版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
河北省保定市重點(diǎn)初中2026屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,有一個(gè)水平放置的透明無蓋的正方體容器,容器高8cm,將一個(gè)球放在容器口,再向容器內(nèi)注水,當(dāng)球面恰好接觸水面時(shí)測得水深為6cm,如果不計(jì)容器的厚度,則球的體積為A. B.C. D.2.已知橢圓:的離心率為,則實(shí)數(shù)()A. B.C. D.3.若命題“或”與命題“非”都是真命題,則A.命題與命題都是真命題B.命題與命題都是假命題C.命題是真命題,命題是假命題D.命題是假命題,命題是真命題4.命題“,”的否定是A, B.,C., D.,5.已知橢圓與橢圓,則下列結(jié)論正確的是()A.長軸長相等 B.短軸長相等C.焦距相等 D.離心率相等6.命題“?x0∈(0,+∞),”的否定是()A.?x∈(﹣∞,0),2x+sinx≥0B.?x∈(0,+∞),2x+sinx≥0C.?x0∈(0,+∞),D.?x0∈(﹣∞,0),7.已知直線,兩個(gè)不同的平面,,則下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則8.等差數(shù)列中,已知,,則的前項(xiàng)和的最小值為()A. B.C. D.9.有下列三個(gè)命題:①“若,則互為相反數(shù)”的逆命題;②“若,則”的逆否命題;③“若,則”的否命題.其中真命題的個(gè)數(shù)是A.0 B.1C.2 D.310.已知拋物線的焦點(diǎn)為F,,點(diǎn)是拋物線上的動(dòng)點(diǎn),則當(dāng)?shù)闹底钚r(shí),=()A.1 B.2C. D.411.在空間直角坐標(biāo)系下,點(diǎn)關(guān)于軸對稱的點(diǎn)的坐標(biāo)為()A. B.C. D.12.礦山爆破時(shí),在爆破點(diǎn)處炸開的礦石的運(yùn)動(dòng)軌跡可看作是不同的拋物線,根據(jù)地質(zhì)、炸藥等因素可以算出這些拋物線的范圍,這個(gè)范圍的邊界可以看作一條拋物線,叫“安全拋物線”,如圖所示.已知某次礦山爆破時(shí)的安全拋物線的焦點(diǎn)為,則這次爆破時(shí),礦石落點(diǎn)的最遠(yuǎn)處到點(diǎn)的距離為()A. B.2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線:上有兩動(dòng)點(diǎn),,且,則線段的中點(diǎn)到軸距離的最小值是___________.14.如圖,在長方體ABCD﹣A'B'C'D'中,點(diǎn)P,Q分別是棱BC,CD上的動(dòng)點(diǎn),BC=4,CD=3,CC'=2,直線CC'與平面PQC'所成的角為30°,則△PQC'的面積的最小值是__15.設(shè)函數(shù),,若存在,成立,則實(shí)數(shù)的取值范圍為__________.16.已知直線與平行,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線過點(diǎn),是拋物線的焦點(diǎn),直線交拋物線于另一點(diǎn),為坐標(biāo)原點(diǎn).(1)求拋物線的方程和焦點(diǎn)的坐標(biāo);(2)拋物線的準(zhǔn)線上是否存在點(diǎn)使,若存在請求出點(diǎn)坐標(biāo),若不存在請說明理由.18.(12分)已知函數(shù),若函數(shù)處取得極值(1)求,的值;(2)求函數(shù)在上的最大值和最小值19.(12分)已知兩圓x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0(1)m取何值時(shí)兩圓外切?(2)m取何值時(shí)兩圓內(nèi)切?(3)當(dāng)m=45時(shí),求兩圓公共弦所在直線的方程和公共弦的長20.(12分)已知函數(shù).(I)若曲線在點(diǎn)處的切線方程為,求的值;(II)若,求的單調(diào)區(qū)間.21.(12分)如圖,在四棱錐中,底面四邊形為角梯形,,,,O為的中點(diǎn),,.(1)證明:平面;(2)若,求平面與平面所成夾角的余弦值.22.(10分)已知數(shù)列的前項(xiàng)和,數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,其中,且成等差數(shù)列.(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)題意可求出正方體的上底面與球相交所得截面圓的半徑為4cm,再根據(jù)截面圓半徑,球的半徑以及球心距的關(guān)系,即可求出球的半徑,從而得到球的體積【詳解】設(shè)球的半徑為cm,根據(jù)已知條件知,正方體的上底面與球相交所得截面圓的半徑為4cm,球心到截面圓的距離為cm,所以由,得,所以球的體積為故選:A【點(diǎn)睛】本題主要考查球的體積公式的應(yīng)用,以及球的結(jié)構(gòu)特征的應(yīng)用,屬于基礎(chǔ)題2、C【解析】根據(jù)題意,先求得的值,代入離心率公式,即可得答案.【詳解】因?yàn)?,所以所以,解?故選:C3、D【解析】因?yàn)榉莗為真命題,所以p為假命題,又p或q為真命題,所以q為真命題,選D.4、C【解析】特稱命題的否定是全稱命題,并將結(jié)論加以否定,所以命題的否定為:,考點(diǎn):全稱命題與特稱命題5、C【解析】利用,可得且,即可得出結(jié)論【詳解】∵,且,橢圓與橢圓的關(guān)系是有相等的焦距故選:C6、B【解析】利用特稱命題的否定是全稱命題,寫出結(jié)果即可【詳解】命題“?x0∈(0,+∞),”的否定是“?x∈(0,+∞),2x+sinx≥0”故選:B7、C【解析】對于A,可能在內(nèi),故可判斷A;對于B,可能相交,故可判斷B;對于C,根據(jù)線面垂直的判定定理,可判定C;對于D,和可能平行,或斜交或在內(nèi),故可判斷D.【詳解】對于A,除了外,還有可能在內(nèi),故可判斷A錯(cuò)誤;對于B,,那么可能相交,故可判斷B錯(cuò)誤;對于C,根據(jù)線面平行的性質(zhì)定理可知,在內(nèi)一定存在和平行的直線,那么該直線也垂直于,所以,故判定C正確;對于D,,,則和可能平行,或斜交或在內(nèi),故可判D.錯(cuò)誤,故選:C.8、B【解析】由等差數(shù)列的性質(zhì)將轉(zhuǎn)化為,而,可知數(shù)列是遞增數(shù),從而可求得結(jié)果【詳解】∵等差數(shù)列中,,∴,即.又,∴的前項(xiàng)和的最小值為故選:B9、B【解析】①寫出命題的逆命題,可以進(jìn)行判斷為真命題;②原命題和逆否命題真假性相同,而通過舉例得到原命題為假,故逆否命題也為假;③寫出命題的否命題,通過舉出反例得到否命題為假【詳解】①“若,則互為相反數(shù)”的逆命題是,若互為相反數(shù),則;是真命題;②“若,則”,當(dāng)a=-1,b=-2,時(shí)不滿足,故原命題為假命題,而原命題和逆否命題真假性相同,故得到命題為假;③“若,則”的否命題是若,則,舉例當(dāng)x=5時(shí),不滿足不等式,故得到否命題是假命題;故答案為B.【點(diǎn)睛】這個(gè)題目考查了命題真假的判斷,涉及命題的否定,命題的否命題,逆否命題,逆命題的相關(guān)概念,注意原命題和逆否命題的真假性相同,故需要判斷逆否命題的真假時(shí),只需要判斷原命題的真假10、B【解析】根據(jù)拋物線定義,轉(zhuǎn)化,要使有最小值,只需最大,即直線與拋物線相切,聯(lián)立直線方程與拋物線方程,求出斜率,然后求出點(diǎn)坐標(biāo),即可求解.【詳解】由題知,拋物線的準(zhǔn)線方程為,,過P作垂直于準(zhǔn)線于,連接,由拋物線定義知.由正弦函數(shù)知,要使最小值,即最小,即最大,即直線斜率最大,即直線與拋物線相切.設(shè)所在的直線方程為:,聯(lián)立拋物線方程:,整理得:則,解得即,解得,代入得或,再利用焦半徑公式得故選:B.關(guān)鍵點(diǎn)睛:本題考查拋物線的性質(zhì),直線與拋物線的位置關(guān)系,解題的關(guān)鍵是要將取最小值轉(zhuǎn)化為直線斜率最大,再轉(zhuǎn)化為拋物線的切線,考查學(xué)生的轉(zhuǎn)化思想與運(yùn)算求解能力,屬于中檔題.11、C【解析】由空間中關(guān)于坐標(biāo)軸對稱點(diǎn)坐標(biāo)的特征可直接得到結(jié)果.【詳解】關(guān)于軸對稱的點(diǎn)的坐標(biāo)不變,坐標(biāo)變?yōu)橄喾磾?shù),關(guān)于軸對稱的點(diǎn)為.故選:C.12、D【解析】根據(jù)給定條件求出拋物線的頂點(diǎn),結(jié)合拋物線的性質(zhì)求出p值即可計(jì)算作答.【詳解】依題意,拋物線的頂點(diǎn)坐標(biāo)為,則拋物線的頂點(diǎn)到焦點(diǎn)的距離為,p>0,解得,于是得拋物線的方程為,由得,,即拋物線與軸的交點(diǎn)坐標(biāo)為,因此,,所以礦石落點(diǎn)的最遠(yuǎn)處到點(diǎn)的距離為.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】設(shè)拋物線的焦點(diǎn)為,由,結(jié)合拋物線的定義可得線段的中點(diǎn)到軸距離的最小值.【詳解】設(shè)拋物線的焦點(diǎn)為,點(diǎn)在拋物線的準(zhǔn)線上的投影為,點(diǎn)在直線上的投影為,線段的中點(diǎn)為,點(diǎn)到軸的距離為,則,∴,當(dāng)且僅當(dāng)即三點(diǎn)共線時(shí)等號(hào)成立,∴線段的中點(diǎn)到軸距離的最小值是2,故答案為:2.14、8【解析】設(shè)三棱錐C﹣C′PQ的高為h,CQ=x,CP=y(tǒng),由體積法求得的關(guān)系,由直線CC’與平面C’PQ成的角為30°,得到xy≥8,再由VC﹣C′PQ=VC′﹣CPQ,能求出△PQC'的面積的最小值【詳解】解:設(shè)三棱錐C﹣C′PQ的高為h,CQ=x,CP=y(tǒng),由長方體性質(zhì)知兩兩垂直,所以,,,,,所以,由得,所以,∵直線CC’與平面C’PQ成的角為30°,∴h=2,∴,,∴xy≥8,再由體積可知:VC﹣C′PQ=VC′﹣CPQ,得,S△C′PQ=xy,∴△PQC'的面積的最小值是8故答案為:815、【解析】由不等式分離參數(shù),令,則求即可【詳解】由,得,令,則當(dāng)時(shí),;當(dāng)時(shí),;所以在上單調(diào)遞減,在上單調(diào)遞增,故由于存在,成立,則故答案為:16、【解析】根據(jù)平行可得斜率相等列出關(guān)于參數(shù)的方程,解方程進(jìn)行檢驗(yàn)即可求解.【詳解】因?yàn)橹本€與平行,所以,解得或,又因?yàn)闀r(shí),,,所以直線,重合故舍去,而,,,所以兩直線平行.所以,故答案為:3.【點(diǎn)睛】(1)當(dāng)直線的方程中存在字母參數(shù)時(shí),不僅要考慮到斜率存在的一般情況,也要考慮到斜率不存在的特殊情況.同時(shí)還要注意x,y的系數(shù)不能同時(shí)為零這一隱含條件(2)在判斷兩直線平行、垂直時(shí),也可直接利用直線方程的系數(shù)間的關(guān)系得出結(jié)論三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)拋物線的方程為,焦點(diǎn)坐標(biāo)為(2)存在,且【解析】(1)根據(jù)點(diǎn)坐標(biāo)求得,進(jìn)而求得拋物線的方程和焦點(diǎn)的坐標(biāo).(2)設(shè),根據(jù)列方程,化簡求得的坐標(biāo).【小問1詳解】將代入得,所以拋物線的方程為,焦點(diǎn)坐標(biāo)為.【小問2詳解】存在,理由如下:直線的方程為,或,即.拋物線的準(zhǔn)線,設(shè),,即,所以.即存在點(diǎn)使.18、(1);(2)最大值為,最小值為【解析】(1)求出導(dǎo)函數(shù),由即可解得;(2)求出函數(shù)的單調(diào)區(qū)間,進(jìn)而可以求出函數(shù)的最值.【詳解】解:(1)由題意,可得,得.(2),令,得或(舍去)當(dāng)變化時(shí),與變化如下遞增遞減所以函數(shù)在上的最大值為,最小值為.19、(1)(2)(3)直線方程為4x+3y-23=0,弦長為【解析】(1)先把兩個(gè)圓的方程化為標(biāo)準(zhǔn)形式,求出圓心和半徑,再根據(jù)兩圓的圓心距等于兩圓的半徑之和,求得m的值;(2)由兩圓的圓心距等于兩圓的半徑之差為,求得m的值.(3)當(dāng)m=45時(shí),把兩個(gè)圓的方程相減,可得公共弦所在的直線方程.求出第一個(gè)圓的圓心(1,3)到公共弦所在的直線的距離d,再利用弦長公式求得弦長試題解析:(1)由已知可得兩個(gè)圓的方程分別為(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=61-m,兩圓的圓心距d==5,兩圓的半徑之和為+,由兩圓的半徑之和為+=5,可得m=(2)由兩圓的圓心距d=="5"等于兩圓的半徑之差為|-|,即|-|=5,可得-="5"(舍去),或-=-5,解得m=(3)當(dāng)m=45時(shí),兩圓的方程分別為(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=16,把兩個(gè)圓的方程相減,可得公共弦所在的直線方程為4x+3y-23=0第一個(gè)圓的圓心(1,3)到公共弦所在的直線的距離為d==2,可得弦長為考點(diǎn):1.兩圓相切的位置關(guān)系;2.兩圓相交的公共弦問題20、(Ⅰ)(Ⅱ)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減【解析】(Ⅰ)求出函數(shù)的導(dǎo)函數(shù),根據(jù)題意可得得到關(guān)于的方程組,解得;(Ⅱ)求出函數(shù)的導(dǎo)函數(shù),解得函數(shù)的單調(diào)遞增區(qū)間,解得函數(shù)的單調(diào)遞減區(qū)間.【詳解】解:(Ⅰ)因?yàn)楹瘮?shù)在點(diǎn)處的切線方程為解得(Ⅱ)令,得或.因?yàn)?所以時(shí),;時(shí),.故在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于基礎(chǔ)題.21、(1)證明見解析;(2).【解析】(1)連接,可通過證明,得平面;(2)以O(shè)為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,求出平面的法向量和平面的法向量,通過向量的夾角公式可得答案.【小問1詳解】如圖,連接,在中,由可得.因?yàn)椋?,,因?yàn)椋?,,所以,所?又因?yàn)椋矫妫?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生產(chǎn)門店管理制度范本
- 生產(chǎn)用車管理制度匯編
- 沖床生產(chǎn)產(chǎn)品管理制度
- 食品生產(chǎn)投料制度
- 2026廣東茂名市電白區(qū)人大常委會(huì)機(jī)關(guān)事務(wù)中心面向全區(qū)事業(yè)單位選聘事業(yè)編制人員2人備考考試試題附答案解析
- 市場部安全生產(chǎn)制度
- 小型服裝廠生產(chǎn)制度
- 塑料造粒生產(chǎn)制度
- 2026黑龍江省文化和旅游廳所屬事業(yè)單位招聘工作人員21人備考考試試題附答案解析
- 廢鋼鐵加工安全生產(chǎn)制度
- 低壓配電維修培訓(xùn)知識(shí)課件
- 2025年浙江高考物理試題答案詳解解讀及備考指導(dǎo)
- 急性肝衰竭的護(hù)理研究進(jìn)展
- DB45-T 2883-2024 健康體檢機(jī)構(gòu)護(hù)理質(zhì)量管理規(guī)范
- 智慧教育生態(tài)的協(xié)同發(fā)展機(jī)制及其實(shí)踐案例研究
- 行為面試法培訓(xùn)課件
- 征信培訓(xùn)管理辦法
- 宮頸機(jī)能不全超聲診斷與治療
- 倉庫物品丟失管理辦法
- 工藝管線焊后熱處理施工技術(shù)方案
- 無人機(jī)行業(yè)研究報(bào)告
評(píng)論
0/150
提交評(píng)論