版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
吉林省松原市扶余市第一中學(xué)2025年數(shù)學(xué)高二上期末綜合測(cè)試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),是直線與拋物線的一個(gè)交點(diǎn),若,則()A. B.3C. D.22.已知橢圓的離心率,為橢圓上的一個(gè)動(dòng)點(diǎn),若定點(diǎn),則的最大值為A. B.C. D.3.已知等差數(shù)列,,,則數(shù)列的前項(xiàng)和為()A. B.C. D.4.若的解集是,則等于()A.-14 B.-6C.6 D.145.已知點(diǎn)為直線上任意一點(diǎn),為坐標(biāo)原點(diǎn).則以為直徑的圓除過(guò)定點(diǎn)外還過(guò)定點(diǎn)()A. B.C. D.6.已知雙曲線的對(duì)稱軸為坐標(biāo)軸,一條漸近線為,則雙曲線的離心率為A.或 B.或C.或 D.或7.設(shè)等差數(shù)列的前n項(xiàng)和為,,公差為d,,,則下列結(jié)論不正確的是()A. B.當(dāng)時(shí),取得最大值C. D.使得成立的最大自然數(shù)n是158.已知數(shù)列滿足,,則()A. B.C. D.9.雙曲線與橢圓的焦點(diǎn)相同,則等于()A.1 B.C.1或 D.210.十二平均律是我國(guó)明代音樂(lè)理論家和數(shù)學(xué)家朱載堉發(fā)明的.明萬(wàn)歷十二年(公元1584年),他寫成《律學(xué)新說(shuō)》,提出了十二平均律的理論.十二平均律的數(shù)學(xué)意義是:在1和2之間插入11個(gè)正數(shù),使包含1和2的這13個(gè)數(shù)依次成遞增的等比數(shù)列.依此規(guī)則,插入的第四個(gè)數(shù)應(yīng)為()A. B.C. D.11.命題“,”的否定是A, B.,C., D.,12.已知點(diǎn)、是雙曲線C:的左、右焦點(diǎn),P是C左支上一點(diǎn),若直線的斜率為2,且為直角三角形,則雙曲線C的離心率為()A.2 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列滿足,公差,則當(dāng)?shù)那皀項(xiàng)和最大時(shí),___________14.如圖,橢圓左頂點(diǎn)為軸上一點(diǎn)滿足,且線段與橢圓交于點(diǎn)是以為底邊的等腰三角形,則橢圓離心率為_(kāi)_________.15.已知斜率為的直線與橢圓相交于不同的兩點(diǎn)A,B,M為y軸上一點(diǎn)且滿足|MA|=|MB|,則點(diǎn)M的縱坐標(biāo)的取值范圍是___________.16.已知F1,F(xiàn)2是雙曲線C:﹣y2=1(a>0)的左、右焦點(diǎn),點(diǎn)P是雙曲線C上的任意一點(diǎn)(不是頂點(diǎn)),過(guò)F1作∠F1PF2的角平分線的垂線,垂足為H,O是坐標(biāo)原點(diǎn).若|F1F2|=6|OH|,則雙曲線C的方程為_(kāi)___三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)等差數(shù)列中,,(1)求數(shù)列的通項(xiàng)公式;(2)若滿足數(shù)列為遞增數(shù)列,求數(shù)列前項(xiàng)和18.(12分)已知點(diǎn),,線段是圓的直徑.(1)求圓的方程;(2)過(guò)點(diǎn)的直線與圓相交于,兩點(diǎn),且,求直線的方程.19.(12分)已知函數(shù)(1)求曲線在點(diǎn)(e,)的切線方程;(2)求函數(shù)的單調(diào)區(qū)間.20.(12分)已知橢圓,點(diǎn)在上,,且(1)求出直線所過(guò)定點(diǎn)的坐標(biāo);(不需要證明)(2)過(guò)A點(diǎn)作的垂線,垂足為,是否存在點(diǎn),使得為定值?若存在,求出的值;若不存在,說(shuō)明理由.21.(12分)設(shè)函數(shù)(1)若,求的單調(diào)區(qū)間和極值;(2)在(1)的條件下,證明:若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn);(3)若存在,使得,求的取值范圍22.(10分)已知拋物線C:焦點(diǎn)F的橫坐標(biāo)等于橢圓的離心率.(1)求拋物線C的方程;(2)過(guò)(1,0)作直線l交拋物線C于A,B兩點(diǎn),判斷原點(diǎn)與以線段AB為直徑的圓的位置關(guān)系,并說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)拋物線的定義求得,由此求得的長(zhǎng).【詳解】過(guò)作,垂足為,設(shè)與軸交點(diǎn)為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點(diǎn)睛】本小題主要考查拋物線定義,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.2、C【解析】首先求得橢圓方程,然后確定的最大值即可.【詳解】由題意可得:,據(jù)此可得:,橢圓方程為,設(shè)橢圓上點(diǎn)的坐標(biāo)為,則,故:,當(dāng)時(shí),.本題選擇C選項(xiàng).【點(diǎn)睛】本題主要考查橢圓方程問(wèn)題,橢圓中的最值問(wèn)題等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.3、A【解析】求出通項(xiàng),利用裂項(xiàng)相消法求數(shù)列的前n項(xiàng)和.【詳解】因?yàn)榈炔顢?shù)列,,,所以,所以,所以數(shù)列的前項(xiàng)和為故B,C,D錯(cuò)誤.故選:A.4、A【解析】由一元二次不等式的解集,結(jié)合根與系數(shù)關(guān)系求參數(shù)a、b,即可得.【詳解】∵的解集為,∴-5和2為方程的兩根,∴有,解得,∴.故選:A.5、D【解析】設(shè)垂直于直線,可知圓恒過(guò)垂足;兩條直線方程聯(lián)立可求得點(diǎn)坐標(biāo).【詳解】設(shè)垂直于直線,垂足為,則直線方程為:,由圓的性質(zhì)可知:以為直徑的圓恒過(guò)點(diǎn),由得:,以為直徑的圓恒過(guò)定點(diǎn).故選:D.6、B【解析】分雙曲線的焦點(diǎn)在軸上和在軸上兩種情況討論,求出的值,利用可求得雙曲線的離心率的值.【詳解】若焦點(diǎn)在軸上,則有,則雙曲線的離心率為;若焦點(diǎn)在軸上,則有,則,則雙曲線的離心率為.綜上所述,雙曲線的離心率為或.故選:B.【點(diǎn)睛】本題考查雙曲線離心率的求解,在雙曲線的焦點(diǎn)位置不確定的情況下,要對(duì)雙曲線的焦點(diǎn)位置進(jìn)行分類討論,考查計(jì)算能力,屬于基礎(chǔ)題.7、D【解析】根據(jù)等差數(shù)列等差中項(xiàng)的性質(zhì),求和公式及單調(diào)性分別判斷.【詳解】因?yàn)?,,所以,則,故A正確;當(dāng)時(shí),取得最大值,故B正確;,故C正確;因?yàn)?,,,所以使得成立的最大自然?shù)是,故D錯(cuò)誤.故選:D8、A【解析】根據(jù)遞推關(guān)系依次求出即可.【詳解】,,,,,.故選:A.9、A【解析】根據(jù)雙曲線方程形式確定焦點(diǎn)位置,再根據(jù)半焦距關(guān)系列式求參數(shù).【詳解】因?yàn)殡p曲線的焦點(diǎn)在軸上,所以橢圓焦點(diǎn)在軸上,依題意得解得.故選:A10、C【解析】先求出等比數(shù)列的公比,再由等比數(shù)列的通項(xiàng)公式即可求解.【詳解】用表示這個(gè)數(shù)列,依題意,,則,,第四個(gè)數(shù)即.故選:C.11、C【解析】特稱命題的否定是全稱命題,并將結(jié)論加以否定,所以命題的否定為:,考點(diǎn):全稱命題與特稱命題12、B【解析】根據(jù)雙曲線的定義和勾股定理利用即可得離心率.【詳解】∵直線的斜率為2,為直角三角形,∴,又,∴,.∵,即,∴故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】根據(jù)公式求出前n項(xiàng)和,再利用二次函數(shù)的性質(zhì).【詳解】因?yàn)榈炔顢?shù)列,,所以,當(dāng)時(shí),取到最大值.故答案為:3.14、##【解析】根據(jù)題設(shè)條件可得坐標(biāo),代入橢圓方程后可求橢圓的離心率.【詳解】因?yàn)椋?,,且在軸的正半軸上,則在第二象限中,故,代入橢圓方程有:即,故,故答案為:.15、【解析】設(shè)直線的方程為,由消去并化簡(jiǎn)得,設(shè),,,解得..由于,所以是垂直平分線與軸的交點(diǎn),垂直平分線方程為,令得,由于,所以.也即的縱坐標(biāo)的取值范圍是.故答案為:16、8x2﹣y2=1【解析】延長(zhǎng)F1H與PF2,交于K,連接OH,由三角形的中位線定理和雙曲線的定義、垂直平分線的性質(zhì),結(jié)合雙曲線的a,b,c的關(guān)系,可得雙曲線方程【詳解】解:延長(zhǎng)F1H與PF2,交于K,連接OH,由題意可得PH為邊KF1的垂直平分線,則|PF1|=|PK|,且H為KF1的中點(diǎn),|OH|=|KF2|,由雙曲線的定義可得|PF1|﹣|PF2|=|PK|﹣|PF2|=|F2K|=2a,則|OH|=a,又|F1F2|=6|OH|,所以2c=6a,即c=3a,b==2a,又雙曲線C:﹣y2=1,知b=1,所以a=,所以雙曲線的方程為8x2﹣y2=1故答案為:8x2﹣y2=1三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)或(2)【解析】(1)利用等差數(shù)列通項(xiàng)公式,可構(gòu)造方程組求得,由此可得通項(xiàng)公式;(2)由(1)可得,利用分組求和法,結(jié)合等差等比求和公式可得結(jié)果.【小問(wèn)1詳解】設(shè)等差數(shù)列的公差為,則,解得:或,當(dāng)時(shí),;當(dāng)時(shí),.綜上,或【小問(wèn)2詳解】由(1)當(dāng)數(shù)列為遞增數(shù)列,則,設(shè),.18、(1);(2)或.【解析】(1)AB兩點(diǎn)的中點(diǎn)為圓心,AB兩點(diǎn)距離的一半為半徑;(2)分斜率存在和不存在,根據(jù)垂徑定理即可求解.【小問(wèn)1詳解】已知點(diǎn),,線段是圓M的直徑,則圓心坐標(biāo)為,∴半徑,∴圓的方程為;【小問(wèn)2詳解】由(1)可知圓的圓心,半徑為.設(shè)為中點(diǎn),則,,則.當(dāng)?shù)男甭什淮嬖跁r(shí),的方程為,此時(shí),符合題意;當(dāng)?shù)男甭蚀嬖跁r(shí),設(shè)的方程為,即kx-y+2=0,則,解得,故直線的方程為,即.綜上,直線的方程為或.19、(1);(2)在單調(diào)遞減,在單調(diào)遞增【解析】(1)求出函數(shù)的導(dǎo)數(shù),求出切線的斜率,切點(diǎn)坐標(biāo),然后求解切線方程;(2)利用導(dǎo)函數(shù)的符號(hào),判斷函數(shù)的單調(diào)性,求解函數(shù)的單調(diào)區(qū)間即可【詳解】解:(1)由得,所以切線斜率為切點(diǎn)坐標(biāo)為,所以切線方程為,即;(2),令,得當(dāng)時(shí),;當(dāng)時(shí),,∴在單調(diào)遞減,在單調(diào)遞增20、(1)(2)存在,【解析】(1)分斜率存在和斜率不存在兩種情況,當(dāng)斜率存在時(shí),設(shè)出直線方程,聯(lián)立橢圓方程,利用韋達(dá)定理列出方程,求出定點(diǎn)坐標(biāo),當(dāng)斜率不存在時(shí),設(shè)出點(diǎn)的坐標(biāo)進(jìn)行求解;(2)結(jié)合第一問(wèn)的定點(diǎn)坐標(biāo),結(jié)合直角三角形斜邊中線得到存在點(diǎn),使得為定值,求出結(jié)果.【小問(wèn)1詳解】設(shè)點(diǎn),若直線斜率存在時(shí),設(shè)直線的方程為:,代入橢圓方程消去并整理得:,可得,因?yàn)椋?,即,根?jù),代入整理可得:,所以,整理化簡(jiǎn)得:,因?yàn)椴辉谥本€上,所以,故,于是的方程為,所以直線過(guò)定點(diǎn)直線過(guò)定點(diǎn).當(dāng)直線的斜率不存在時(shí),可得,由得:,得,結(jié)合可得:,解得:或(舍).此時(shí)直線過(guò)點(diǎn)【小問(wèn)2詳解】由(1)可知因?yàn)?,取中點(diǎn),則此時(shí),【點(diǎn)睛】直線過(guò)定點(diǎn)問(wèn)題,一般處理思路是分斜率存在和斜率不存在兩種情況,特別是斜率存在時(shí),設(shè)出直線為,聯(lián)立后用韋達(dá)定理得到兩根之和與兩根之積,結(jié)合題干條件得到等量關(guān)系,求出的關(guān)系,進(jìn)而得到定點(diǎn)坐標(biāo).21、(1)遞減區(qū)間是,單調(diào)遞增區(qū)間是,極小值(2)證明見(jiàn)解析(3)【解析】(1)對(duì)函數(shù)進(jìn)行求導(dǎo)通分化簡(jiǎn),求出解得,在列出與在區(qū)間上的表格,即可得到答案.(2)由(1)知,在區(qū)間上的最小值為,因?yàn)榇嬖诹泓c(diǎn),所以,從而.在對(duì)進(jìn)行分類討論,再利用函數(shù)的單調(diào)性得出結(jié)論.(3)構(gòu)造函數(shù),在對(duì)進(jìn)行求導(dǎo),在對(duì)進(jìn)行分情況討論,即可得的得到答案.【小問(wèn)1詳解】函數(shù)的定義域?yàn)椋?,由解得與在區(qū)間上的情況如下:–↘↗所以,的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是;在處取得極小值,無(wú)極大值【小問(wèn)2詳解】由(1)知,在區(qū)間上的最小值為因?yàn)榇嬖诹泓c(diǎn),所以,從而當(dāng)時(shí),在區(qū)間上單調(diào)遞減,且,所以是在區(qū)間上的唯一零點(diǎn)當(dāng)時(shí),在區(qū)間上單調(diào)遞減,且,所以在區(qū)間上僅有一個(gè)零點(diǎn)綜上可知,若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn)【小問(wèn)3詳解】設(shè),①若,則,符合題意②若,則,故當(dāng)時(shí),,在上單調(diào)遞增所以,存在,使得的充要條件為,解得③若,則,故當(dāng)時(shí),;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增所以,存在,使得的充要條件為,而,所以不
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- XX初中2025-2026學(xué)年第一學(xué)期用水情況分析報(bào)告
- 汽車策劃方案活動(dòng)方式(3篇)
- 泵房井筒施工方案(3篇)
- 湖州商會(huì)活動(dòng)策劃方案(3篇)
- 甘肅換熱站施工方案(3篇)
- 皮膚打造活動(dòng)策劃方案(3篇)
- 破除道路施工方案(3篇)
- 線路重點(diǎn)施工方案(3篇)
- 肯德基門施工方案(3篇)
- 裝飾油漆施工方案(3篇)
- 中藥熱熨敷技術(shù)及操作流程圖
- 臨床提高吸入劑使用正確率品管圈成果匯報(bào)
- 娛樂(lè)場(chǎng)所安全管理規(guī)定與措施
- 電影項(xiàng)目可行性分析報(bào)告(模板參考范文)
- 老年協(xié)會(huì)會(huì)員管理制度
- LLJ-4A車輪第四種檢查器
- 大索道竣工結(jié)算決算復(fù)審報(bào)告審核報(bào)告模板
- 2025年南充市中考理科綜合試卷真題(含標(biāo)準(zhǔn)答案)
- JG/T 3049-1998建筑室內(nèi)用膩予
- 人衛(wèi)基礎(chǔ)護(hù)理學(xué)第七版試題及答案
- 煙草物流寄遞管理制度
評(píng)論
0/150
提交評(píng)論