△BCD+S△ACD即可求出答案;(3)設(shè)點(diǎn)P的坐標(biāo)為(n,0),根據(jù)△PBC的面積等于△ABC的面積,即,列出方程,解之即可.【詳解】解:(1)點(diǎn)A既是“健康點(diǎn)”又是“快樂(lè)點(diǎn)”,則A坐標(biāo)應(yīng)該滿足x-2y+3=0和x+y-6=0,解得:,∴A的坐標(biāo)為(3,3);故答案為:(3,3);(2)設(shè)直線AB交y軸于D,如圖:∵B是x軸上的“健康點(diǎn)”,在x-2y+3=0中,令y=0得x=-3,∴B(-3,0),∵C是y軸上的“快樂(lè)點(diǎn)”,在x+y-6=0中,令x=0得y=6,∴C(0,6),在x-2y+3=0中,令x=0得y=,∴D(0,),∴CD=,∴S△ABC=S△BCD+S△ACD=CD?|xB|+CD?|xA|==;(3)設(shè)點(diǎn)P的坐標(biāo)為(n,0),則BP=,∵△BPC與△ABC面積相等,∴S△BPC==,∴,∴或,∴點(diǎn)P的坐標(biāo)為(,0)或(,0).【點(diǎn)睛】本題考查三角形面積,涉及新定義、坐標(biāo)軸上點(diǎn)坐標(biāo)特征等知識(shí),解題的關(guān)鍵是理解“健康點(diǎn)”、“快樂(lè)點(diǎn)”含義.25.(1)-1;(2)t=-2,-1,0,1;(3)13組【分析】(1)把x=2代入方程3x-5y=11得,求得y的值,即可求得θ的值;(2)參考小明的解題方法求解即可;(3)參考小明的解題方法求解后,即可得到結(jié)論.【詳解】解:(1)把x=2代入方程3x-5y=11得,6-6y=11,解得y=-1,∵方程3x-5y=11的全部整數(shù)解表示為:(t為整數(shù)),則θ=-1,故答案為-1;(2)方程2x+3y=24一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).因?yàn)?,解?3<t<2.因?yàn)閠為整數(shù),所以t=-2,-1,0,1.(3)方程19x+8y=1908一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).∵,解得<t<12.5.因?yàn)閠為整數(shù),所以t=0,1,2,3,4,5,67,8,9,10,11,12,∴方程19x+8y=1908的正整數(shù)解有13組.【點(diǎn)睛】本題考查了二元一次方程的解,一元一次不等式的整數(shù)解,理解題意、掌握解題方法是本題的關(guān)鍵.26.(1);(2)或;(3)或.【分析】(1)根據(jù)“控變點(diǎn)”的定義、絕對(duì)值運(yùn)算法則即可得;(2)根據(jù)“控變點(diǎn)”的定義、絕對(duì)值運(yùn)算建立方程,解絕對(duì)值方程即可得;(3)先根據(jù)“控變點(diǎn)”的定義求出點(diǎn)的坐標(biāo),再根據(jù)“點(diǎn)在長(zhǎng)方形的內(nèi)部”建立不等式
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電力系統(tǒng)故障排除與預(yù)防措施手冊(cè)
- 2026年劇本殺運(yùn)營(yíng)公司員工法律法規(guī)培訓(xùn)管理制度
- 2026年劇本殺運(yùn)營(yíng)公司新運(yùn)營(yíng)模式研發(fā)管理制度
- 2026年劇本殺運(yùn)營(yíng)公司劇本供應(yīng)商篩選與評(píng)估管理制度
- 2026年零售行業(yè)創(chuàng)新報(bào)告及新零售模式發(fā)展趨勢(shì)分析報(bào)告001
- 2026年自動(dòng)駕駛在物流運(yùn)輸中創(chuàng)新報(bào)告
- 2025 小學(xué)三年級(jí)思想品德之班級(jí)衛(wèi)生值日檢查管理課件
- 2026年游戲行業(yè)元宇宙創(chuàng)新報(bào)告及虛擬現(xiàn)實(shí)技術(shù)應(yīng)用報(bào)告
- 2026年游戲行業(yè)電競(jìng)產(chǎn)業(yè)報(bào)告及未來(lái)五至十年電競(jìng)賽事報(bào)告
- 人工智能賦能下的教育公平:區(qū)域教育均衡發(fā)展的實(shí)踐模式構(gòu)建教學(xué)研究課題報(bào)告
- 2026年甘肅省蘭州市皋蘭縣蘭泉污水處理有限責(zé)任公司招聘筆試參考題庫(kù)及答案解析
- 2025年全國(guó)高壓電工操作證理論考試題庫(kù)(含答案)
- 居間合同2026年工作協(xié)議
- 2025-2026學(xué)年(通*用版)高二上學(xué)期期末測(cè)試【英語(yǔ)】試卷(含聽力音頻、答案)
- 翻車機(jī)工操作技能水平考核試卷含答案
- 員工宿舍安全培訓(xùn)資料課件
- 化工設(shè)備培訓(xùn)課件教學(xué)
- 舞臺(tái)燈光音響控制系統(tǒng)及視頻顯示系統(tǒng)安裝施工方案
- 2025福建省能源石化集團(tuán)有限責(zé)任公司秋季招聘416人參考考試試題及答案解析
- 煤礦三違行為界定標(biāo)準(zhǔn)及處罰細(xì)則
- 服裝廠安全生產(chǎn)責(zé)任制度制定
評(píng)論
0/150
提交評(píng)論