版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025-2026學(xué)年云南省宣威市第十中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線的傾斜角的大小為()A. B.C. D.2.已知數(shù)列是等比數(shù)列,,數(shù)列是等差數(shù)列,,則的值是()A. B.C. D.3.命題若,且,則,命題在中,若,則.下列命題中為真命題的是()A. B.C. D.4.在三棱錐中,,D為上的點,且,則()A. B.C. D.5.已知等比數(shù)列的公比為,則“”是“是遞增數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.若數(shù)列是等比數(shù)列,且,則()A.1 B.2C.4 D.87.如圖,有一個水平放置的透明無蓋的正方體容器,容器高8cm,將一個球放在容器口,再向容器內(nèi)注水,當球面恰好接觸水面時測得水深為6cm,如果不計容器的厚度,則球的體積為A. B.C. D.8.已知函數(shù),則()A.0 B.1C.2 D.9.已知,則的大小關(guān)系為()A. B.C. D.10.拋物線的焦點到其準線的距離是()A.4 B.3C.2 D.111.設(shè)等差數(shù)列前n項和是,若,則的通項公式可以是()A. B.C. D.12.命題“存在,使得”的否定為()A.存在, B.對任意,C.對任意, D.對任意,二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的左、右焦點分別為,,P為橢圓上一點,滿足(O為坐標原點).若,則橢圓的離心率為______14.在下列三個問題中:①甲乙二人玩勝負游戲:每人一次拋擲兩枚質(zhì)地均勻的硬幣,如果規(guī)定:同時出現(xiàn)正面或反面算甲勝,一個正面、一個反面算乙勝,那么這個游戲是公平的;②擲一枚骰子,估計事件“出現(xiàn)三點”的概率,當拋擲次數(shù)很大時,此事件發(fā)生的頻率接近其概率;③如果氣象預(yù)報1日—30日的下雨概率是,那么1日—30日中就有6天是下雨的;其中,正確的是___________.(用序號表示)15.已知數(shù)列滿足,且,則______,數(shù)列的通項_____16.已知等比數(shù)列的前項和為,若,,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知過點的圓的圓心M在直線上,且y軸被該圓截得的弦長為4(1)求圓M的標準方程;(2)設(shè)點,若點P為x軸上一動點,求的最小值,并寫出取得最小值時點P的坐標18.(12分)已知函數(shù)f(x)=x3+ax2+2,x=2是f(x)的一個極值點.(1)求實數(shù)a的值;(2)求f(x)在區(qū)間(-1,4]上的最大值和最小值.19.(12分)已知直線,,,其中與交點為P(1)求過點P且與平行的直線方程;(2)求以點P為圓心,截所得弦長為8的圓的方程20.(12分)已知點P到點的距離比它到直線的距離小1.(1)求點P的軌跡方程;(2)點M,N在點P的軌跡上且位于x軸的兩側(cè),(其中O為坐標原點),求面積的最小值.21.(12分)如圖,在四棱錐中,平面,底面是直角梯形,其中,,,,為棱上的點,且.(1)求證:平面;(2)求二面角的正弦值;(3)設(shè)為棱上的點(不與,重合),且直線與平面所成角的正弦值為,求的值.22.(10分)已知圓C的圓心為,且圓C經(jīng)過點(1)求圓C的一般方程;(2)若圓與圓C恰有兩條公切線,求實數(shù)m的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由直線方程,可知直線的斜率,設(shè)直線的傾斜角為,則,又,所以,故選2、B【解析】根據(jù)等差數(shù)列和等比數(shù)列下標和的性質(zhì)即可求解.【詳解】為等比數(shù)列,,,,;為等差數(shù)列,,,,,∴.故選:B.3、A【解析】根據(jù)不等式性質(zhì)及對數(shù)函數(shù)的單調(diào)性判斷命題的真假,根據(jù)大角對大邊及正弦定理可判斷命題的真假,再根據(jù)復(fù)合命題真假的判斷方法即可得出結(jié)論.【詳解】解:若,且,則,當時,,所以,當時,,所以,綜上命題為假命題,則為真命題,在中,若,則,由正弦定理得,所以命題為真命題,為假命題,所以為真命題,,,為假命題.故選:A.4、B【解析】根據(jù)幾何關(guān)系以及空間向量的線性運算即可解出【詳解】因為,所以,即故選:B5、B【解析】先分析充分性:假設(shè)特殊等比數(shù)列即可判斷;再分析充分性,由條件得恒成立,再對和進行分類討論即可判斷.【詳解】先分析充分性:在等比數(shù)列中,,所以假設(shè),,所以,等比數(shù)列為遞減數(shù)列,故充分性不成立;分析必要性:若等比數(shù)列的公比為,且是遞增數(shù)列,所以恒成立,即恒成立,當,時,成立,當,時,不成立,當,時,不成立,當,時,不成立,當,時,成立,當,時,不成立,當,時,不恒成立,當,時,不恒成立,所以能使恒成立的只有:,和,,易知此時成立,所以必要性成立.故選:B.6、C【解析】根據(jù)等比數(shù)列的性質(zhì),由題中條件,求出,即可得出結(jié)果.【詳解】因為數(shù)列是等比數(shù)列,由,得,所以,因此.故選:C.7、A【解析】根據(jù)題意可求出正方體的上底面與球相交所得截面圓的半徑為4cm,再根據(jù)截面圓半徑,球的半徑以及球心距的關(guān)系,即可求出球的半徑,從而得到球的體積【詳解】設(shè)球的半徑為cm,根據(jù)已知條件知,正方體的上底面與球相交所得截面圓的半徑為4cm,球心到截面圓的距離為cm,所以由,得,所以球的體積為故選:A【點睛】本題主要考查球的體積公式的應(yīng)用,以及球的結(jié)構(gòu)特征的應(yīng)用,屬于基礎(chǔ)題8、C【解析】對函數(shù)f(x)求導(dǎo)即可求得結(jié)果.【詳解】函數(shù),則,,故選C【點睛】本題考查正弦函數(shù)的導(dǎo)數(shù)的應(yīng)用,屬于簡單題.9、B【解析】構(gòu)造利用導(dǎo)數(shù)判斷函數(shù)在上單調(diào)遞減,利用單調(diào)性比較大小【詳解】設(shè)恒成立,函數(shù)在上單調(diào)遞減,.故選:B10、C【解析】由拋物線焦點到準線的距離為求解即可.【詳解】因為拋物線焦點到準線的距離為,故拋物線的焦點到其準線的距離是2.故選:C【點睛】本題主要考查了拋物線的標準方程中的幾何意義,屬于基礎(chǔ)題型.11、D【解析】根據(jù)題意可得公差的范圍,再逐一分析各個選項即可得出答案.【詳解】解:設(shè)等差數(shù)列的公差為,由,得,所以,故AB錯誤;若,則,與題意矛盾,故C錯誤;若,則,符合題意.故選:D.12、D【解析】根據(jù)特稱命題否定的方法求解,改變量詞,否定結(jié)論.【詳解】由題意可知命題“存在,使得”的否定為“對任意,”.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】由可得,再結(jié)合橢圓的性質(zhì)可得為直角三角形,由題意設(shè),則,由勾股定理可得,再結(jié)合橢圓的定義可求出離心率【詳解】因為,所以,所以,因為,所以,所以為直角三角形,即,所以設(shè),則,所以,得,因為則,所以,所以,即離心率為,故答案為:14、①②【解析】以甲乙獲勝概率是否均為來判斷游戲是否公平,并以此來判斷①的正確性;以頻率和概率的關(guān)系來判斷②③的正確性.【詳解】①中:甲乙二人玩勝負游戲:每人一次拋擲兩枚質(zhì)地均勻的硬幣,可得4種可能的結(jié)果:(正,正),(正,反),(反,正),(反,反)則“同時出現(xiàn)正面或反面”的概率為,“一個正面、一個反面”的概率為即甲乙二人獲勝的概率均為,那么這個游戲是公平的.判斷正確;②中:“擲一枚骰子出現(xiàn)三點”是一個隨機事件,當拋擲次數(shù)很大時,此事件發(fā)生的頻率會穩(wěn)定于其概率值,故此事件發(fā)生的頻率接近其概率.判斷正確;③中:氣象預(yù)報1日—30日的下雨概率是,那么1日—30日每天下雨的概率均是,每天都有可能下雨也可能不下雨,故1日—30日中出現(xiàn)下雨的天數(shù)是隨機的,可能是0天,也可能是1天、2天、3天……,不一定是6天.判斷錯誤.故答案為:①②15、①.②.【解析】判斷出是等差數(shù)列,由此求得,利用累加法求得.【詳解】依題意,則,所以數(shù)列是以為首項,公差為的等差數(shù)列,所以,,當時,,,也符合上式,所以.故答案為:;16、【解析】設(shè)等比數(shù)列的公比為,根據(jù)已知條件求出的值,由此可得出的值.【詳解】設(shè)等比數(shù)列的公比為,則,整理可得,,解得,因此,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2),【解析】(1)用待定系數(shù)法設(shè)出圓心,根據(jù)圓過點和弦長列出方程求解即可;(2)當三點共線時有最小值,求出直線MN的方程,令y=0即可.【小問1詳解】由題意可設(shè)圓心,因為y軸被圓M截得的弦長為4,所以,又,則,化簡得,解得,則圓心,半徑,所以圓M的標準方程為【小問2詳解】點關(guān)于x軸的對稱點為,則,當且僅當M,P,三點共線時等號成立,因為,則直線的方程為,即,令,得,則18、(1);(2)最大值為18,最小值為.【解析】(1)解方程即得解;(2)利用導(dǎo)數(shù)求出函數(shù)的單調(diào)區(qū)間分析即得解.【小問1詳解】解:因為,所以,因為在處有極值,所以,即,所以.經(jīng)檢驗,當時,符合題意.所以.【小問2詳解】解:由(1)可知,所以,令,得,當時,由得,;由得,或.所以函數(shù)在上遞增,在上遞減,在上遞增,又.所以的最小值為,又,所以的最大值為,所以在的最大值為18,最小值為.19、(1);(2).【解析】(1)首先求、的交點坐標,根據(jù)的斜率,應(yīng)用點斜式寫出過P且與平行的直線方程;(2)根據(jù)弦心距、弦長、半徑的關(guān)系求圓的半徑,結(jié)合P的坐標寫出圓的方程.【小問1詳解】聯(lián)立、得:,可得,故,又的斜率為,則過P且與平行的直線方程,∴所求直線方程為.【小問2詳解】由(1),P到的距離,∴以P為圓心,截所得弦長為8的圓的半徑,∴所求圓的方程為.20、(1);(2).【解析】(1)根據(jù)給定條件可得點P到點的距離等于它到直線的距離,再由拋物線定義即可得解.(2)由(1)設(shè)出點M,N的坐標,再結(jié)合給定條件及三角形面積定理列式,借助均值不等式計算作答.【小問1詳解】因點P到點的距離比它到直線的距離小1,顯然點P與F在直線l同側(cè),于是得點P到點的距離等于它到直線的距離,則點P的軌跡是以F為焦點,直線為準線的拋物線,所以點P的軌跡方程是.【小問2詳解】由(1)設(shè)點,,且,因,則,解得,S,當且僅當,即時取“=”,所以面積的最小值為.【點睛】思路點睛:圓錐曲線中的幾何圖形面積范圍或最值問題,可以以直線的斜率、橫(縱)截距、圖形上動點的橫(縱)坐標為變量,建立函數(shù)關(guān)系求解作答.21、(1)證明見解析;(2);(3).【解析】(1)由已知證得,,,以為坐標原點,建立如圖所示的空間直角坐標系,根據(jù)向量垂直的坐標表示和線面垂直的判定定理可得證;(2)根據(jù)二面角的空間向量求解方法可得答案;(3)設(shè),表示點Q,再利用線面角的空間向量求解方法,建立方程解得,可得答案.【詳解】(1)因為平面,平面,平面,所以,,又因為,則以為坐標原點,建立如圖所示的空間直角坐標系,由已知可得,,,,,,所以,,,因為,,所以,,又,平面,平面,所以平面.(2)由(1)可知平面,可作為平面的法向量,設(shè)平面的法向量因為,.所以,即,不妨設(shè),得.,又由圖示知二面角為銳角,所以二面角的正弦值為.(3)設(shè),即,,所以,即,因為直線與平面所成角的正弦值為,所以,即,解得,即.【點睛】本題考查利用空間向量求線面垂直、線面角、二面角的求法,向量法求二面角的步驟:建、設(shè)、求、算、取:1、建:建立空間直角坐標系,以三條互相垂直的垂線的交點為原點;2、設(shè):設(shè)所需點的坐標,并得出所需向量的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 局衛(wèi)生管理工作制度匯編
- 街道辦環(huán)境衛(wèi)生管理制度
- 醫(yī)療衛(wèi)生室管理制度
- 街道各衛(wèi)生管理制度
- 怎樣水衛(wèi)生管理制度
- 衛(wèi)生院老年病科管理制度
- 衛(wèi)生院平安建設(shè)制度
- 衛(wèi)生室冷藏藥品制度
- 衛(wèi)生院完整規(guī)章制度
- 衛(wèi)生院藥房工作管理制度
- 十年(2016-2025年)高考數(shù)學(xué)真題分類匯編:專題26 導(dǎo)數(shù)及其應(yīng)用解答題(原卷版)
- 2025年江蘇省常熟市中考物理試卷及答案詳解(名校卷)
- 靜脈輸液巡視制度課件
- 旅游景區(qū)商戶管理辦法
- 2025年甘肅省中考物理、化學(xué)綜合試卷真題(含標準答案)
- DLT5210.1-2021電力建設(shè)施工質(zhì)量驗收規(guī)程第1部分-土建工程
- 機械設(shè)備租賃服務(wù)方案
- 樂理考試古今音樂對比試題及答案
- 電影放映年度自查報告
- 水泥窯協(xié)同處置危廢可行性研究報告
- 心內(nèi)介入治療護理
評論
0/150
提交評論