2020-2021備戰(zhàn)中考數(shù)學(xué)平行四邊形的綜合復(fù)習(xí)及答案解析_第1頁
2020-2021備戰(zhàn)中考數(shù)學(xué)平行四邊形的綜合復(fù)習(xí)及答案解析_第2頁
2020-2021備戰(zhàn)中考數(shù)學(xué)平行四邊形的綜合復(fù)習(xí)及答案解析_第3頁
2020-2021備戰(zhàn)中考數(shù)學(xué)平行四邊形的綜合復(fù)習(xí)及答案解析_第4頁
2020-2021備戰(zhàn)中考數(shù)學(xué)平行四邊形的綜合復(fù)習(xí)及答案解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2020-2021備戰(zhàn)中考數(shù)學(xué)平行四邊形的綜合復(fù)習(xí)及答案解析一、平行四邊形1.(1)、動手操作:如圖①:將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)處,折痕為EF,若∠ABE=20°,那么的度數(shù)為.(2)、觀察發(fā)現(xiàn):小明將三角形紙片ABC(AB>AC)沿過點(diǎn)A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖②);再次折疊該三角形紙片,使點(diǎn)A和點(diǎn)D重合,折痕為EF,展平紙片后得到△AEF(如圖③).小明認(rèn)為△AEF是等腰三角形,你同意嗎?請說明理由.(3)、實(shí)踐與運(yùn)用:將矩形紙片ABCD按如下步驟操作:將紙片對折得折痕EF,折痕與AD邊交于點(diǎn)E,與BC邊交于點(diǎn)F;將矩形ABFE與矩形EFCD分別沿折痕MN和PQ折疊,使點(diǎn)A、點(diǎn)D都與點(diǎn)F重合,展開紙片,此時(shí)恰好有MP=MN=PQ(如圖④),求∠MNF的大小.【答案】(1)125°;(2)同意;(3)60°【解析】試題分析:(1)根據(jù)直角三角形的兩個(gè)銳角互余求得∠AEB=70°,根據(jù)折疊重合的角相等,得∠BEF=∠DEF=55°,根據(jù)平行線的性質(zhì)得到∠EFC=125°,再根據(jù)折疊的性質(zhì)得到∠EFC′=∠EFC=125°;(2)根據(jù)第一次折疊,得∠BAD=∠CAD;根據(jù)第二次折疊,得EF垂直平分AD,根據(jù)等角的余角相等,得∠AEG=∠AFG,則△AEF是等腰三角形;(3)由題意得出:∠NMF=∠AMN=∠MNF,MF=NF,由對稱性可知,MF=PF,進(jìn)而得出△MNF≌△MPF,得出3∠MNF=180°求出即可.試題解析:(1)、∵在直角三角形ABE中,∠ABE=20°,∴∠AEB=70°,∴∠BED=110°,根據(jù)折疊重合的角相等,得∠BEF=∠DEF=55°.∵AD∥BC,∴∠EFC=125°,再根據(jù)折疊的性質(zhì)得到∠EFC′=∠EFC=125°.;(2)、同意,如圖,設(shè)AD與EF交于點(diǎn)G由折疊知,AD平分∠BAC,所以∠BAD=∠CAD.由折疊知,∠AGE=∠DGE=90°,所以∠AGE=∠AGF=90°,所以∠AEF=∠AFE.所以AE=AF,即△AEF為等腰三角形.(3)、由題意得出:∠NMF=∠AMN=∠MNF,∴MF=NF,由折疊可知,MF=PF,∴NF=PF,而由題意得出:MP=MN,又∵M(jìn)F=MF,∴△MNF≌△MPF,∴∠PMF=∠NMF,而∠PMF+∠NMF+∠MNF=180°,即3∠MNF=180°,∴∠MNF=60°.考點(diǎn):1.折疊的性質(zhì);2.等邊三角形的性質(zhì);3.全等三角形的判定和性質(zhì);4.等腰三角形的判定2.在四邊形中,,對角線平分.(1)如圖1,若,且,試探究邊、與對角線的數(shù)量關(guān)系并說明理由.(2)如圖2,若將(1)中的條件“”去掉,(1)中的結(jié)論是否成立?請說明理由.(3)如圖3,若,探究邊、與對角線的數(shù)量關(guān)系并說明理由.【答案】(1).證明見解析;(2)成立;(3).理由見解析.【解析】試題分析:(1)結(jié)論:AC=AD+AB,只要證明AD=AC,AB=AC即可解決問題;(2)(1)中的結(jié)論成立.以C為頂點(diǎn),AC為一邊作∠ACE=60°,∠ACE的另一邊交AB延長線于點(diǎn)E,只要證明△DAC≌△BEC即可解決問題;(3)結(jié)論:AD+AB=AC.過點(diǎn)C作CE⊥AC交AB的延長線于點(diǎn)E,只要證明△ACE是等腰直角三角形,△DAC≌△BEC即可解決問題;試題解析:解:(1)AC=AD+AB.理由如下:如圖1中,在四邊形ABCD中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC平分∠DAB,∴∠DAC=∠BAC=60°,∵∠B=90°,∴AB=AC,同理AD=AC.∴AC=AD+AB.(2)(1)中的結(jié)論成立,理由如下:以C為頂點(diǎn),AC為一邊作∠ACE=60°,∠ACE的另一邊交AB延長線于點(diǎn)E,∵∠BAC=60°,∴△AEC為等邊三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CE,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(3)結(jié)論:AD+AB=AC.理由如下:過點(diǎn)C作CE⊥AC交AB的延長線于點(diǎn)E,∵∠D+∠B=180°,∠DAB=90°,∴DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又∵∠D+∠ABC=180°,∠D=∠CBE,∴△CDA≌△CBE,∴AD=BE,∴AD+AB=AE.在Rt△ACE中,∠CAB=45°,∴AE=∴.3.問題發(fā)現(xiàn):()如圖①,點(diǎn)為平行四邊形內(nèi)一點(diǎn),請過點(diǎn)畫一條直線,使其同時(shí)平分平行四邊形的面積和周長.問題探究:()如圖②,在平面直角坐標(biāo)系中,矩形的邊、分別在軸、軸正半軸上,點(diǎn)坐標(biāo)為.已知點(diǎn)為矩形外一點(diǎn),請過點(diǎn)畫一條同時(shí)平分矩形面積和周長的直線,說明理由并求出直線,說明理由并求出直線被矩形截得線段的長度.問題解決:()如圖③,在平面直角坐標(biāo)系中,矩形的邊、分別在軸、軸正半軸上,軸,軸,且,,點(diǎn)為五邊形內(nèi)一點(diǎn).請問:是否存在過點(diǎn)的直線,分別與邊與交于點(diǎn)、,且同時(shí)平分五邊形的面積和周長?若存在,請求出點(diǎn)和點(diǎn)的坐標(biāo):若不存在,請說明理由.【答案】(1)作圖見解析;(2),;(3),.【解析】試題分析:(1)連接AC、BD交于點(diǎn)O,作直線PO,直線PO將平行四邊形ABCD的面積和周長分別相等的兩部分.(2)連接AC,BD交于點(diǎn),過、P點(diǎn)的直線將矩形ABCD的面積和周長分為分別相等的兩部分.(3)存在,直線平分五邊形面積、周長.試題解析:()作圖如下:()∵,,∴設(shè),,,∴,交軸于,交于,.()存在,直線平分五邊形面積、周長.∵在直線上,∴連交、于點(diǎn)、,設(shè),,,,∴直線,聯(lián)立,得,∴,.4.如圖,平面直角坐標(biāo)系中,四邊形OABC為矩形,點(diǎn)A,B的坐標(biāo)分別為(4,0),(4,3),動點(diǎn)M,N分別從O,B同時(shí)出發(fā).以每秒1個(gè)單位的速度運(yùn)動.其中,點(diǎn)M沿OA向終點(diǎn)A運(yùn)動,點(diǎn)N沿BC向終點(diǎn)C運(yùn)動.過點(diǎn)M作MP⊥OA,交AC于P,連接NP,已知動點(diǎn)運(yùn)動了x秒.(1)P點(diǎn)的坐標(biāo)為多少(用含x的代數(shù)式表示);(2)試求△NPC面積S的表達(dá)式,并求出面積S的最大值及相應(yīng)的x值;(3)當(dāng)x為何值時(shí),△NPC是一個(gè)等腰三角形?簡要說明理由.【答案】(1)P點(diǎn)坐標(biāo)為(x,3﹣x).(2)S的最大值為,此時(shí)x=2.(3)x=,或x=,或x=.【解析】試題分析:(1)求P點(diǎn)的坐標(biāo),也就是求OM和PM的長,已知了OM的長為x,關(guān)鍵是求出PM的長,方法不唯一,①可通過PM∥OC得出的對應(yīng)成比例線段來求;②也可延長MP交BC于Q,先在直角三角形CPQ中根據(jù)CQ的長和∠ACB的正切值求出PQ的長,然后根據(jù)PM=AB﹣PQ來求出PM的長.得出OM和PM的長,即可求出P點(diǎn)的坐標(biāo).(2)可按(1)②中的方法經(jīng)求出PQ的長,而CN的長可根據(jù)CN=BC﹣BN來求得,因此根據(jù)三角形的面積計(jì)算公式即可得出S,x的函數(shù)關(guān)系式.(3)本題要分類討論:①當(dāng)CP=CN時(shí),可在直角三角形CPQ中,用CQ的長即x和∠ABC的余弦值求出CP的表達(dá)式,然后聯(lián)立CN的表達(dá)式即可求出x的值;②當(dāng)CP=PN時(shí),那么CQ=QN,先在直角三角形CPQ中求出CQ的長,然后根據(jù)QN=CN﹣CQ求出QN的表達(dá)式,根據(jù)題設(shè)的等量條件即可得出x的值.③當(dāng)CN=PN時(shí),先求出QP和QN的長,然后在直角三角形PNQ中,用勾股定理求出PN的長,聯(lián)立CN的表達(dá)式即可求出x的值.試題解析:(1)過點(diǎn)P作PQ⊥BC于點(diǎn)Q,有題意可得:PQ∥AB,∴△CQP∽△CBA,∴∴解得:QP=x,∴PM=3﹣x,由題意可知,C(0,3),M(x,0),N(4﹣x,3),P點(diǎn)坐標(biāo)為(x,3﹣x).(2)設(shè)△NPC的面積為S,在△NPC中,NC=4﹣x,NC邊上的高為,其中,0≤x≤4.∴S=(4﹣x)×x=(﹣x2+4x)=﹣(x﹣2)2+.∴S的最大值為,此時(shí)x=2.(3)延長MP交CB于Q,則有PQ⊥BC.①若NP=CP,∵PQ⊥BC,∴NQ=CQ=x.∴3x=4,∴x=.②若CP=CN,則CN=4﹣x,PQ=x,CP=x,4﹣x=x,∴x=;③若CN=NP,則CN=4﹣x.∵PQ=x,NQ=4﹣2x,∵在Rt△PNQ中,PN2=NQ2+PQ2,∴(4﹣x)2=(4﹣2x)2+(x)2,∴x=.綜上所述,x=,或x=,或x=.考點(diǎn):二次函數(shù)綜合題.5.在平面直角坐標(biāo)系中,四邊形AOBC是矩形,點(diǎn)O(0,0),點(diǎn)A(5,0),點(diǎn)B(0,3).以點(diǎn)A為中心,順時(shí)針旋轉(zhuǎn)矩形AOBC,得到矩形ADEF,點(diǎn)O,B,C的對應(yīng)點(diǎn)分別為D,E,F(xiàn).(1)如圖①,當(dāng)點(diǎn)D落在BC邊上時(shí),求點(diǎn)D的坐標(biāo);(2)如圖②,當(dāng)點(diǎn)D落在線段BE上時(shí),AD與BC交于點(diǎn)H.①求證△ADB≌△AOB;②求點(diǎn)H的坐標(biāo).(3)記K為矩形AOBC對角線的交點(diǎn),S為△KDE的面積,求S的取值范圍(直接寫出結(jié)果即可).【答案】(1)D(1,3);(2)①詳見解析;②H(,3);(3)≤S≤.【解析】【分析】(1)如圖①,在Rt△ACD中求出CD即可解決問題;(2)①根據(jù)HL證明即可;②,設(shè)AH=BH=m,則HC=BC-BH=5-m,在Rt△AHC中,根據(jù)AH2=HC2+AC2,構(gòu)建方程求出m即可解決問題;(3)如圖③中,當(dāng)點(diǎn)D在線段BK上時(shí),△DEK的面積最小,當(dāng)點(diǎn)D在BA的延長線上時(shí),△D′E′K的面積最大,求出面積的最小值以及最大值即可解決問題;【詳解】(1)如圖①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四邊形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋轉(zhuǎn)得到,∴AD=AO=5,在Rt△ADC中,CD==4,∴BD=BC-CD=1,∴D(1,3).(2)①如圖②中,由四邊形ADEF是矩形,得到∠ADE=90°,∵點(diǎn)D在線段BE上,∴∠ADB=90°,由(1)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如圖②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,設(shè)AH=BH=m,則HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=,∴BH=,∴H(,3).(3)如圖③中,當(dāng)點(diǎn)D在線段BK上時(shí),△DEK的面積最小,最小值=?DE?DK=×3×(5-)=,當(dāng)點(diǎn)D在BA的延長線上時(shí),△D′E′K的面積最大,最大面積=×D′E′×KD′=×3×(5+)=.綜上所述,≤S≤.【點(diǎn)睛】本題考查四邊形綜合題、矩形的性質(zhì)、勾股定理、全等三角形的判定和性質(zhì)、旋轉(zhuǎn)變換等知識,解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題.6.已知:在菱形ABCD中,E,F(xiàn)是BD上的兩點(diǎn),且AE∥CF.求證:四邊形AECF是菱形.【答案】見解析【解析】【分析】由菱形的性質(zhì)可得AB∥CD,AB=CD,∠ADF=∠CDF,由“SAS”可證△ADF≌△CDF,可得AF=CF,由△ABE≌△CDF,可得AE=CF,由平行四邊形的判定和菱形的判定可得四邊形AECF是菱形.【詳解】證明:∵四邊形ABCD是菱形∴AB∥CD,AB=CD,∠ADF=∠CDF,∵AB=CD,∠ADF=∠CDF,DF=DF∴△ADF≌△CDF(SAS)∴AF=CF,∵AB∥CD,AE∥CF∴∠ABE=∠CDF,∠AEF=∠CFE∴∠AEB=∠CFD,∠ABE=∠CDF,AB=CD∴△ABE≌△CDF(AAS)∴AE=CF,且AE∥CF∴四邊形AECF是平行四邊形又∵AF=CF,∴四邊形AECF是菱形【點(diǎn)睛】本題主要考查菱形的判定定理,首先要判定其為平行四邊形,這是菱形判定的基本判定.7.已知:如圖,在平行四邊形ABCD中,O為對角線BD的中點(diǎn),過點(diǎn)O的直線EF分別交AD,BC于E,F(xiàn)兩點(diǎn),連結(jié)BE,DF.(1)求證:△DOE≌△BOF.(2)當(dāng)∠DOE等于多少度時(shí),四邊形BFDE為菱形?請說明理由.【答案】(1)證明見解析;(2)當(dāng)∠DOE=90°時(shí),四邊形BFED為菱形,理由見解析.【解析】試題分析:(1)利用平行四邊形的性質(zhì)以及全等三角形的判定方法得出△DOE≌△BOF(ASA);(2)首先利用一組對邊平行且相等的四邊形是平行四邊形得出四邊形EBFD是平行四邊形,進(jìn)而利用垂直平分線的性質(zhì)得出BE=ED,即可得出答案.試題解析:(1)∵在?ABCD中,O為對角線BD的中點(diǎn),∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)當(dāng)∠DOE=90°時(shí),四邊形BFDE為菱形,理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四邊形EBFD是平行四邊形,∵∠EOD=90°,∴EF⊥BD,∴四邊形BFDE為菱形.考點(diǎn):平行四邊形的性質(zhì);全等三角形的判定與性質(zhì);菱形的判定.8.如圖,四邊形ABCD中,AD∥BC,∠A=90°,BD=BC,點(diǎn)E為CD的中點(diǎn),射線BE交AD的延長線于點(diǎn)F,連接CF.(1)求證:四邊形BCFD是菱形;(2)若AD=1,BC=2,求BF的長.【答案】(1)證明見解析(2)2【解析】(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵點(diǎn)E為CD的中點(diǎn),∴DE=EC,在△BCE與△FDE中,,∴△BCE≌△FDE,∴DF=BC,又∵DF∥BC,∴四邊形BCDF為平行四邊形,∵BD=BC,∴四邊形BCFD是菱形;(2)∵四邊形BCFD是菱形,∴BD=DF=BC=2,在Rt△BAD中,AB=,∵AF=AD+DF=1+2=3,在Rt△BAF中,BF==2.9.已知AD是△ABC的中線P是線段AD上的一點(diǎn)(不與點(diǎn)A、D重合),連接PB、PC,E、F、G、H分別是AB、AC、PB、PC的中點(diǎn),AD與EF交于點(diǎn)M;(1)如圖1,當(dāng)AB=AC時(shí),求證:四邊形EGHF是矩形;(2)如圖2,當(dāng)點(diǎn)P與點(diǎn)M重合時(shí),在不添加任何輔助線的條件下,寫出所有與△BPE面積相等的三角形(不包括△BPE本身).【答案】(1)見解析;(2)△APE、△APF、△CPF、△PGH.【解析】【分析】(1)由三角形中位線定理得出EG∥AP,EF∥BC,EF=BC,GH∥BC,GH=BC,推出EF∥GH,EF=GH,證得四邊形EGHF是平行四邊形,證得EF⊥AP,推出EF⊥EG,即可得出結(jié)論;(2)由△APE與△BPE的底AE=BE,又等高,得出S△APE=S△BPE,由△APE與△APF的底EP=FP,又等高,得出S△APE=S△APF,由△APF與△CPF的底AF=CF,又等高,得出S△APF=S△CPF,證得△PGH底邊GH上的高等于△AEF底邊EF上高的一半,推出S△PGH=S△AEF=S△APF,即可得出結(jié)果.【詳解】(1)證明:∵E、F、G、H分別是AB、AC、PB、PC的中點(diǎn),∴EG∥AP,EF∥BC,EF=BC,GH∥BC,GH=BC,∴EF∥GH,EF=GH,∴四邊形EGHF是平行四邊形,∵AB=AC,∴AD⊥BC,∴EF⊥AP,∵EG∥AP,∴EF⊥EG,∴平行四邊形EGHF是矩形;(2)∵PE是△APB的中線,∴△APE與△BPE的底AE=BE,又等高,∴S△APE=S△BPE,∵AP是△AEF的中線,∴△APE與△APF的底EP=FP,又等高,∴S△APE=S△APF,∴S△APF=S△BPE,∵PF是△APC的中線,∴△APF與△CPF的底AF=CF,又等高,∴S△APF=S△CPF,∴S△CPF=S△BPE,∵EF∥GH∥BC,E、F、G、H分別是AB、AC、PB、PC的中點(diǎn),∴△AEF底邊EF上的高等于△ABC底邊BC上高的一半,△PGH底邊GH上的高等于△PBC底邊BC上高的一半,∴△PGH底邊GH上的高等于△AEF底邊EF上高的一半,∵GH=EF,∴S△PGH=S△AEF=S△APF,綜上所述,與△BPE面積相等的三角形為:△APE、△APF、△CPF、△PGH.【點(diǎn)睛】本題考查了矩形的判定與性質(zhì)、平行四邊形的判定、三角形中位線定理、平行線的性質(zhì)、三角形面積的計(jì)算等知識,熟練掌握三角形中位線定理是解決問題的關(guān)鍵.10.如圖,在正方形ABCD中,點(diǎn)G在對角線BD上(不與點(diǎn)B,D重合),GE⊥DC于點(diǎn)E,GF⊥BC于點(diǎn)F,連結(jié)AG.(1)寫出線段AG,GE,GF長度之間的數(shù)量關(guān)系,并說明理由;(2)若正方形ABCD的邊長為1,∠AGF=105°,求線段BG的長.【答案】(1)AG2=GE2+GF2(2)【解析】試題分析:(1)結(jié)論:AG2=GE2+GF2.只要證明GA=GC,四邊形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可證明;(2)作BN⊥AG于N,在BN上截取一點(diǎn)M,使得AM=BM.設(shè)AN=x.易證AM=BM=2x,MN=x,在Rt△ABN中,根據(jù)AB2=AN2+BN2,可得1=x2+(2x+x)2,解得x=,推出BN=,再根據(jù)BG=BN÷cos30°即可解決問題.試題解析:(1)結(jié)論:AG2=GE2+GF2.理由:連接CG.∵四邊形ABCD是正方形,∴A、C關(guān)于對角線BD對稱,∵點(diǎn)G在BD上,∴GA=GC,∵GE⊥DC于點(diǎn)E,GF⊥BC于點(diǎn)F,∴∠GEC=∠ECF=∠CFG=90°,∴四邊形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG于N,在BN上截取一點(diǎn)M,使得AM=BM.設(shè)AN=x.∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,∴AM=BM=2x,MN=x,在Rt△ABN中,∵AB2=AN2+BN2,∴1=x2+(2x+x)2,解得x=,∴BN=,∴BG=BN÷cos30°=.考點(diǎn):1、正方形的性質(zhì),2、矩形的判定和性質(zhì),3、勾股定理,4、直角三角形30度的性質(zhì)11.在矩形紙片ABCD中,AB=6,BC=8,現(xiàn)將紙片折疊,使點(diǎn)D與點(diǎn)B重合,折痕為EF,連接DF.(1)說明△BEF是等腰三角形;(2)求折痕EF的長.【答案】(1)見解析;(2).【解析】【分析】(1)根據(jù)折疊得出∠DEF=∠BEF,根據(jù)矩形的性質(zhì)得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;(2)過E作EM⊥BC于M,則四邊形ABME是矩形,根據(jù)矩形的性質(zhì)得出EM=AB=6,AE=BM,根據(jù)折疊得出DE=BE,根據(jù)勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.【詳解】(1)∵現(xiàn)將紙片折疊,使點(diǎn)D與點(diǎn)B重合,折痕為EF,∴∠DEF=∠BEF.∵四邊形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形;(2)過E作EM⊥BC于M,則四邊形ABME是矩形,所以EM=AB=6,AE=BM.∵現(xiàn)將紙片折疊,使點(diǎn)D與點(diǎn)B重合,折痕為EF,∴DE=BE,DO=BO,BD⊥EF.∵四邊形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.在Rt△EMF中,由勾股定理得:EF==.故答案為:.【點(diǎn)睛】本題考查了折疊的性質(zhì)和矩形性質(zhì)、勾股定理等知識點(diǎn),能熟記折疊的性質(zhì)是解答此題的關(guān)鍵.12.如圖1,矩形ABCD中,AB=8,AD=6;點(diǎn)E是對角線BD上一動點(diǎn),連接CE,作EF⊥CE交AB邊于點(diǎn)F,以CE和EF為鄰邊作矩形CEFG,作其對角線相交于點(diǎn)H.(1)①如圖2,當(dāng)點(diǎn)F與點(diǎn)B重合時(shí),CE=,CG=;②如圖3,當(dāng)點(diǎn)E是BD中點(diǎn)時(shí),CE=,CG=;(2)在圖1,連接BG,當(dāng)矩形CEFG隨著點(diǎn)E的運(yùn)動而變化時(shí),猜想△EBG的形狀?并加以證明;(3)在圖1,的值是否會發(fā)生改變?若不變,求出它的值;若改變,說明理由;(4)在圖1,設(shè)DE的長為x,矩形CEFG的面積為S,試求S關(guān)于x的函數(shù)關(guān)系式,并直接寫出x的取值范圍.【答案】(1),,5,;(2)△EBG是直角三角形,理由詳見解析;(3);(4)S=x2﹣x+48(0≤x≤).【解析】【分析】(1)①利用面積法求出CE,再利用勾股定理求出EF即可;②利用直角三角形斜邊中線定理求出CE,再利用相似三角形的性質(zhì)求出EF即可;(2)根據(jù)直角三角形的判定方法:如果一個(gè)三角形一邊上的中線等于這條邊的一半,則這個(gè)三角形是直角三角形即可判斷;(3)只要證明△DCE∽△BCG,即可解決問題;(4)利用相似多邊形的性質(zhì)構(gòu)建函數(shù)關(guān)系式即可;【詳解】(1)①如圖2中,在Rt△BAD中,BD==10,∵S△BCD=?CD?BC=?BD?CE,∴CE=.CG=BE=.②如圖3中,過點(diǎn)E作MN⊥AM交AB于N,交CD于M.∵DE=BE,∴CE=BD=5,∵△CME∽△ENF,∴,∴CG=EF=,(2)結(jié)論:△EBG是直角三角形.理由:如圖1中,連接BH.在Rt△BCF中,∵FH=CH,∴BH=FH=CH,∵四邊形EFGC是矩形,∴EH=HG=HF=HC,∴BH=EH=HG,∴△EBG是直角三角形.(3)F如圖1中,∵HE=HC=HG=HB=HF,∴C、E、F、B、G五點(diǎn)共圓,∵EF=CG,∴∠CBG=∠EBF,∵CD∥AB,∴∠EBF=∠CDE,∴∠CBG=∠CDE,∵∠DCB=∠ECG=90°,∴∠DCE=∠BCG,∴△DCE∽△BCG,∴.(4)由(3)可知:,∴矩形CEFG∽矩形ABCD,∴,∵CE2=(-x)2+)2,S矩形ABCD=48,∴S矩形CEFG=[(-x)2+()2].∴矩形CEFG的面積S=x2-x+48(0≤x≤).【點(diǎn)睛】本題考查相似三角形綜合題、矩形的性質(zhì)、相似三角形的判定和性質(zhì)、勾股定理、直角三角形的判定和性質(zhì)、相似多邊形的性質(zhì)和判定等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,學(xué)會添加常用輔助線,構(gòu)造相似三角形或直角三角形解決問題,屬于中考壓軸題.13.如圖1所示,(1)在正三角形ABC中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長線上一點(diǎn),N是∠ACP的平分線上一點(diǎn),若∠AMN=60°,求證:AM=MN.(2)若將(1)中“正三角形ABC”改為“正方形ABCD”,N是∠DCP的平分線上一點(diǎn),若∠AMN=90°,則AM=MN是否成立?若成立,請證明;若不成立,說明理由.(3)若將(2)中的“正方形ABCD”改為“正n邊形A1A2…An“,其它條件不變,請你猜想:當(dāng)∠An﹣2MN=_____°時(shí),結(jié)論An﹣2M=MN仍然成立.(不要求證明)【答案】【解析】分析:(1)要證明AM=MN,可證AM與MN所在的三角形全等,為此,可在AB上取一點(diǎn)E,使AE=CM,連接ME,利用ASA即可證明△AEM≌△MCN,然后根據(jù)全等三角形的對應(yīng)邊成比例得出AM=MN.(2)同(1),要證明AM=MN,可證AM與MN所在的三角形全等,為此,可在AB上取一點(diǎn)E,使AE=CM,連接ME,利用ASA即可證明△AEM≌△MCN,然后根據(jù)全等三角形的對應(yīng)邊成比例得出AM=MN.詳(1)證明:在邊AB上截取AE=MC,連接ME.在正△ABC中,∠B=∠BCA=60°,AB=BC.∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAE,BE=AB-AE=BC-MC=BM,∴∠BEM=60°,∴∠AEM=120°.∵N是∠ACP的平分線上一點(diǎn),∴∠ACN=60°,∴∠MCN=120°.在△AEM與△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.(2)解:結(jié)論成立;理由:在邊AB上截取AE=MC,連接ME.∵正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE,BE=AB-AE=BC-MC=BM,∴∠BEM=45°,∴∠AEM=135°.∵N是∠DCP的平分線上一點(diǎn),∴∠NCP=45°,∴∠MCN=135°.在△AEM與△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.(3)由(1)(2)可知當(dāng)∠An-2MN等于n邊形的內(nèi)角時(shí),結(jié)論An-2M=MN仍然成立;即∠An-2MN=時(shí),結(jié)論An-2M=MN仍然成立;故答案為[].點(diǎn)睛:本題綜合考查了正方形、等邊三角形的性質(zhì)及全等三角形的判定,同時(shí)考查了學(xué)生的歸納能力及分析、解決問題的能力.難度較大.14.如圖,在平面直角坐標(biāo)系xOy中,四邊形OABC的頂點(diǎn)A在x軸的正半軸上,OA=4,OC=2,點(diǎn)D、E、F、G分別為邊OA、AB、BC、CO的中點(diǎn),連結(jié)DE、EF、FG、GD.(1)若點(diǎn)C在y軸的正半軸上,當(dāng)點(diǎn)B的坐標(biāo)為(2,4)時(shí),判斷四邊形DEFG的形狀,并說明理由.(2)若點(diǎn)C在第二象限運(yùn)動,且四邊形DEFG為菱形時(shí),求點(diǎn)四邊形OABC對角線OB長度的取值范圍.(3)若在點(diǎn)C的運(yùn)動過程中,四邊形DEFG始終為正方形,當(dāng)點(diǎn)C從X軸負(fù)半軸經(jīng)過Y軸正半軸,運(yùn)動至X軸正半軸時(shí),直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論