版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025年四川省井研中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)拋物線的焦點為,點為拋物線上一點,點坐標(biāo)為,則的最小值為()A. B.C. D.2.已知,,若,則()A.9 B.6C.5 D.33.若,,則下列各式中正確的是()A. B.C. D.4.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的可能為()A.9 B.5C.4 D.35.準(zhǔn)線方程為的拋物線的標(biāo)準(zhǔn)方程為()A. B.C. D.6.人教A版選擇性必修二教材的封面圖案是斐波那契螺旋線,它被譽為自然界最完美的“黃金螺旋”,自然界存在很多斐波那契螺旋線的圖案,例如向日葵、鸚鵡螺等.斐波那契螺旋線的畫法是:以斐波那契數(shù)1,1,2,3,5,8,…為邊長的正方形拼成長方形,然后在每個正方形中畫一個圓心角為90°的圓弧,這些圓弧所連起來的弧線就是斐波那契螺旋線.下圖為該螺旋線在正方形邊長為1,1,2,3,5,8的部分,如圖建立平面直角坐標(biāo)系(規(guī)定小方格的邊長為1),則接下來的一段圓弧所在圓的方程為()A. B.C. D.7.某公司門前有一排9個車位的停車場,從左往右數(shù)第三個,第七個車位分別停著A車和B車,同時進來C,D兩車.在C,D不相鄰的情況下,C和D至少有一輛與A和B車相鄰的概率是()A. B.C. D.8.已知實數(shù),,則下列不等式恒成立的是()A. B.C. D.9.函數(shù)的圖象如圖所示,則下列大小關(guān)系正確的是()A.B.C.D.10.下列曲線中,與雙曲線有相同漸近線是()A. B.C. D.11.如圖,在三棱錐中,,二面角的正弦值是,則三棱錐外接球的表面積是()A. B.C. D.12.甲、乙、丙、丁、戊共5名同學(xué)進行勞動技術(shù)比賽,決出第1名到第5名的名次.甲和乙去詢問成績,回答者對甲說:“很遺憾,你和乙都沒有得到冠軍.”對乙說:“你當(dāng)然不會是最差的.”從這兩個回答分析,5人的名次排列方式共有()種A.54 B.72C.96 D.120二、填空題:本題共4小題,每小題5分,共20分。13.正三棱柱的底面邊長為2,側(cè)棱長為,則與側(cè)面所成角的正弦值為______14.某企業(yè)有4個分廠,新培訓(xùn)了一批6名技術(shù)人員,將這6名技術(shù)人員分配到各分廠,要求每個分廠至少1人,則不同的分配方案種數(shù)為________.15.如圖,在長方體中,,,則直線與平面所成角的正弦值為__________.16.已知函數(shù),,則曲線在處的切線方程為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知是拋物線的焦點,點在拋物線上,且.(1)求的方程;(2)過上一動點作的切線交軸于點.判斷線段的中垂線是否過定點?若過定點,求出定點坐標(biāo);若不過定點,請說明理由.18.(12分)已知拋物線C:(1)若拋物線C上一點P到F的距離是4,求P的坐標(biāo);(2)若不過原點O的直線l與拋物線C交于A、B兩點,且,求證:直線l過定點19.(12分)已知數(shù)列,若_________________(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和從下列三個條件中任選一個補充在上面的橫線上,然后對題目進行求解①;②,,;③,點,在斜率是2的直線上20.(12分)在四棱錐中,底面是直角梯形,,,,分別是棱,的中點(1)證明:平面;(2)若,且四棱錐的體積是6,求三棱錐的體積21.(12分)近年來某村制作的手工藝品在國內(nèi)外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴(yán)把質(zhì)量關(guān),合作社對村民制作的每件手工藝品都請3位行家進行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(?。┤粢患止に嚻?位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為A級;(ⅱ)若3位行家中僅有1位行家認(rèn)為質(zhì)量不過關(guān),再由另外2位行家進行第二次質(zhì)量把關(guān).若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為B級;若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為C級;(ⅲ)若3位行家中有2位或3位行家認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為D級.已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過關(guān)的概率為,且各手工藝品質(zhì)量是否過關(guān)相互獨立(1)求一件手工藝品質(zhì)量為B級的概率;(2)求81件手工藝品中,質(zhì)量為C級的手工藝品件數(shù)的方差;(3)求10件手工藝品中,質(zhì)量為D級的手工藝品最有可能是多少件?22.(10分)已知橢圓的離心率為,直線與橢圓C相切于點(1)求橢圓C方程;(2)已知直線與橢圓C交于不同的兩點M,N,與直線交于點Q(P,Q,M,N均不重合),記的斜率分別為,若①求△面積的范圍,②證明:為定值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設(shè)點P在準(zhǔn)線上的射影為D,則根據(jù)拋物線的定義可知|PF|=|PD|,進而把問題轉(zhuǎn)化為求|PM|+|PD|的最小值,即可求解【詳解】解:由題意,設(shè)點P在準(zhǔn)線上的射影為D,則根據(jù)拋物線的定義可知|PF|=|PD|,所以要求|PM|+|PF|的最小值,即求|PM|+|PD|的最小值,當(dāng)D,P,M三點共線時,|PM|+|PD|取得最小值為故選:B2、D【解析】根據(jù)空間向量垂直的坐標(biāo)表示即可求解.【詳解】.故選:D.3、D【解析】根據(jù)題意,結(jié)合,,利用不等式的性質(zhì)可判斷,從而判斷,再利用不等式性質(zhì)得出正確答案.【詳解】,,,又,,兩邊同乘以負(fù)數(shù),可知故選:D4、D【解析】根據(jù)輸出結(jié)果可得輸出時,結(jié)合執(zhí)行邏輯確定輸入k的可能值,即可知答案.【詳解】由,得,則輸人的可能為.∴結(jié)合選項知:D符合要求.故選:D.5、D【解析】的準(zhǔn)線方程為.【詳解】的準(zhǔn)線方程為.故選:D.6、C【解析】由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由于每一個圓弧為四分之一圓,從而可求出下一段圓弧所以圓的圓心,進而可得其方程【詳解】解:由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由題意可知下一段圓弧過點,因為每一段圓弧的圓心角都為90°,所以下一段圓弧所在圓的圓心與點的連線平行于軸,因為下一段圓弧半徑為13,所以所求圓的圓心為,所以所求圓的方程為,故選:C7、B【解析】先求出基本事件總數(shù),和至少有一輛與和車相鄰的對立事件是和都不與和車相鄰,由此能求出和至少有一輛與和車相鄰的概率【詳解】解:某公司門前有一排9個車位的停車場,從左往右數(shù)第三個,第七個車位分別停著車和車,同時進來,兩車,在,不相鄰的條件下,基本事件總數(shù),和至少有一輛與和車相鄰的對立事件是和都不與和車相鄰,和至少有一輛與和車相鄰的概率:故選:B8、C【解析】根據(jù)不等式性質(zhì)和作差法判斷大小依次判斷每個選項得到答案.【詳解】當(dāng)時,不等式不成立,錯誤;,故錯誤正確;當(dāng)時,不等式不成立,錯誤;故選:.【點睛】本題考查了不等式的性質(zhì),作差法判斷大小,意在考查學(xué)生對于不等式知識的綜合應(yīng)用.9、C【解析】根據(jù)導(dǎo)數(shù)的幾何意義可得答案.【詳解】因為函數(shù)在某點處的導(dǎo)數(shù)值表示的是此點處切線的斜率,所以由圖可得,故選:C10、B【解析】求出已知雙曲線的漸近線方程,逐一驗證即可.【詳解】雙曲線的漸近線方程為,而雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為.故選:B11、A【解析】利用二面角S﹣AC﹣B的余弦值求得,由此判斷出,且兩兩垂直,由此將三棱錐補形成正方體,利用正方體的外接球半徑,求得外接球的表面積.【詳解】設(shè)是的中點,連接,由于,所以,所以是二面角的平面角,所以.在三角形中,,在三角形中,,在三角形中,由余弦定理得:,所以,由于,所以兩兩垂直.由此將三棱錐補形成正方體如下圖所示,正方體的邊長為2,則體對角線長為.設(shè)正方體外接球的半徑為,則,所以外接球的表面積為,故選:.12、A【解析】根據(jù)題意,分2種情況討論:①、甲是最后一名,則乙可以為第二、三、四名,剩下的三人安排在其他三個名次,②、甲不是最后一名,甲乙需要排在第二、三、四名,剩下的三人安排在其他三個名次,由加法原理計算可得答案【詳解】根據(jù)題意,甲乙都沒有得到冠軍,而乙不是最后一名,分2種情況討論:①甲是最后一名,則乙可以為第二、三、四名,即乙有3種情況,剩下的三人安排在其他三個名次,有種情況,此時有種名次排列情況;②甲不是最后一名,甲乙需要排在第二、三、四名,有種情況,剩下的三人安排在其他三個名次,有種情況,此時有種名次排列情況;則一共有種不同的名次情況,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】作圖,考慮底面是正三角形,按照線面夾角的定義構(gòu)造直角三角形即可.【詳解】依題意,作圖如下,取的中點G,連結(jié),∵是正三角形,∴,,又∵是正三棱柱,∴底面,∴,即平面,,與平面的夾角=,在中,,故答案為:.14、1560【解析】先把6名技術(shù)人員分成4組,每組至少一人,有兩種情況:(1)4個組的人數(shù)按3,1,1,1分配,(2)4個組的人數(shù)為2,2,1,1,求出所有的分組方法,然后再把4個組的人分給4個分廠,從而可求得答案【詳解】先把6名技術(shù)人員分成4組,每組至少一人.(1)若4個組的人數(shù)按3,1,1,1分配,則不同的分配方案有(種).(2)若4個組的人數(shù)為2,2,1,1,則不同的分配方案有(種).故所有分組方法共有20+45=65(種).再把4個組的人分給4個分廠,不同的方法有(種).故答案為:156015、##【解析】過作,垂足為,則平面,則即為所求角,從而可得結(jié)果.【詳解】依題意,畫出圖形,如圖,過作,垂足為,可知點H為中點,由平面,可得,又所以平面,則即為所求角,因為,,所以,故答案為:.16、【解析】根據(jù)導(dǎo)數(shù)的幾何意義求得在點處的切線方程.【詳解】由,求導(dǎo),知,又,則函數(shù)在點處的切線方程為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)過定點,定點為【解析】(1)利用拋物線的定義求解;(2)設(shè)直線的方程為,,與拋物線方程聯(lián)立,根據(jù)直線與拋物線C相切,由求得,再得到,寫出線段的中垂線方程求解.【小問1詳解】解:由題意得,,解得=2p,因為點M(,4)在拋物線C上,所以42=2p=4p2,解得p=2,所以拋物線C的標(biāo)準(zhǔn)方程為.【小問2詳解】由已知得,直線的斜率存在且不為0,所以設(shè)直線的方程為,與拋物線方程聯(lián)立并消去得:,因為直線與拋物線C相切,所以,得,,所以,得,在中,令得,所以,所以線段中點為,線段的中垂線方程為,所以線段的中垂線過定點.18、(1)(2)見解析【解析】(1)由拋物線的定義,可得點的坐標(biāo);(2)可設(shè)直線的方程為,,,,與拋物線聯(lián)立,消,利用韋達定理求得,,再根據(jù),可得,從而可求得參數(shù)的關(guān)系,即可得出結(jié)論.【小問1詳解】解:設(shè),,由拋物線的定義可知,即,解得,將代入方程,得,即的坐標(biāo)為;【小問2詳解】證明:由題意知直線不能與軸平行,可設(shè)直線的方程為,與拋物線聯(lián)立得,消去得,設(shè),,,則,,由,可得,即,即,即,又,解得,所以直線方程為,當(dāng)時,,所以直線過定點19、答案見解析.【解析】(1)若選①,根據(jù)通項公式與前項和的關(guān)系求解通項公式即可;若選②,根據(jù)可得數(shù)列為等差數(shù)列,利用基本量法求解通項公式即可;若選③,根據(jù)兩點間的斜率公式可得,可得數(shù)列為等差數(shù)列進而求得通項公式;(2)利用裂項相消求和即可【詳解】解:(1)若選①,由,所以當(dāng),,兩式相減可得:,而在中,令可得:,符合上式,故若選②,由(,)可得:數(shù)列為等差數(shù)列,又因為,,所以,即,所以若選③,由點,在斜率是2的直線上得:,即,所以數(shù)列為等差數(shù)列且(2)由(1)知:,所以20、(1)證明見解析.(2)2.【解析】(1)取的中點,連接,.運用面面平行的判定和性質(zhì)可得證;(2)過點作,垂足為,連接,,設(shè)點到平面的距離為,根據(jù)棱錐的體積求得,再利用三棱錐的體積與三棱錐的體積相等,三棱錐的體積與三棱錐的體積相等,可求得答案.【小問1詳解】證明:如圖,取的中點,連接,因為,分別是棱,的中點,所以,又平面,平面,所以平面因為,且,分別是棱,的中點,所以,又平面,平面,所以平面因為平面,且,所以平面平面因為平面,所以平面【小問2詳解】解:過點作,垂足為,連接,,則四邊形是正方形,從而因為,所以,則,從而直角梯形的面積設(shè)點到平面的距離為,則四棱錐的體積,解得因為三棱錐的體積與三棱錐的體積相等,所以三棱錐的體積因為平面,所以三棱錐的體積與三棱錐的體積相等,所以三棱錐的體積為221、(1)(2)(3)2件【解析】(1)根據(jù)相互獨立事件的概率公式計算可得;(2)首先求出一件手工藝品質(zhì)量為C級的概率,設(shè)81件手工藝品中質(zhì)量
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 防護柵欄安裝施工方案
- 2025年研究生學(xué)術(shù)與職業(yè)素養(yǎng)講座期末考試題及答案
- (2025年)法考主觀題真題及答案解析
- 2026年珠寶鑒定評估合同
- 2026福建莆田市審計局招聘非在編人員1人備考題庫完整答案詳解
- 八年級下冊數(shù)學(xué)-平行四邊形
- 第五單元《混合運算》教材解析 人教版數(shù)學(xué)二年級下冊
- 2026浙江杭州倉前中學(xué)招聘事業(yè)編制教師2人備考題庫及答案詳解(奪冠系列)
- 消防安全承諾書
- 二年級下冊數(shù)學(xué)第五單元測試題
- 2026年山東省煙草專賣局(公司)高校畢業(yè)生招聘流程筆試備考試題及答案解析
- 附圖武陵源風(fēng)景名勝區(qū)總體規(guī)劃總平面和功能分區(qū)圖樣本
- 八年級下冊《昆蟲記》核心閱讀思考題(附答案解析)
- 煤礦復(fù)產(chǎn)安全培訓(xùn)課件
- 2025年中職藝術(shù)設(shè)計(設(shè)計理論)試題及答案
- 2026屆高考?xì)v史二輪突破復(fù)習(xí):高考中外歷史綱要(上下兩冊)必考??贾R點
- 鐵路交通法律法規(guī)課件
- 2025年體育行業(yè)專家聘用合同范本
- 對于尼龍件用水煮的原因分析
- ECMO患者血糖控制與胰島素泵管理方案
- 消防安全操作規(guī)程操作規(guī)程
評論
0/150
提交評論