版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
上海交大附屬中學2025年高二數(shù)學第一學期期末檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列前項和為,且,,則此數(shù)列中絕對值最小的項為A.第5項 B.第6項C.第7項 D.第8項2.空間四點共面,但任意三點不共線,若為該平面外一點且,則實數(shù)的值為()A. B.C. D.3.已知曲線,則曲線W上的點到原點距離的最小值是()A. B.C. D.4.彬塔,又稱開元寺塔、彬縣塔,民間稱“雷峰塔”,位于陜西省彬縣城內(nèi)西南紫薇山下.某同學為測量彬塔高度,選取了與塔底在同一水平面內(nèi)的兩個測量基點與,現(xiàn)測得,,,在點測得塔頂?shù)难鼋菫?0°,則塔高()A.30m B.C. D.5.已知函數(shù)有兩個不同的零點,則實數(shù)的取值范圍是()A B.C. D.6.直線的傾斜角為()A. B.C. D.7.已知等差數(shù)列,,,則數(shù)列的前項和為()A. B.C. D.8.已知圓上有三個點到直線的距離等于1,則的值為()A. B.C. D.19.已知圓,過點P的直線l被圓C所截,且截得最長弦的長度與最短弦的長度比值為5∶4,若O為坐標原點,則最大值為()A.3 B.4C.5 D.610.已知等差數(shù)列中的、是函數(shù)的兩個不同的極值點,則的值為()A. B.1C.2 D.311.在正方體中,分別是線段的中點,則點到直線的距離是()A. B.C. D.12.雙曲線的左焦點到其漸近線的距離是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)是函數(shù)的導函數(shù),,對任意實數(shù)都有,則不等式的解集為___________.14.銀行一年定期的存款的利率為p,如果將a元存入銀行一年定期,到期后將本利再存一年定期,到期后再存一年定期……,則10年后到期本利共________元15.已知函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)設上存在極大值M,證明:.16.已知等差數(shù)列的公差不為零,若,,成等比數(shù)列,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱柱的底面為正方形,平面,,,點在上,且.(1)求證:;(2)求直線與平面所成角的正弦值;(3)求平面與平面夾角的余弦值.18.(12分){}是公差為1的等差數(shù)列,.正項數(shù)列{}的前n項和為,且.(1)求數(shù)列{}和數(shù)列}的通項公式;(2)在和之間插入1個數(shù),使,,成等差數(shù)列,在和之間插入2個數(shù),,使,,,成等差數(shù)列,…,在和之間插入n個數(shù),,…,,使,,,…,,成等差數(shù)列.①記,求{}的通項公式;②求的值.19.(12分)已知函數(shù)在處的切線與直線平行(1)求值,并求此切線方程;(2)證明:20.(12分)數(shù)字人民幣是由央行發(fā)行的法定數(shù)字貨幣,它由指定運營機構參與運營并向公眾兌換,與紙鈔和硬幣等價.截至2021年6月30日,數(shù)字人民幣試點場景已超132萬個,覆蓋生活繳費、餐飲服務、交通出行、購物消費、政務服務等領域.為了進一步了解普通大眾對數(shù)字人民幣的感知以及接受情況,某機構進行了一次問卷調(diào)查,結果如下:學歷小學及以下初中高中大學專科大學本科碩士研究生及以上不了解數(shù)字人民幣35358055646了解數(shù)字人民幣406015011014025(1)如果將高中及高中以下的學歷稱為“低學歷”,大學??萍耙陨蠈W歷稱為“高學歷”,根據(jù)所給數(shù)據(jù),完成列聯(lián)表.低學歷高學歷合計不了解數(shù)字人民幣了解數(shù)字人民幣合計(2)若從低學歷的被調(diào)查者中隨機抽取2人進行進一步調(diào)查,求被選中的2人中至少有1人對數(shù)字人民幣不了解的概率:(3)根據(jù)列聯(lián)表,判斷是否有的把握認為“是否了解數(shù)字人民幣”與“學歷高低”有關?0.0500.0100.001k3.8416.63510.828附:.21.(12分)三棱錐中,,,,直線與平面所成的角為,點在線段上.(1)求證:;(2)若點在上,滿足,點滿足,求實數(shù)使得二面角的余弦值為.22.(10分)在數(shù)列中,,且,(1)求的通項公式;(2)求的前n項和的最大值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設等差數(shù)列的首項為,公差為,,則,又,則,說明數(shù)列為遞減數(shù)列,前6項為正,第7項及后面的項為負,又,則,則在數(shù)列中絕對值最小的項為,選C.2、A【解析】由空間向量共面定理構造方程求得結果.【詳解】空間四點共面,但任意三點不共線,,解得:.故選:A.3、A【解析】化簡方程,得到,求出的范圍,作出曲線的圖形,通過圖象觀察,即可得到原點距離的最小值詳解】解:即為,兩邊平方,可得,即有,則作出曲線的圖形,如下:則點與點或的距離最小,且為故選:A4、D【解析】在△中有,再應用正弦定理求,再在△中,即可求塔高.【詳解】由題設知:,又,△中,可得,在△中,,則.故選:D5、A【解析】分離參數(shù),求函數(shù)的導數(shù),根據(jù)函數(shù)有兩個零點可知函數(shù)的單調(diào)性,即可求解.【詳解】由題意得有兩個零點令,則且所以,在上為增函數(shù),可得,當,在上單調(diào)遞減,可得,即要有兩個零點有兩個零點,實數(shù)的取值范圍是.故選:A【點睛】方法點睛:已知函數(shù)有零點求參數(shù)取值范圍常用的方法和思路(1)直接法:直接根據(jù)題設條件構建關于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決;(3)數(shù)形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結合求解6、D【解析】若直線傾斜角為,由題設有,結合即可得傾斜角的大小.【詳解】由直線方程,若其傾斜角為,則,而,∴.故選:D7、A【解析】求出通項,利用裂項相消法求數(shù)列的前n項和.【詳解】因為等差數(shù)列,,,所以,所以,所以數(shù)列的前項和為故B,C,D錯誤.故選:A.8、A【解析】求出圓心和半徑,由題意可得圓心到直線的距離,列方程即可求得的值.【詳解】由圓可得圓心,半徑,因為圓上有三個點到直線的距離等于1,所以圓心到直線的距離,可得:,故選:A.9、C【解析】由題意,點P在圓C內(nèi),且最長弦的長度為直徑長10,則最短弦的長度為8,進而可得,所以點P的軌跡為以C為圓心,半徑為3的圓,從而即可求解.【詳解】解:由題意,圓,所以圓C是以為圓心,半徑為5的圓,因為過點P的直線l被圓C所截,且截得最長弦的長度與最短弦的長度比值為5∶4,所以點P在圓C內(nèi),且最長弦的長度為直徑長10,則最短弦的長度為8,所以由弦長公式有,所以點P的軌跡為以C為圓心,半徑為3的圓,所以,故選:C.10、C【解析】對求導,由題設及根與系數(shù)關系可得,再根據(jù)等差中項的性質(zhì)求,最后應用對數(shù)運算求值即可.【詳解】由題設,,由、是的兩個不同的極值點,所以,又是等差數(shù)列,所以,即,故.故選:C11、A【解析】以為坐標原點,分別以的方向為軸的正方向,建立空間直角坐標系,然后,列出計算公式進行求解即可【詳解】如圖,以為坐標原點,分別以的方向為軸的正方向,建立空間直角坐標系.因為,所以,所以,則點到直線的距離故選:A12、A【解析】求出雙曲線焦點坐標與漸近線方程,利用點到直線的距離公式可求得結果.【詳解】在雙曲線中,,,,所以,該雙曲線的左焦點坐標為,漸近線方程為,即,因,該雙曲線的左焦點到漸近線的距離為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】令則,∴在R上是減函數(shù)又等價于∴故不等式的解集是答案:點睛:本題考查用構造函數(shù)的方法解不等式,即通過構造合適的函數(shù),利用函數(shù)的單調(diào)性求得不等式的解集,解題時要注意常見的函數(shù)類型,如在本題中由于涉及到,故可從以下兩種情況入手解決:(1)對于,可構造函數(shù);(2)對于,可構造函數(shù)14、【解析】根據(jù)題意求出每年底的本利和,歸納即可.【詳解】由題意知,第一年本利和為:元,第二年本利和為:元,第三年本利和為:元,以此類推,第十年本利和為:元,故答案:15、(1)在單調(diào)遞增,單調(diào)遞減;(2)詳見解析.【解析】(1)求得,利用和即可求得函數(shù)的單調(diào)性區(qū)間;(2)求得函數(shù)的解析式,求,對的情況進行分類討論得到函數(shù)有極大值的情形,再結合極大值點的定義進行替換、即可求解.【詳解】(1)由題意,函數(shù),則,當時,令,所以函數(shù)單調(diào)遞增;當時,令,即,解得或,令,即,解得,所以函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間中單調(diào)遞減,當時,令,即,解得或,令,即,解得,所以函數(shù)在單調(diào)遞增,在單調(diào)遞減.(2)由函數(shù),則,令,可得令,解得,當時.,函數(shù)在單調(diào)遞增,此時,所以,函數(shù)在上單調(diào)遞增,此時不存在極大值,當時,令解得,令,解得,所以上單調(diào)遞減,在上單調(diào)遞增,因為在上存在極大值,所以,解得,因為,易證明,存在時,,存在使得,當在區(qū)間上單調(diào)遞增,在區(qū)間單調(diào)遞減,所以當時,函數(shù)取得極大值,即,,由,所以【點睛】本題主要考查導數(shù)在函數(shù)中的綜合應用,以及不等式的證明,著重考查了轉(zhuǎn)化與化歸思想、分類討論、及邏輯推理能力與計算能力,對于此類問題,通常要構造新函數(shù),利用導數(shù)研究函數(shù)的單調(diào)性,求出最值,進而得出相應的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構造新函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題16、0【解析】設等差數(shù)列的公差為,,根據(jù),,成等比數(shù)列,得到,再根據(jù)等差數(shù)列的通項公式可得結果.【詳解】設等差數(shù)列的公差為,,因為,,成等比數(shù)列,所以,所以,整理得,因為,所以,所以.故答案為:0.【點睛】本題考查了等比中項,考查了等差數(shù)列通項公式基本量運算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)(3)【解析】(1)以為原點,所在的直線為軸的正方向建立空間直角坐標系,求出平面的一個法向量可得,即平面,再由線面垂直的性質(zhì)可得答案;(2)設直線與平面所成角的為,可得答案;(3)由二面角的向量求法可得答案.【小問1詳解】以為原點,所在的直線為軸的正方向建立空間直角坐標系,則,,,,,所以,,,設平面的一個法向量為,所以,即,令,則,所以,所以,所以平面,平面,所以.【小問2詳解】,所以,由(1)平面的一個法向量為,設直線與平面所成角的為,所以直線與平面所成角的正弦值.【小問3詳解】由已知為平面的一個法向量,且,由(1)平面的一個法向量為,所以,由圖可得平面與平面夾角的余弦值為.18、(1),(2)①;②【解析】(1)利用等差數(shù)列的通項公式將展開化簡,求得首項,可得;根據(jù)遞推式,確定,再寫出,兩式相減可求得;(2)①根據(jù)等差數(shù)列的性質(zhì),采用倒序相加法求得結果;②根據(jù)數(shù)列的通項的特征,采用錯位相減法求和即可.【小問1詳解】設數(shù)列{}的公差為d,則d=1,由,即,可得,所以{}的通項公式為;由可知:當,得,當時,,兩式相減得;,即,所以{}是以為首項,為公比的等比數(shù)列,故.【小問2詳解】①,兩式相加,得所以;②,,兩式相減得:,故.19、(1);;(2)證明見解析.【解析】(1)根據(jù)導數(shù)幾何意義可知,解方程求得,進而得到切線方程;(2)當時,由,知不等式成立;當時,令,利用導數(shù)可求得在上單調(diào)遞增,從而得到,由此可得結論.【小問1詳解】,,在處的切線與直線平行,即切線斜率為,,解得:,,,所求切線方程為:,即;【小問2詳解】要證,即證;①當時,,,,即,;②當時,令,,,當時,,,,,即,在上單調(diào)遞增,,在上單調(diào)遞增,,即在上恒成立;綜上所述:.【點睛】思路點睛:本題第二問考查利用導數(shù)證明不等式的問題,解題的基本思路是將問題轉(zhuǎn)化為函數(shù)最值的求解問題;通過構造函數(shù),利用導數(shù)求函數(shù)最值的方法可確定恒成立,從而得到所證結論.20、(1)列聯(lián)表答案見解析;(2);(3)沒有的把握認為“是否了解數(shù)字人民幣”與“學歷高低”有關.【解析】(1)根據(jù)給定表中數(shù)據(jù)列出列聯(lián)表作答.(2)利用給定條件結合古典概率公式計算作答.(3)利用(1)中信息求出的觀測值,再與臨界值表比對作答.【小問1詳解】列聯(lián)表如下:低學歷高學歷合計不了解數(shù)字人民幣150125275了解數(shù)字人民幣250275525合計400400800【小問2詳解】由(1)知,被調(diào)查者中低學歷的有400,其中不了解數(shù)字人民幣的有150,從400人中任取2人有個基本事件,它們等可能,被選中的2人中至少有1人對數(shù)字人民幣不了解的事件A有個基本事件,所以被選中的2人中至少有1人對數(shù)字人民幣不了解的概率.【小問3詳解】由(1)知,的觀測值為,所以沒有的把握認為“是否了解數(shù)字人民幣”與“學歷高低”有關.21、(1)證明見解析;(2).【解析】(1)證明平面,利用線面垂直的性質(zhì)可證得結論成立;(2)設,以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可得出關于實數(shù)的等式,即可解得實數(shù)的值.【小問1詳解】證明:因為,,則且,,平面,所以為直線與平面所成的線面角,即,,故,,,平面,平面,因此,.【小問2詳解】解:設,由(1)可知且,,因為平面,,以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年不同類型橋梁的設計方法
- 2025年高職機械制造(液壓傳動技術)試題及答案
- 2025年高職建筑設計(建筑創(chuàng)意設計)試題及答案
- 2025年大學二年級(醫(yī)療器械與裝備工程)裝備應用階段測試題及答案
- 2025年中職煙草栽培與加工(煙草加工工藝)試題及答案
- 2025年大學第二學年(釀酒技術)釀酒工藝模擬測試試題及答案
- 2025年高職第一學年(制冷與空調(diào)技術)中央空調(diào)安裝調(diào)試階段測試試題及答案
- 2025年大學新能源發(fā)電工程(光伏運維)試題及答案
- 2025年中職建筑施工技術(混凝土施工)試題及答案
- 2025年大學制漿技術(制漿工藝)試題及答案
- 中國藥物性肝損傷診治指南(2024年版)解讀
- 基層黨建知識測試題及答案
- DG-TJ08-2021-2025 干混砌筑砂漿抗壓強度現(xiàn)場檢測技術標準
- 鼻竇炎的護理講課課件
- 腸系膜脂膜炎CT診斷
- 體外膜肺氧合技術ECMO培訓課件
- 老年醫(yī)院重點??平ㄔO方案
- 銀行解封協(xié)議書模板
- 超星爾雅學習通《學術規(guī)范與學術倫理(華東師范大學)》2025章節(jié)測試附答案
- GB 17440-2025糧食加工、儲運系統(tǒng)粉塵防爆安全規(guī)范
- 《綠色農(nóng)產(chǎn)品認證》課件
評論
0/150
提交評論