2026屆陜西省榆林市橫山縣第四中學高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2026屆陜西省榆林市橫山縣第四中學高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2026屆陜西省榆林市橫山縣第四中學高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2026屆陜西省榆林市橫山縣第四中學高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2026屆陜西省榆林市橫山縣第四中學高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2026屆陜西省榆林市橫山縣第四中學高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.數(shù)列滿足,,則()A. B.C. D.22.如圖給出的是一道典型的數(shù)學無字證明問題:各矩形塊中填寫的數(shù)字構成一個無窮數(shù)列,所有數(shù)字之和等于1.按照圖示規(guī)律,有同學提出了以下結論,其中正確的是()A.由大到小的第八個矩形塊中應填寫的數(shù)字為B.前七個矩形塊中所填寫的數(shù)字之和等于C.矩形塊中所填數(shù)字構成的是以1為首項,為公比的等比數(shù)列D.按照這個規(guī)律繼續(xù)下去,第n-1個矩形塊中所填數(shù)字是3.已知、分別是雙曲線的左、右焦點,為一條漸近線上的一點,且,則的面積為()A. B.C. D.14.圓的圓心坐標和半徑分別為()A.和 B.和C.和 D.和5.已知兩個向量,,且,則的值為()A.1 B.2C.4 D.86.太極圖被稱為“中華第一圖”,閃爍著中華文明進程的光輝,它是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相對統(tǒng)一的和諧美.定義:能夠?qū)AO的周長和面積同時等分成兩個部分的函數(shù)稱為圓O的一個“太極函數(shù)”,設圓O:,則下列說法中正確的是()①函數(shù)是圓O的一個太極函數(shù)②圓O的所有非常數(shù)函數(shù)的太極函數(shù)都不能為偶函數(shù)③函數(shù)是圓O的一個太極函數(shù)④函數(shù)的圖象關于原點對稱是為圓O的太極函數(shù)的充要條件A.①② B.①③C.②③ D.③④7.已知函數(shù)f(x)的圖象如圖所示,則導函數(shù)f(x)的圖象可能是()A. B.C. D.8.如圖,在平行六面體中,為與的交點,若,,,則的值為()A. B.C. D.9.下列語句中是命題的是A.周期函數(shù)的和是周期函數(shù)嗎? B.C. D.梯形是不是平面圖形呢?10.已知圓柱的表面積為定值,當圓柱的容積最大時,圓柱的高的值為()A.1 B.C. D.211.拋物線的焦點到準線的距離為()A. B.C. D.12.設是周期為2的奇函數(shù),當時,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若方程表示焦點在y軸上的雙曲線,則實數(shù)k的取值范圍是______14.圓被直線所截得弦的最短長度為___________.15.曲線圍成的圖形的面積是__________16.直線被圓截得的弦長為_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)三棱柱中,側面為菱形,,,,(1)求證:面面;(2)在線段上是否存在一點M,使得二面角為,若存在,求出的值,若不存在,請說明理由18.(12分)已知圓:,定點,A是圓上的一動點,線段的垂直平分線交半徑于P點(1)求P點的軌跡C的方程;(2)設直線過點且與曲線C相交于M,N兩點,不經(jīng)過點.證明:直線MQ的斜率與直線NQ的斜率之和為定值19.(12分)已知拋物線的焦點為,點為拋物線上一點,且.(1)求拋物線方程;(2)直線與拋物線相交于兩個不同的點,為坐標原點,若,求實數(shù)的值;20.(12分)已知函數(shù),.(1)當時,求曲線在點處的切線方程;(2)若在區(qū)間上有唯一的零點.(ⅰ)求的取值范圍;(ⅱ)證明:.21.(12分)已知拋物線的頂點在原點,焦點在軸上,且拋物線上有一點到焦點的距離為3,直線與拋物線交于,兩點,為坐標原點(1)求拋物線的方程;(2)求的面積.22.(10分)已知數(shù)列是首項為1,公差不為0的等差數(shù)列,且成等比數(shù)列.數(shù)列的前項的和為,且滿足.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)已知分析數(shù)列周期性,可得答案【詳解】解:∵數(shù)列滿足,,∴,,,,故數(shù)列以4為周期呈現(xiàn)周期性變化,由,故,故選C【點睛】本題考查的知識點是數(shù)列的遞推公式,數(shù)列的周期性,難度中檔2、B【解析】根據(jù)題意可得矩形塊中的數(shù)字從大到小形成等比數(shù)列,根據(jù)等比數(shù)列的通項公式可求.【詳解】設每個矩形塊中的數(shù)字從大到小形成數(shù)列,則可得是首項為,公比為的等比數(shù)列,,所以由大到小的第八個矩形塊中應填寫的數(shù)字為,故A錯誤;前七個矩形塊中所填寫的數(shù)字之和等于,故B正確;矩形塊中所填數(shù)字構成的是以為首項,為公比的等比數(shù)列,故C錯誤;按照這個規(guī)律繼續(xù)下去,第個矩形塊中所填數(shù)字是,故D錯誤.故選:B.3、A【解析】先表示出漸近線方程,設出點坐標,利用,解出點坐標,再按照面積公式求解即可.【詳解】由題意知,雙曲線漸近線方程為,不妨設在上,設,由得,解得,的面積為.故選:A.4、C【解析】利用圓的一般方程的圓心和半徑公式,即得解【詳解】可化為,由圓心為,半徑,易知圓心的坐標為,半徑為.故選:C5、C【解析】由,可知,使,利用向量的數(shù)乘運算及向量相等即可得解.【詳解】∵,∴,使,得,解得:,所以故選:C【點睛】思路點睛:在解決有關平行的問題時,通常需要引入?yún)?shù),如本題中已知,引入?yún)?shù),使,轉(zhuǎn)化為方程組求解;本題也可以利用坐標成比例求解,即由,得,求出m,n.6、B【解析】①③可以通過分析奇偶性和結合圖象證明出符合要求,②④可以舉出反例.【詳解】是奇函數(shù),且與圓O的兩交點坐標為,能夠?qū)AO的周長和面積同時等分為兩個部分,故符合題意,①正確;同理函數(shù)是圓O的一個太極函數(shù),③正確;例如,是偶函數(shù),也能將將圓O的周長和面積同時等分為兩個部分,故②錯誤;函數(shù)的圖象關于原點對稱不是為圓O的太極函數(shù)的充要條件,例如為奇函數(shù),但不滿足將圓O的周長和面積同時等分為兩個部分,所以④錯誤;故選:B7、D【解析】根據(jù)導函數(shù)正負與原函數(shù)單調(diào)性關系可作答【詳解】原函數(shù)在上先減后增,再減再增,對應到導函數(shù)先負再正,再負再正,且原函數(shù)在處與軸相切,故可知,導函數(shù)圖象為D故選:D8、D【解析】將用基底表示,然后利用空間向量數(shù)量積的運算性質(zhì)可求得結果.【詳解】因為四邊形為平行四邊形,且,則為的中點,,則.故選:D9、B【解析】命題是能判斷真假的語句,疑問句不是命題,易知為命題,故選B10、B【解析】設圓柱的底面半徑為,則圓柱底,圓柱側,則可得,則圓柱的體積為,利用導數(shù)求出最大值,確定值.【詳解】設圓柱的底面半徑為,則圓柱底,圓柱側,∴,∴,則圓柱的體積,∴,由得,由得,∴當時,取極大值,也是最大值,即故選:B【點睛】本題主要考查了圓柱表面積和體積的計算,考查了導數(shù)的實際應用,考查了學生的應用意識.11、C【解析】根據(jù)拋物線方程求出焦點坐標與準線方程,即可得解;【詳解】解:因為拋物線方程為,所以焦點坐標為,準線的方程為,所以焦點到準線的距離為;故選:C12、A【解析】由周期函數(shù)得,再由奇函數(shù)的性質(zhì)通過得結論【詳解】∵函數(shù)是周期為2的周期函數(shù),∴,而,又函數(shù)為奇函數(shù),∴.故選A【點睛】本題考查函數(shù)的周期性與奇偶性,屬于基礎題.此類題型,求函數(shù)值時,一般先用周期性化自變量到已知區(qū)間關于原點對稱的區(qū)間,然后再由奇函數(shù)性質(zhì)求得函數(shù)值二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題可得,即求.【詳解】因為方程表示焦點在軸上的雙曲線,則,解得.故答案為:.14、【解析】首先確定直線所過定點;由圓的方程可確定圓心和半徑,進而求得圓心到的距離,由此可知所求最短長度為.【詳解】由得:,直線恒過點;,在圓內(nèi);又圓的圓心為,半徑,圓心到點的距離,所截得弦的最短長度為.故答案為:.15、【解析】當,時,已知方程是,即.它對應的曲線是第一象限內(nèi)半圓?。òǘ它c),它的圓心為,半徑為.同理,當,;,;,時對應的曲線都是半圓?。ㄈ鐖D).它所圍成的面積是.故答案為16、【解析】求出圓心到直線的距離,結合半徑,利用勾股定理可得答案.【詳解】的圓心坐標為,,圓心到直線的距離,則直線被圓截得的弦長為:故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】(1)取BC的中點O,連結AO、,在三角形中分別證明和,再利用勾股定理證明,結合線面垂直的判定定理可證明平面,再由面面垂直的判定定理即可證明結果.(2)建立空間直角坐標系,假設點M存在,設,求出M點坐標,然后求出平面的法向量,利用空間向量的方法根據(jù)二面角的平面角為可求出的值.【詳解】(1)取BC的中點O,連結AO,,,為等腰直角三角形,所以,;側面為菱形,,所以三角形為為等邊三角形,所以,又,所以,又,滿足,所以;因為,所以平面,因為平面中,所以平面平面.(2)由(1)問知:兩兩垂直,以O為坐標原點,為軸,為軸,為軸建立空間之間坐標系.則,,,,若存在點M,則點M在上,不妨設,則有,則,有,,設平面的法向量為,則解得:平面的法向量為則解得:或(舍)故存在點M,.【點睛】本題考查立體幾何探索是否存在的問題,屬于中檔題.方法點睛:(1)判斷是否存在的問題,一般先假設存在;(2)設出點坐標,作為已知條件,代入計算;(3)根據(jù)結果,判斷是否存在.18、(1);(2)證明見解析,定值為-1.【解析】(1)根據(jù)給定條件探求出,再利用橢圓定義即可得軌跡C的方程.(2)由給定條件可得直線的斜率k存在且不為0,寫出直線的方程,再聯(lián)立軌跡C的方程,借助韋達定理計算作答.【小問1詳解】圓:的圓心,半徑為8,因A是圓上一動點,線段的垂直平分線交半徑于P點,則,于是得,因此,P點的軌跡C是以,為左右焦點,長軸長2a=8的橢圓,短半軸長b有,所以P點的軌跡C的方程是.【小問2詳解】因直線過點且與曲線C:相交于M,N兩點,則直線的斜率存在且不為0,又不經(jīng)過點,即直線的斜率不等于-1,設直線的斜率為k,且,直線的方程為:,即,由消去y并整理得:,,即,則有且,設,則,直線MQ的斜率,直線NQ的斜率,,所以直線MQ的斜率與直線NQ的斜率之和為定值.19、(1)(2)【解析】(1)根據(jù)拋物線過點,且,利用拋物線的定義求解;(2)設,聯(lián)立,根據(jù),由,結合韋達定理求解.【小問1詳解】解:由拋物線過點,且,得所以拋物線方程為;【小問2詳解】設,聯(lián)立得,,,,則,,即,解得或,又當時,直線與拋物線的交點中有一點與原點重合,不符合題意,故舍去;所以實數(shù)的值為.20、(1);(2)(?。?;(ⅱ)證明見解析.【解析】(1)求出,,利用導數(shù)的幾何意義即可求得切線方程;(2)(ⅰ)根據(jù)題意對參數(shù)分類討論,當時,等價轉(zhuǎn)化,且構造函數(shù),利用零點存在定理,即可求得參數(shù)的取值范圍;(ⅱ)根據(jù)(?。┲兴蟮玫脚c的等量關系,求得并構造函數(shù),利用導數(shù)研究其單調(diào)性和最值,則問題得證.【小問1詳解】當時,,則,故,,則曲線在點處的切線方程為.【小問2詳解】(?。┮驗?,故可得,因為,則當時,,則,無零點,不滿足題意;當時,若在有一個零點,即在有一個零點,也即在有一個零點,又,則單調(diào)遞增,則只需,解得.綜上所述,若在區(qū)間上有唯一的零點,則;(ⅱ)由(?。┛芍?,若在區(qū)間上有唯一的零點,則,也即,則,令,則,又在都是單調(diào)增函數(shù),故是單調(diào)增函數(shù),又,故,則在單調(diào)遞增,則,故,即證.【點睛】本題考查導數(shù)的幾何意義,利用導數(shù)研究函數(shù)的零點以及最值;處理問題的關鍵是合理轉(zhuǎn)化函數(shù)零點問題,以及充分利用零點存在定理,熟練掌握構造函數(shù)法,屬綜合困難題.21、(1);(2)【解析】(1)由題意可設拋物線的方程為y2=2px(p>0),運用拋物線的定義,可得23,解得p=2,進而得到拋物線的方程;(2)由題意,直線AB方程為y=x﹣1,與y2=4x消去y得:x2﹣6x+1=0.再用一元二次方程根與系數(shù)的關系和弦長公式,算出|AB|;利用點到直線的距離公式算出點O到直線AB的距離,即可求出△AOB的面積【詳解】(1)拋物線C的頂點在原點,焦點在x軸上,且過一點P(2,m),可設拋物線的方程為y2=2px(p>0),P(2,m)到焦點的距離為3,即有P到準線的距離為6,即23,解得p=2,即拋物線的標準方程為y2=4x;(2)聯(lián)立方程化簡,得x2﹣6x+1=0設交點為A(x1,y1),B(x2,y2)∴x1+x2=6,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論