2025向量搜索創(chuàng)建RAG應(yīng)用_第1頁(yè)
2025向量搜索創(chuàng)建RAG應(yīng)用_第2頁(yè)
2025向量搜索創(chuàng)建RAG應(yīng)用_第3頁(yè)
2025向量搜索創(chuàng)建RAG應(yīng)用_第4頁(yè)
2025向量搜索創(chuàng)建RAG應(yīng)用_第5頁(yè)
已閱讀5頁(yè),還剩43頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

RAG

ElasticsearchElasticsearch在企業(yè)搜索中的案例分

site:

machine

anomalymachinelearning

getting howtosetupelasticsearchhowtosetupelasticsearch ElasticElasticsearch

SPARSETokenWeighted“域內(nèi)低維(3125121536

TokenToken:-N個(gè)最高權(quán)重的標(biāo)記(DotProduct“后期交互 TextExpansionStoredin Storedin

Score

5注注:inferenceAPI$--urLhttps://cLuster_URL--hub-modeL-idBERT-MiniLM-L6--task-typetext_embedding--選擇合適的模 將模型加載到集 管理模

POSTStandardfieldindexingfornon-vector

"product_name":"SummerDress","description":"Ourbest-selling…","Price":118,}SourceSourcePOSTPOSTEncodingviaInference

_searchkNN GETproduct-"query":"match":{"description":{"query":"summer"boost": POST/_ml/trained_models/my-

"knn":"field":"query_vector":[0.123,"k":"docs":"description":"summer

"boost":"filter":"term":{"department":"women"

"size":GETproduct-"knn":GETproduct-"knn":"field":"desc_embbeding","k":5,"num_candidates":50,"query_vector_builder":"text_embedding":"model_text”:"model_id":<text-embedding-"filter":"term":"department":"size": imageElasticsearchSearch

GETproduct-Traditional,term-basedVectorTraditional,term-based

"query":"match":{"description":{"query":"summer"boost":"knn":"field":"desc_embbeding","query_vector":[0.123,0.244,...],"k":"num_candidates":"boost":"filter":"term":"department": pre-Convex

"size":(InvertedIndex|SparseVectors|(InvertedIndex|SparseVectors|DenseVectorsBM25RRF B:1/2+1/1= A:1/1+1/3= C:1/3+1/2= kNNkNN

facets-Facets--

POSTimage-"knn":"query_vector":[1,5,-"k":"similarity":36,"filter":{"term":"file-type":

Filteringonly"fields":["title"],"_source":false

文本HNSW的索引

ES|QL

(webcrawlerconnectors,Agent,APIES

CPU硬件指令加速向量索引和計(jì)算速度。GPU加速/CAGRA(CUDAANNGRAph))

向量有損壓縮,floatint8int4bit(BBQ)向量來平衡精度、速度和

Elasticsearch

ApacheLucene10已發(fā)布!Lucene Hybrid Final(10-100AIbased

Mid-stage(1k-10kLearningTo(100k-millionsofANNdense JudgmentModelJudgmentModeluploadw/ElandModel

(rescoreclauseinElasticsearchLearningtoTank "query":"query":"query":/_searchModel

Search"retriever":"retriever":/_searchHuggingElastic Retrievers

Rescorer"retriever":

Learningto//...semanticrerankingparameters"retriever":{"rrf":"retrievers":"standard":{"query"."semantic":{"field":"a-semantic_text-"query":"whyareretrievers3.Finalreranked 2.RRF-andranked 1.Initialresult

"knn"://...knn//...query_vector_builderparameters"model_text":"whyareretrieversfun?""standard":{"query"."match":{"some-field":"whyareretrievers YES… Chance“answer”incontiguous

Semantic

Chunk

“Small ChapterChapterChapter1

token數(shù)量Xtoken

semantic_textElasticsearch文本被分成250100個(gè)APIsemanticsemantic_text 8.16+ 8.16 SemanticTextRAG"embeddings":{"##oid":"##oids":"free":"dr":"around":"these":Auto-

ElasticsearchPickMLPickPickMLPickRunmodelperQuantizeRunmodelperVector(therighttypeandGET"query":"semantic":"field":"my_inference_field","query":"myquerytext""mappings":{"my_inference_field":{"type":"semantic_text",PUTtest-"my_inference_field":"mydocPUT_inference/sparse_embedding/PUT_inference/sparse_embedding/my-inf-"service":"elser","service_settings":{"num_allocations":"num_threads": InferenceAPI阿里云、亞馬遜網(wǎng)絡(luò)服務(wù)(AWS)、Anthropic的Claude、Cohere、Confluent、Dataiku、DataRobot、Galileo、谷歌云、HuggingFace、LangChain、LlamaIndex、MistralAI、微軟、NVIDIA、OpenAI、ProtectAI、RedHat、Vectorize.io ElasticserverlessElasticCloudElasticCloudElasticsearch在企業(yè) LLM“聰明”

基礎(chǔ)模型的訓(xùn)練成本高達(dá)數(shù)千萬到數(shù)億美元。LLM從大量公共數(shù)據(jù)

RetrievalAugmentedGeneration代碼層API代碼層API

來自LLM的響應(yīng)

UserContextElasticsearchVector

ComputeQuery

CombineandRank topK Agentic AgenticLLM并得到回應(yīng)。不需要

LLM可以提示用戶信息,選擇使用工具,與其他代理交互,并影響現(xiàn)實(shí)世界( VectorVectorfiromuser Action/ AgenticRAG- HyDE(HypotheticalDocument

Tellmeabout

Fish:AComprehensiveFishareaquaticvertebrateanimalsthatliveinwaterbodiesacrosstheglobe.Theyarecharacterizedbyseveralkeyfeatures:PhysicalGillsforbreathingFinsformovementandScalescoveringmostStreamlinedbodiesforefficientCold-blooded

Afish(pl.:fishorfishes)isanaquatic,anamniotic,gill-bearingvertebratea

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論