河北衡中同卷2025-2026學年數學高二第一學期期末經典試題含解析_第1頁
河北衡中同卷2025-2026學年數學高二第一學期期末經典試題含解析_第2頁
河北衡中同卷2025-2026學年數學高二第一學期期末經典試題含解析_第3頁
河北衡中同卷2025-2026學年數學高二第一學期期末經典試題含解析_第4頁
河北衡中同卷2025-2026學年數學高二第一學期期末經典試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北衡中同卷2025-2026學年數學高二第一學期期末經典試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知遞增等比數列的前n項和為,,且,則與的關系是()A. B.C. D.2.直線平分圓的周長,過點作圓的一條切線,切點為,則()A.5 B.C.3 D.3.已知不等式的解集為,關于x的不等式的解集為B,且,則實數a的取值范圍為()A. B.C. D.4.已知空間向量,,若,則實數的值是()A. B.0C.1 D.25.年月日,很多人的微信圈都在轉發(fā)這樣一條微信:“,所遇皆為對,所做皆稱心””.形如“”的數字叫“回文數”,即從左到右讀和從右到左讀都一樣的正整數,則位的回文數共有()A. B.C. D.6.已知函數f(x)的圖象如圖所示,則導函數f(x)的圖象可能是()A. B.C. D.7.已知函數,則()A.函數的極大值為,無極小值 B.函數的極小值為,無極大值C.函數的極大值為0,無極小值 D.函數的極小值為0,無極大值8.已知函數,在上隨機任取一個數,則的概率為()A. B.C. D.9.已知角的頂點與坐標原點重合,始邊與x軸的非負半軸重合,角終邊上有一點(1,2),為銳角,且,則()A.-18 B.-6C. D.10.數列滿足,,,則數列的前8項和為()A.25 B.26C.27 D.2811.如圖,已知正方體,點P是棱中點,設直線為a,直線為b.對于下列兩個命題:①過點P有且只有一條直線l與a、b都相交;②過點P有且只有兩條直線l與a、b都成角.以下判斷正確的是()A.①為真命題,②為真命題 B.①為真命題,②為假命題C.①為假命題,②為真命題 D.①為假命題,②為假命題12.設點P是雙曲線,與圓在第一象限的交點,、分別是雙曲線的左、右焦點,且,則此雙曲線的離心率為()A. B.C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.兩條平行直線與的距離是__________14.圓關于y軸對稱的圓的標準方程為___________.15.已知數列的前n項和為,則取得最大值時n的值為__________________16.若向量,且夾角的余弦值為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某校從高三年級學生中隨機抽取名學生的某次數學考試成績,將其成績分成,,,,的組,制成如圖所示的頻率分布直方圖.(1)求圖中的值;(2)估計這組數據的平均數;(3)若成績在內的學生中男生占.現從成績在內的學生中隨機抽取人進行分析,求人中恰有名女生的概率.18.(12分)已知定點,動點與連線的斜率之積.(1)設動點的軌跡為,求的方程;(2)若是上關于軸對稱的兩個不同點,直線與軸分別交于點.試判斷以為直徑的圓是否過定點,如經過,求出定點坐標;如不過定點,請說明理由.19.(12分)已知數列中,,且(1)求證:數列是等差數列,并求出;(2)數列前項和為,求20.(12分)已知函數.(1)討論的單調性;(2)任意,恒成立,求的取值范圍.21.(12分)已知拋物線C:的焦點為F,為拋物線C上一點,且(1)求拋物線C的方程:(2)若以點為圓心,為半徑的圓與C的準線交于A,B兩點,過A,B分別作準線的垂線交拋物線C于D,E兩點,若,證明直線DE過定點22.(10分)已知直線與拋物線交于兩點(1)若,直線過拋物線的焦點,線段中點的縱坐標為2,求的長;(2)若交于,求的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】設等比數列的公比為,由已知列式求得,再由等比數列的通項公式與前項和求解.【詳解】設等比數列的公比為,由,得,所以,又,所以,所以,,所以即故選:D2、B【解析】根據圓的性質,結合圓的切線的性質進行求解即可.【詳解】由,所以該圓的圓心為,半徑為,因為直線平分圓的周長,所以圓心在直線上,故,因此,,所以有,所以,故選:B3、B【解析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分離參數求解即可.【詳解】由得,,解得,因為,所以所以可得在上恒成立,即在上恒成立,故只需,,當時,,故故選:B4、C【解析】根據空間向量垂直的性質進行求解即可.【詳解】因為,所以,因此有.故選:C5、C【解析】根據“回文數”的對稱性,只需計算前位數的排法種數即可,確定這四位數的選數的種數,利用分步乘法計數原理可得結果.【詳解】根據“回文數”的對稱性,只需計算前位數的排法種數即可,首位數不能放零,首位數共有種選擇,第二位、第三位、第四位數均有種選擇,因此,位的回文數共有個.故選:C.6、D【解析】根據導函數正負與原函數單調性關系可作答【詳解】原函數在上先減后增,再減再增,對應到導函數先負再正,再負再正,且原函數在處與軸相切,故可知,導函數圖象為D故選:D7、A【解析】利用導數來求得的極值.【詳解】的定義域為,,在遞增;在遞減,所以的極大值為,沒有極小值.故選:A8、A【解析】先解不等式,然后由區(qū)間長度比可得.【詳解】解不等式,得,所以,即的概率為.故選:A9、A【解析】由終邊上的點可得,由同角三角函數的平方、商數關系有,再應用差角、倍角正切公式即可求.【詳解】由題設,,,則,又,,所以.故選:A10、C【解析】根據通項公式及求出,從而求出前8項和.【詳解】當時,,當時,,當時,,當時,,當時,,當時,,則數列的前8項和為.故選:C11、A【解析】①由正方形的性質,可以延伸正方形,再利用兩條平行線確定一個平面即可;②一組鄰邊與對角面夾角相等,在平面內繞P轉動,可以得到二條直線與a、b的夾角都等于.【詳解】如下圖所示,在側面正方形和再延伸一個正方形和,則平面和在同一個平面內,所以過點P,有且只有一條直線l,即與a、b相交,故①為真命題;取中點N,連PN,由于a、b為異面直線,a、b的夾角等于與b的夾角.由于平面,平面,,所以平面,所以與與b的夾角都為.又因為平面,所以與與b的夾角都為,而,所以過點P,在平面內存在一條直線,使得與與b的夾角都為,同理可得,過點P,在平面內存在一條直線,使得與與的夾角都為;故②為真命題.故選:A12、C【解析】根據幾何關系得到是直角三角形,然后由雙曲線的定義及勾股定理可求解.【詳解】點到原點的距離為,又因為在中,,所以是直角三角形,即.由雙曲線定義知,又因為,所以.在中,由勾股定理得,化簡得,所以.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】根據兩平行直線,可求得a值,根據兩平行線間距離公式,即可得答案.【詳解】因為兩平行直線與,所以,解得,所以兩平行線的距離.故答案為:514、【解析】根據題意可得圓心坐標為,半徑為1,利用平面直角坐標系點關于坐標軸對稱特征可得所求的圓心坐標為,半徑為1,進而得出結果.【詳解】由題意知,圓的圓心坐標為,半徑為1,設圓關于y軸對稱的圓為,所以,半徑為1,所以的標準方程為.故答案為:15、①.13②.##3.4【解析】由題可得利用函數的單調性可得取得最大值時n的值,然后利用,即求.【詳解】∵,∴當時,單調遞減且,當時,單調遞減且,∴時,取得最大值,∴.故答案為:13;.16、【解析】根據求解即可.【詳解】,故答案為:【點睛】本題主要考查了求空間中兩個向量的夾角,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)77(3)【解析】(1)根據給定條件結合頻率分布直方圖中各小矩形面積和為1的特點列式計算即得.(2)利用頻率分布直方圖求平均數的方法直接列式計算即得.(3)求出成績在內的學生及男女生人數,再用列舉法即可求出概率.【小問1詳解】由頻率分布直方圖得,解得,所以圖中值是0.020.【小問2詳解】由頻率分布直方圖得這組數據的平均數:,所以這組數據的平均數為77.【小問3詳解】數學成績在內的人數為(人),其中男生人數為(人),則女生人數為人,記名男生分別為,,名女生分別為,,,從數學成績在內的人中隨機抽取人進行分析的基本事件為:,共個不同結果,它們等可能,其中人中恰有名女生的基本事件為,共種結果,所以人中恰有名女生的概率為為.18、(1);(2)以為直徑的圓過定點,定點坐標為和.【解析】(1)設動點的坐標,利用斜率坐標公式結合已知列式即可作答.(2)設上任意一點,求出點M,N的坐標,再求出以為直徑的圓的方程即可分析作答.【小問1詳解】設點,則直線PA,PB的斜率分別為:,,依題意,,化簡整理得:,所以的方程是:.【小問2詳解】由(1)知,令是上任意一點,則點,直線:,則點,直線:,則點,以MN為直徑的圓上任意一點,當點Q與M,N都不重合時,,有,當點Q與M,N之一重合時,也成立,因此,以MN為直徑的圓的方程為:,化簡整理得:,而,即,則以MN為直徑的圓的方程化為:,顯然當時,恒有,即圓恒過兩個定點和,所以以為直徑的圓過定點,定點坐標為和.【點睛】知識點睛:以點為直徑兩個端點的圓的方程是:.19、(1)證明見解析,(2)【解析】(1)利用等差數列的定義可證是等差數列,利用等差數列的通項公式可求.(2)利用錯位相減法可求.【小問1詳解】因為,是以為首項,為公差的等差數列,,.【小問2詳解】,,,.20、(1)的遞增區(qū)間為,遞減區(qū)間為(2)【解析】(1)先求出函數的導數,令、解出對應的解集,結合定義域即可得到函數的單調區(qū)間;(2)將不等式轉化為,令,利用導數討論函數分別在、時的單調性,進而求出函數的最值,即可得出答案.【小問1詳解】函數的定義域為,又當時,,當時,故的遞增區(qū)間為,遞減區(qū)間為.【小問2詳解】,即,令,有,,若,在上恒成立.則在上為減函數,所以有若,由,可得,則在上增,所以在上存在使得,與題意不符合綜上所述,.21、(1);(2)證明見解析.【解析】(1)解方程和即得解;(2)設,,將與圓P的方程聯立得到韋達定理,再寫出直線的方程即得解.【小問1詳解】解:因為拋物線C上一點,且,所以到拋物線C的準線的距離為2則,,則,所以,故拋物線C的方程為【小問2詳解】證明:由(1)知,則圓P的方程為設,,將與圓P的方程聯立,可得,則,當時,,不妨令,則,此時;當時,直線DE的斜率為,則直線DE的方程為,即,即,令且,得,直線過點;綜上,直線DE過定點22、(1)6(2)2【解析】(1)通過作輔助線,利用拋物線定義,結合梯形的中位線定理,可求得答案;(2)根據題意可求得直線AB的方程為y=x+4,聯立拋物線方程,得到根與系數的關系,由OA⊥OB,得,根據數量積的計算

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論