版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
上海市長寧區(qū)延安中學(xué)2025-2026學(xué)年高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列滿足,,數(shù)列的前n項和為,若,,成等差數(shù)列,則n=()A.6 B.8C.16 D.222.“”是“方程表示橢圓”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.若,則()A.1 B.0C. D.4.在直三棱柱中,,,則直線與所成角的大小為()A.30° B.60°C.120° D.150°5.已知是邊長為6的等邊所在平面外一點,,當(dāng)三棱錐的體積最大時,三棱錐外接球的表面積為()A. B.C. D.6.已知不等式的解集為,關(guān)于x的不等式的解集為B,且,則實數(shù)a的取值范圍為()A. B.C. D.7.若不等式在上有解,則的最小值是()A.0 B.-2C. D.8.已知橢圓的左、右焦點分別為,過的直線與橢圓C相交P,Q兩點,若,且,則橢圓C的離心率為()A. B.C. D.9.直線與圓的位置關(guān)系是()A.相交 B.相切C.相離 D.不確定10.命題p:存在一個實數(shù)﹐它的絕對值不是正數(shù).則下列結(jié)論正確的是()A.:任意實數(shù),它的絕對值是正數(shù),為假命題B.:任意實數(shù),它的絕對值不是正數(shù),為假命題C.:存在一個實數(shù),它的絕對值是正數(shù),為真命題D.:存在一個實數(shù),它的絕對值是負(fù)數(shù),為真命題11.某地為響應(yīng)總書記關(guān)于生態(tài)文明建設(shè)的號召,大力開展“青山綠水”工程,造福于民,擬對該地某湖泊進(jìn)行治理,在治理前,需測量該湖泊的相關(guān)數(shù)據(jù).如圖所示,測得角∠A=23°,∠C=120°,米,則A,B間的直線距離約為(參考數(shù)據(jù))()A.60米 B.120米C.150米 D.300米12.在等比數(shù)列中,,,則等于()A. B.5C. D.9二、填空題:本題共4小題,每小題5分,共20分。13.在空間直角坐標(biāo)系中,點關(guān)于原點的對稱點為點,則___________.14.已知點在拋物線上,那么點到點的距離與點到拋物線焦點距離之和取得最小值時,點的坐標(biāo)為______15.已知命題:平面上一矩形ABCD的對角線AC與邊AB和AD所成角分別為,則,若把它推廣到空間長方體中,體對角線與平面,平面,平面所成的角分別為,則可以類比得到的結(jié)論為___________________.16.已知數(shù)列的通項公式為,,設(shè)是數(shù)列的前n項和,若對任意都成立,則實數(shù)的取值范圍是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)全集U=R,集合A={x|1≤x≤5},集合B={x|2-a≤x≤1+2a},其中a∈R.(1)若“x∈A”是“x∈B”的充分條件,求a的取值范圍;(2)若“x∈A”是“x∈B”的必要條件,求a的取值范圍.18.(12分)已知首項為1的等比數(shù)列,滿足(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和19.(12分)已知數(shù)列{an}是一個等差數(shù)列,且a2=1,a5=-5.(1)求{an}的通項an;(2)求{an}前n項和Sn的最大值20.(12分)某中學(xué)共有名學(xué)生,其中高一年級有名學(xué)生,為了解學(xué)生的睡眠情況,用分層抽樣的方法,在三個年級中抽取了名學(xué)生,依據(jù)每名學(xué)生的睡眠時間(單位:小時),繪制出了如圖所示的頻率分布直方圖.(1)求樣本中高一年級學(xué)生的人數(shù)及圖中的值;(2)估計樣本數(shù)據(jù)的中位數(shù)(保留兩位小數(shù));(3)估計全校睡眠時間超過個小時的學(xué)生人數(shù).21.(12分)已知拋物線的焦點是橢圓的一個焦點,直線交拋物線E于兩點(1)求E的方程;(2)若以BC為直徑的圓過原點O,求直線l的方程22.(10分)如圖,在四棱錐中,底面為的中點(1)求證:平面;(2)若,求平面與平面的夾角大小
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用累加法求得列的通項公式,再利用裂項相消法求得數(shù)列的前n項和為,再根據(jù),,成等差數(shù)列,得,從而可得出答案.【詳解】解:因為,且,所以當(dāng)時,,因為也滿足,所以.因為,所以.若,,成等差數(shù)列,則,即,得.故選:D.2、B【解析】根據(jù)方程表示橢圓,且2,再判斷必要不充分條件即可.【詳解】解:方程表示橢圓滿足,解得,且2所以“”是“方程表示橢圓”的必要不充分條件.故選:B3、C【解析】由結(jié)合二項式定理可得出,利用二項式系數(shù)和公式可求得的值.【詳解】,當(dāng)且時,,因此,.故選:C.【點睛】關(guān)鍵點睛:本題考查二項式系數(shù)和的計算,解題的關(guān)鍵是熟悉二項式系數(shù)和公式,考查學(xué)生的轉(zhuǎn)化能力與計算能力,屬于基礎(chǔ)題.4、B【解析】根據(jù)三棱柱的特征補全為正方體,則,為直線與所成角,連接,則為等邊三角形即可得解.【詳解】根據(jù)直三棱柱的特征,補全可得如圖所示的正方體,易知,為直線與所成角,連接,則為等邊三角形,所以,所以直線與所成角的大小為.故選:B5、C【解析】由題意分析可得,當(dāng)時三棱錐的體積最大,然后作圖,將三棱錐還原成正三棱柱,按照正三棱柱外接球半徑的計算方法來計算,即可計算出球半徑,從而完成求解.【詳解】由題意可知,當(dāng)三棱錐的體積最大時是時,為正三角形,如圖所示,將三棱錐補成正三棱柱,該正三棱柱的外接球就是三棱錐的外接球,而正三棱柱的外接球球心落在上下底面外接圓圓心連線的中點上,設(shè)外接圓半徑為,三棱錐外接球半徑為,由正弦定理可得:,所以,,所以三棱錐外接球的表面積為.故選:C.6、B【解析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分離參數(shù)求解即可.【詳解】由得,,解得,因為,所以所以可得在上恒成立,即在上恒成立,故只需,,當(dāng)時,,故故選:B7、D【解析】將題設(shè)條件轉(zhuǎn)化為在上有解,然后求出的最大值即可得解.【詳解】不等式在上有解,即為在上有解,設(shè),則在上單調(diào)遞減,所以,所以,即,故選:D.【點睛】本題主要考查二次不等式能成立問題,可以選擇分離參數(shù)轉(zhuǎn)化為最值問題,也可以進(jìn)行分情況討論.8、B【解析】設(shè),由橢圓的定義及,結(jié)合勾股定理求參數(shù)m,進(jìn)而由勾股定理構(gòu)造橢圓參數(shù)的齊次方程求離心率.【詳解】設(shè),橢圓的焦距為,則,由,有,解得,所以,故得:故選:B.9、A【解析】首先求出直線過定點,再判斷點在圓內(nèi),即可判斷;【詳解】解:直線恒過定點,又,即點在圓內(nèi)部,所以直線與圓相交;故選:A10、A【解析】根據(jù)存在量詞命題的否定為全稱量詞命題判斷,再利用特殊值判斷命題的真假;【詳解】解:因為命題p“存在一個實數(shù)﹐它的絕對值不是正數(shù)”為存在量詞命題,其否定為“任意實數(shù),它的絕對值是正數(shù)”,因為,所以為假命題;故選:A11、C【解析】應(yīng)用正弦定理有,結(jié)合已知條件即可求A,B間的直線距離.【詳解】由題設(shè),,在△中,,即,所以米.故選:C12、D【解析】由等比數(shù)列的項求公比,進(jìn)而求即可.【詳解】由題設(shè),,∴故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先利用關(guān)于原點對稱的點的坐標(biāo)特征求出點,再利用空間兩點間的距離公式即可求.【詳解】因為B與關(guān)于原點對稱,故,所以.故答案為:.14、【解析】由拋物線定義可得,由此可知當(dāng)為與拋物線的交點時,取得最小值,進(jìn)而求得點坐標(biāo).【詳解】由題意得:拋物線焦點為,準(zhǔn)線為作,垂直于準(zhǔn)線,如下圖所示:由拋物線定義知:(當(dāng)且僅當(dāng)三點共線時取等號)即的最小值為,此時為與拋物線的交點故答案為【點睛】本題考查拋物線線上的點到焦點的距離與到定點距離之和最小的相關(guān)問題的求解,關(guān)鍵是能夠熟練應(yīng)用拋物線定義確定最值取得的位置.15、【解析】先由線面角的定義得到,再計算的值即可得到結(jié)論【詳解】在長方體中,連接,在長方體中,平面,所以對角線與平面所成的角為,對角線與平面所成的角為,對角線與平面所成的角為,顯然,,,所以,,故答案為:16、【解析】化簡數(shù)列將問題轉(zhuǎn)化為不等式恒成立問題,再對n分奇數(shù)和偶數(shù)進(jìn)行討論,分別求解出的取值范圍,最后綜合得出結(jié)果.【詳解】根據(jù)題意,,.①當(dāng)n是奇數(shù)時,,即對任意正奇數(shù)n恒成立,當(dāng)時,有最小值1,所以.②當(dāng)n是正偶數(shù)時,,即,又,故對任意正偶數(shù)n都成立,又隨n增大而增大,當(dāng)時,有最小值,即,綜合①②可知.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由“”是“”的充分條件,可得,從而可得關(guān)于的不等式組,解不等式組可得答案;(2)“”是“”的必要條件,可得,然后分和兩種情況求解即可【小問1詳解】由題意得到A=[1,5],由“x∈A”是“x∈B”的充分條件可得A?B,則,解得,故實數(shù)a的取值范圍是.【小問2詳解】由“x∈A”是“x∈B”的必要條件可得B?A,當(dāng)時,2-a>1+2a,即a<時,滿足題意,當(dāng)時,即a≥時,則,解得≤a≤1.綜上a≤1,故實數(shù)a的取值范圍是.18、(1)(2)【解析】(1)根據(jù)已知條件求得數(shù)列的公比,由此求得.(2)利用錯位相減求和法求得.【小問1詳解】設(shè)等比數(shù)列的公比為,由,可得.故數(shù)列是以1為首項,3為公比的等比數(shù)列,所以【小問2詳解】由(1)得,,①,②①②,得所以19、(1)an=-2n+5.(2)4【解析】(Ⅰ)設(shè){an}的公差為d,由已知條件,,解出a1=3,d=-2所以an=a1+(n-1)d=-2n+5(Ⅱ)Sn=na1+d=-n2+4n=-(n-2)2+4,所以n=2時,Sn取到最大值420、(1)樣本中高一年級學(xué)生的人數(shù)為,;(2);(3)【解析】(1)利用分層抽樣可求得樣本中高一年級學(xué)生的人數(shù),利用頻率直方圖中所有矩形的面積之和為可求得的值;(2)利用中位數(shù)左邊的矩形面積之和為可求得中位數(shù)的值;(3)利用頻率分布直方圖可計算出全校睡眠時間超過個小時的學(xué)生人數(shù).【小問1詳解】解:樣本中高一年級學(xué)生的人數(shù)為.,解得.【小問2詳解】解:設(shè)中位數(shù)為,前兩個矩形的面積之和為,前三個矩形的面積之和為,所以,則,得,故樣本數(shù)據(jù)的中位數(shù)約為.【小問3詳解】解:由圖可知,樣本數(shù)據(jù)落在的頻率為,故全校睡眠時間超過個小時的學(xué)生人數(shù)約為.21、(1);(2).【解析】(1)利用橢圓的焦點與拋物線的焦點相同,列出方程求解即可(2)設(shè),、,,聯(lián)立直線與拋物線方程,利用韋達(dá)定理,通過,求出,得到直線方程【小問1詳解】由題意知:,,∴的方程是【小問2詳解】設(shè),、,,由題意知,由,得,∴,,,∵以為直徑的圓過點,∴,即,∴,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 我國上市公司成長性、資本結(jié)構(gòu)與經(jīng)營績效的聯(lián)動效應(yīng)及優(yōu)化策略研究
- 我國上市公司定向增發(fā)及其股價效應(yīng)的深度剖析與實證研究
- 老年糖尿病合并衰弱的疼痛管理方案
- 鋼水罐準(zhǔn)備工崗前品牌建設(shè)考核試卷含答案
- 運動場草坪管理師崗前技能綜合實踐考核試卷含答案
- 耐火材料模具工道德能力考核試卷含答案
- 快件派送員安全實踐測試考核試卷含答案
- 老年神經(jīng)系統(tǒng)疾病尿失禁預(yù)防性護(hù)理方案
- 鐵路系統(tǒng)職業(yè)發(fā)展路徑
- 老年焦慮抑郁共病的藥物經(jīng)濟(jì)學(xué)評價
- 抖音來客本地生活服務(wù)酒旅酒店民宿旅游景區(qū)商家代運營策劃方案
- 新質(zhì)生產(chǎn)力在體育產(chǎn)業(yè)高質(zhì)量發(fā)展中的路徑探索
- 2025年公民素質(zhì)養(yǎng)成知識考察試題及答案解析
- 北侖區(qū)打包箱房施工方案
- 老年人營養(yǎng)和飲食
- 車載光通信技術(shù)發(fā)展及無源網(wǎng)絡(luò)應(yīng)用前景
- 2026屆上海市金山區(qū)物理八年級第一學(xué)期期末調(diào)研試題含解析
- DB62-T 5101-2025 公路綠化技術(shù)規(guī)范
- 《關(guān)鍵軟硬件自主可控產(chǎn)品名錄》
- 打賭約定合同(標(biāo)準(zhǔn)版)
- 導(dǎo)尿術(shù)課件(男性)
評論
0/150
提交評論