福建省莆田七中2025-2026學年數(shù)學高二上期末統(tǒng)考模擬試題含解析_第1頁
福建省莆田七中2025-2026學年數(shù)學高二上期末統(tǒng)考模擬試題含解析_第2頁
福建省莆田七中2025-2026學年數(shù)學高二上期末統(tǒng)考模擬試題含解析_第3頁
福建省莆田七中2025-2026學年數(shù)學高二上期末統(tǒng)考模擬試題含解析_第4頁
福建省莆田七中2025-2026學年數(shù)學高二上期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省莆田七中2025-2026學年數(shù)學高二上期末統(tǒng)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.給出命題:若函數(shù)是冪函數(shù),則函數(shù)的圖象不過第四象限.在它的逆命題、否命題、逆否命題三個命題中,真命題的個數(shù)是()A.3 B.2C.1 D.02.點分別為橢圓左右兩個焦點,過的直線交橢圓與兩點,則的周長為()A.32 B.16C.8 D.43.如下圖,面與面所成二面角的大小為,且A,B為其棱上兩點.直線AC,BD分別在這個二面角的兩個半平面中,且都垂直于AB,已知,,,則()A. B.C. D.4.在平行六面體中,點P在上,若,則()A. B.C. D.5.設是橢圓的上頂點,若上的任意一點都滿足,則的離心率的取值范圍是()A. B.C. D.6.直線經過兩點,那么其斜率為()A. B.C. D.7.雙曲線的離心率為,焦點到漸近線的距離為,則雙曲線的焦距等于A. B.C. D.8.已知曲線,則曲線W上的點到原點距離的最小值是()A. B.C. D.9.甲、乙、丙、丁、戊共5名同學進行勞動技術比賽,決出第1名到第5名的名次.甲和乙去詢問成績,回答者對甲說:“很遺憾,你和乙都沒有得到冠軍.”對乙說:“你當然不會是最差的.”從這兩個回答分析,5人的名次排列方式共有()種A.54 B.72C.96 D.12010.在各項都為正數(shù)的數(shù)列中,首項為數(shù)列的前項和,且,則()A. B.C. D.11.設α,β是兩個不同的平面,m,n是兩條不重合的直線,下列命題中為真命題的是()A如果,,n∥β,那么B.如果,,,那么α∥βC.如果m∥n,,,那么α∥βD.如果m∥n,,,那么12.已知雙曲線離心率為2,過點的直線與雙曲線C交于A,B兩點,且點P恰好是弦的中點,則直線的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若一個球表面積為,則該球的半徑為____________14.寫出一個數(shù)列的通項公式____________,使它同時滿足下列條件:①,②,其中是數(shù)列的前項和.(寫出滿足條件的一個答案即可)15.某校為了解學生學習的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進行問卷調查.已知高一被抽取的人數(shù)為,那么高二被抽取的人數(shù)為__.16.已知三個數(shù)2,,6成等比數(shù)列,則實數(shù)______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)求滿足下列條件的曲線的方程:(1)離心率為,長軸長為6的橢圓的標準方程(2)與橢圓有相同焦點,且經過點的雙曲線的標準方程18.(12分)已知橢圓的焦點與雙曲線的焦點相同,且D的離心率為.(1)求C與D的方程;(2)若,直線與C交于A,B兩點,且直線PA,PB的斜率都存在.①求m的取值范圍.②試問這直線PA,PB的斜率之積是否為定值?若是,求出該定值;若不是,請說明理由.19.(12分)已知數(shù)列和滿足,(1)若,求的通項公式;(2)若,,證明為等差數(shù)列,并求和的通項公式20.(12分)已知等比數(shù)列的公比,且,的等差中項為,.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.21.(12分)設函數(shù).(1)求函數(shù)的單調區(qū)間;(2)求函數(shù)的極值.22.(10分)已知項數(shù)為的數(shù)列是各項均為非負實數(shù)的遞增數(shù)列.若對任意的,(),與至少有一個是數(shù)列中的項,則稱數(shù)列具有性質.(1)判斷數(shù)列,,,是否具有性質,并說明理由;(2)設數(shù)列具有性質,求證:;(3)若數(shù)列具有性質,且不是等差數(shù)列,求項數(shù)的所有可能取值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】若函數(shù)是冪函數(shù),則函數(shù)的圖象不過第四象限,原命題是真命題,則其逆否命題也是真命題;其逆命題為:若函數(shù)的圖象不過第四象限,則函數(shù)是冪函數(shù)是假命題,所以原命題的否命題也是假命題.故它的逆命題、否命題、逆否命題三個命題中,真命題有一個.選C2、B【解析】由題意結合橢圓的定義可得,而的周長等于,從而可得答案【詳解】解:由得,由題意得,所以的周長等于,故選:B3、B【解析】根據(jù)題意,作,且,則四邊形ABDE為平行四邊形,進一步判斷出該四邊形為矩形,然后確定出為二面角的平面角,進而通過余弦定理和勾股定理求得答案.【詳解】如圖,作,且,則四邊形ABDE為平行四邊形,所以.因為,所以,又,所以是該二面角的一個平面角,即,由余弦定理.因為,,所以,易得四邊形ABDE為矩形,則,而,所以平面ACE,則,于是.故選:B.4、C【解析】利用空間向量基本定理,結合空間向量加法的法則進行求解即可.【詳解】因為,,所以有,因此,故選:C5、C【解析】設,由,根據(jù)兩點間的距離公式表示出,分類討論求出的最大值,再構建齊次不等式,解出即可【詳解】設,由,因為,,所以,因為,當,即時,,即,符合題意,由可得,即;當,即時,,即,化簡得,,顯然該不等式不成立故選:C【點睛】本題解題關鍵是如何求出的最大值,利用二次函數(shù)求指定區(qū)間上的最值,要根據(jù)定義域討論函數(shù)的單調性從而確定最值6、B【解析】由兩點的斜率公式可得答案.【詳解】直線經過兩點,則故選:B7、D【解析】不妨設雙曲線方程為,則,即設焦點為,漸近線方程為則又解得.則焦距為.選:D8、A【解析】化簡方程,得到,求出的范圍,作出曲線的圖形,通過圖象觀察,即可得到原點距離的最小值詳解】解:即為,兩邊平方,可得,即有,則作出曲線的圖形,如下:則點與點或的距離最小,且為故選:A9、A【解析】根據(jù)題意,分2種情況討論:①、甲是最后一名,則乙可以為第二、三、四名,剩下的三人安排在其他三個名次,②、甲不是最后一名,甲乙需要排在第二、三、四名,剩下的三人安排在其他三個名次,由加法原理計算可得答案【詳解】根據(jù)題意,甲乙都沒有得到冠軍,而乙不是最后一名,分2種情況討論:①甲是最后一名,則乙可以為第二、三、四名,即乙有3種情況,剩下的三人安排在其他三個名次,有種情況,此時有種名次排列情況;②甲不是最后一名,甲乙需要排在第二、三、四名,有種情況,剩下的三人安排在其他三個名次,有種情況,此時有種名次排列情況;則一共有種不同的名次情況,故選:A10、C【解析】當時,,故可以得到,因為,進而得到,所以是等比數(shù)列,進而求出【詳解】由,得,得,又數(shù)列各項均為正數(shù),且,∴,∴,即∴數(shù)列是首項,公比的等比數(shù)列,其前項和,得,故選:C.11、C【解析】AB.利用兩平面的位置關系判斷;CD.利用面面平行的判定定理判斷;【詳解】A.如果,,n∥β,那么α,β相交或平行;故錯誤;B.如果,,,那么α,β垂直,故錯誤;C.如果m∥n,,則,又,那么α∥β,故C正確;D錯誤,故選:C12、C【解析】運用點差法即可求解【詳解】由已知得,又,,可得.則雙曲線C的方程為.設,,則兩式相減得,即.又因為點P恰好是弦的中點,所以,,所以直線的斜率為,所以直線的方程為,即.經檢驗滿足題意故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設球的半徑為,代入球的表面積公式得答案【詳解】解:設球的半徑為,則,得,即或(舍去)故答案為:14、(答案合理即可)【解析】當時滿足,利用作差比較法即可證明.【詳解】解:當時滿足條件①②,證明如下:因為,所以;當時,;當時,;綜上,.故答案為:(答案合理即可).15、【解析】利用分層抽樣可求得的值,再利用分層抽樣可求得高二被抽取的人數(shù).【詳解】高一年級抽取的人數(shù)為:人,則,則高二被抽取的人數(shù),故答案為:.16、【解析】由題意可得,從而可求出的值【詳解】因為三個數(shù)2,,6成等比數(shù)列,所以,解得故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)或;(2)【解析】(1)根據(jù)題意,由橢圓的幾何性質可得a、c的值,計算可得b的值,討論橢圓焦點的位置,求出橢圓的標準方程,即可得答案;(2)根據(jù)題意,求出橢圓的焦點坐標,進而可以設雙曲線的方程為,分析可得和,解可得a、b的值,即可得答案【詳解】解:(1)根據(jù)題意,要求橢圓的長軸長為6,離心率為,則,,解可得:,;則,若橢圓的焦點在x軸上,其方程為,若橢圓的焦點在y軸上,其方程為,綜合可得:橢圓的標準方程為或;(2)根據(jù)題意,橢圓的焦點為和,故要求雙曲線的方程為,且,則有,又由雙曲線經過經過點,則有,,聯(lián)立可得:,故雙曲線方程為:【點睛】本題考查橢圓、雙曲線的標準方程的求法,涉及橢圓、雙曲線的幾何性質,屬于基礎題18、(1)C:;D:;(2)①且;②見解析.【解析】(1)根據(jù)D的離心率為,求出從而求出雙曲線的焦點,再由橢圓的焦點與雙曲線的焦點相同,即可求出,即可求出C與D的方程;(2)①根據(jù)題意容易得出,然后聯(lián)立方程,消元,利用即可求出m的取值范圍;②設,由①得:,計算出,判斷其是否為定值即可.【詳解】解:(1)因為D的離心率為,即,解得:,所以D的方程為:;焦點坐標為,又因橢圓的焦點與雙曲線的焦點相同,所以,所以,所以C的方程為:;(2)①如圖:因為直線與C交于A,B兩點,且直線PA,PB的斜率都存在,所以,聯(lián)立,消化簡得:,所以,解得,所以且;②設,由①得:,,所以,故直線PA,PB的斜率之積不是是定值.【點睛】本題考查了求橢圓與雙曲線的方程、直線與橢圓的位置關系及橢圓中跟定直有關的問題,難度較大.19、(1)(2)證明見解析,,【解析】(1)代入可得,變形得構造等比數(shù)列求的通項公式;(2)先由已知得,先分別求出,的通項公式,然后合并可得的通項公式,進而可得的通項公式【小問1詳解】當,時,,所以,即,整理得,所以是以為首項,為公比的等比數(shù)列故,即【小問2詳解】當時,由,,得,所以因為,所以,則是以為首項,2為公差的等差數(shù)列,,;是以為首項,2為公差的等差數(shù)列,,綜上所述,所以,,故是以2為首項,1為公差的等差數(shù)列當時,,且滿足,所以20、(1);(2)【解析】(1)將題目的條件寫成的形式并求解,寫出等比等比數(shù)列通項公式;(2)利用錯位相減法求和.小問1詳解】由題意可得,,∴,∵,∴,∴數(shù)列的通項公式為.【小問2詳解】,∴①,②,①-②可得,∴.21、(1)單調遞減區(qū)間為和,單調遞增區(qū)間為(2)極小值,極大值為【解析】(1)先對函數(shù)求導,然后根據(jù)導數(shù)的正負可求出函數(shù)的單調區(qū)間,(2)根據(jù)(1)中求得單調區(qū)間可求出函數(shù)的極值【小問1詳解】.當變化時,,的變化情況如下表所示:00減極小值增極大值減的單調遞減區(qū)間為和,單調遞增區(qū)間為.【小問2詳解】由(1)可知在處取得極小值,在處取得極大值.的極小值為,極大值為.22、(1)數(shù)列,,,不具有性質;(2)證明見解析;(3)可能取值只有.【解析】(1)由數(shù)列具有性質的定義,只需判斷存在與都不是數(shù)列中的項即可.(2)由性質知:、,結合非負遞增性有,再由時,必有,進而可得,,,,,應用累加法即可證結論.(3)討論、、,結合性質、等差數(shù)列的性質判斷是否存在符合題設性質,進而確定的可能取值.【小問1詳解】數(shù)列,,,不具有性質.因為,,和均不是數(shù)列,,,中的項,所以數(shù)列,,,不具有性質.【小問2詳解】記數(shù)列的各項組成的集合為,又,由數(shù)列具有性質,,所以,即,所以.設,因為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論