版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山西省臨汾市第一中學2025-2026學年高一上數(shù)學期末統(tǒng)考試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列說法不正確的是()A.方向相同大小相等的兩個向量相等B.單位向量模長為一個單位C.共線向量又叫平行向量D.若則ABCD四點共線2.已知函數(shù),函數(shù)有四個不同的的零點,,,,且,則()A.a的取值范圍是(0,) B.的取值范圍是(0,1)C. D.3.已知等邊的邊長為2,為內(nèi)(包括三條邊上)一點,則的最大值是A.2 B.C.0 D.4.已知圓:與圓:,則兩圓公切線條數(shù)為A.1條 B.2條C.3條 D.4條5.圓與圓的位置關(guān)系為()A.相離 B.相交C.外切 D.內(nèi)切6.在同一直角坐標系中,函數(shù)的圖像可能是()A. B.C. D.7.直線過點且與以點為端點的線段恒相交,則的斜率取值范圍是().A. B.C. D.8.設(shè),,,則、、的大小關(guān)系是A. B.C. D.9.已知全集,集合1,2,3,,,則A.1, B.C. D.3,10.已知函數(shù),,則函數(shù)的零點個數(shù)不可能是()A.2個 B.3個C.4個 D.5個二、填空題:本大題共6小題,每小題5分,共30分。11.已知A(3,0),B(0,4),直線AB上一動點P(x,y),則xy的最大值是___.12.在正方體中,直線與平面所成角的正弦值為________13.①函數(shù)y=sin2x的單調(diào)增區(qū)間是[],(k∈Z);②函數(shù)y=tanx在它的定義域內(nèi)是增函數(shù);③函數(shù)y=|cos2x|的周期是π;④函數(shù)y=sin()是偶函數(shù);其中正確的是____________14.,,則_________15.空間兩點與的距離是___________.16.一條從西向東的小河的河寬為3.5海里,水的流速為3海里/小時,如果輪船希望用10分鐘的時間從河的南岸垂直到達北岸,輪船的速度應為______;三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知.(1)若,且,求的值.(2)若,求的值.18.已知關(guān)于不等式的解集為.(1)若,求的值;(2)若,求實數(shù)的取值范圍;(3)若非空集合,請直接寫出符合條件的整數(shù)的集合.19.已知函數(shù),它的部分圖象如圖所示.(1)求函數(shù)的解析式;(2)當時,求函數(shù)的值域.20.已知點,圓(1)求過點M的圓的切線方程;(2)若直線與圓相交于A,B兩點,且弦AB的長為,求的值21.設(shè)全集為,集合,(1)分別求,;(2)已知,若,求實數(shù)的取值范圍構(gòu)成的集合
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】利用平面向量相等概念判斷,利用共線向量和單位向量的定義判斷.【詳解】根據(jù)向量相等的概念判斷正確;根據(jù)單位向量的概念判斷正確;根據(jù)共線向量的概念判斷正確;平行四邊形中,因此四點不共線,故錯誤.故選:.【點睛】本題考查了命題真假性的判斷及平面向量的基礎(chǔ)知識,注意反例的積累,屬于基礎(chǔ)題.2、D【解析】將問題轉(zhuǎn)化為與有四個不同的交點,應用數(shù)形結(jié)合思想判斷各交點橫坐標的范圍及數(shù)量關(guān)系,即可判斷各選項的正誤.【詳解】有四個不同的零點、、、,即有四個不同的解的圖象如下圖示,由圖知:,所以,即的取值范圍是(0,+∞)由二次函數(shù)的對稱性得:,因為,即,故故選:D【點睛】關(guān)鍵點點睛:將零點問題轉(zhuǎn)化為函數(shù)交點問題,應用數(shù)形結(jié)合判斷交點橫坐標的范圍或數(shù)量關(guān)系.第II卷3、A【解析】建立如圖所示的平面直角坐標系,則,設(shè)點P的坐標為,則故令,則t表示內(nèi)(包括三條邊上)上的一點與點間的距離的平方.結(jié)合圖形可得當點與點B或C重合時t可取得最大值,且最大值為,故的最大值為.選A點睛:通過建立坐標系,將問題轉(zhuǎn)化為向量的坐標運算可使得本題的解答代數(shù)化,在得到向量數(shù)量積的表達式后,根據(jù)表達式的特征再利用數(shù)形結(jié)合的思路求解是解題的關(guān)鍵,借助圖形的直觀性可容易得到答案4、D【解析】求出兩圓的圓心與半徑,利用圓心距判斷兩圓外離,公切線有4條【詳解】圓C1:x2+y2﹣2x=0化為標準形式是(x﹣1)2+y2=1,圓心是C1(1,0),半徑是r1=1;圓C2:x2+y2﹣4y+3=0化為標準形式是x2+(y﹣2)2=1,圓心是C2(0,2),半徑是r2=1;則|C1C2|r1+r2,∴兩圓外離,公切線有4條故選D【點睛】本題考查了兩圓的一般方程與位置關(guān)系應用問題,是基礎(chǔ)題5、A【解析】通過圓的標準方程,可得圓心和半徑,通過圓心距與半徑的關(guān)系,可得兩圓的關(guān)系.【詳解】圓,圓心,半徑為;,圓心,半徑為;兩圓圓心距,所以相離.故選:A.6、D【解析】通過分析冪函數(shù)和對數(shù)函數(shù)的特征可得解.【詳解】函數(shù),與,答案A沒有冪函數(shù)圖像,答案B.中,中,不符合,答案C中,中,不符合,答案D中,中,符合,故選D.【點睛】本題主要考查了冪函數(shù)和對數(shù)函數(shù)的圖像特征,屬于基礎(chǔ)題.7、D【解析】詳解】∵∴根據(jù)如下圖形可知,使直線與線段相交的斜率取值范圍是故選:D.8、B【解析】詳解】,,,故選B點睛:利用指數(shù)函數(shù)對數(shù)函數(shù)及冪函數(shù)的性質(zhì)比較實數(shù)或式子的大小,一方面要比較兩個實數(shù)或式子形式的異同,底數(shù)相同,考慮指數(shù)函數(shù)增減性,指數(shù)相同考慮冪函數(shù)的增減性,當都不相同時,考慮分析數(shù)或式子的大致范圍,來進行比較大小,另一方面注意特殊值的應用,有時候要借助其“橋梁”作用,來比較大小9、C【解析】可求出集合B,然后進行交集的運算,即可求解,得到答案【詳解】由題意,可得集合,又由,所以故選C【點睛】本題主要考查了集合的交集運算,其中解答中正確求解集合B,熟記集合的交集運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.10、B【解析】由可得或,然后畫出的圖象,結(jié)合圖象可分析出答案.【詳解】由可得或的圖象如下:所以當時,,此時無零點,有2個零點,所以的零點個數(shù)為2;當時,,此時有2個零點,有2個零點,所以的零點個數(shù)為4;當時,,此時有4個零點,有2個零點,所以的零點個數(shù)為6;當時,,此時有3個零點,有2個零點,所以的零點個數(shù)為5;當且時,此時有2個零點,有2個零點,所以的零點個數(shù)為4;當時,,此時的零點個數(shù)為2;當時,,此時有2個零點,有3個零點,所以的零點個數(shù)為5;當時,,此時有2個零點,有4個零點,所以的零點個數(shù)為6;當時,,此時有2個零點,有2個零點,所以零點個數(shù)為4;當時,,此時有2個零點,無零點,所以的零點個數(shù)為2;綜上:的零點個數(shù)可以為2、4、5、6,故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】直線AB的方程為+=1,又∵+≥2,即2≤1,當x>0,y>0時,當且僅當=,即x=,y=2時取等號,∴xy≤3,則xy的最大值是3.12、【解析】連接AC交BD于O點,設(shè)交面于點E,連接OE,則角CEO就是所求的線面角,因為AC垂直于BD,AC垂直于,故AC垂直于面.設(shè)正方體的邊長為2,則OC=,OE=1,CE,此時正弦值為故答案為.點睛:求線面角,一是可以利用等體積計算出直線的端點到面的距離,除以線段長度就是線面角的正弦值;高二時還會學到空間向量法,可以建系,用空間向量的方法求直線的方向向量和面的法向量,再求線面角即可.面面角一般是要么定義法,做出二面角,或者三垂線法做出二面角,利用幾何關(guān)系求出二面角,要么建系來做.13、①④【解析】①由,解得.可得函數(shù)單調(diào)增區(qū)間;②函數(shù)在定義域內(nèi)不具有單調(diào)性;③由,即可得出函數(shù)的最小正周期;④利用誘導公式可得函數(shù),即可得出奇偶性【詳解】解:①由,解得.可知:函數(shù)的單調(diào)增區(qū)間是,,,故①正確;②函數(shù)在定義域內(nèi)不具有單調(diào)性,故②不正確;③,因此函數(shù)的最小正周期是,故③不正確;④函數(shù)是偶函數(shù),故④正確其中正確的是①④故答案為:①④【點睛】本題考查了三角函數(shù)的圖象與性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題14、【解析】將平方,求出的值,再利用弦化切即可求解.【詳解】,,,,,所以,所以.故答案為:15、【解析】根據(jù)兩點間的距離求得正確答案.【詳解】.故答案為:16、15海里/小時【解析】先求出船的實際速度,再利用勾股定理得到輪船的速度.【詳解】設(shè)船的實際速度為,船速,水的流速,則海里/小時,∴海里/小時.故答案為:15海里/小時三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)或(2)【解析】(1)誘導公式化簡可得,結(jié)合,求解即可;(2)代入,結(jié)合誘導公式化簡可得,即,利用二倍角公式化簡可得,代入即得解【小問1詳解】由題意,若,則或【小問2詳解】若,則即,即故18、(1)3;(2);(3).【解析】(1)由給定解集可得2,3是方程的二根即可求解作答.(2)根據(jù)給定條件列出關(guān)于a的不等式求解作答.(3)分a大于2或小于2兩類討論作答.【小問1詳解】因方程的根為或,而不等式的解集為,則2,3是方程的二根,所以.【小問2詳解】因為,即有,解得:,所以實數(shù)的取值范圍為.【小問3詳解】因非空,則,當時,,顯然集合不是集合的子集,當時,,而,則,所以整數(shù)的集合是.19、(1);(2).【解析】(1)依題意,則,將點的坐標代入函數(shù)的解析式可得,故,函數(shù)解析式為.(2)由題意可得,結(jié)合三角函數(shù)的性質(zhì)可得函數(shù)的值域為.試題解析:(1)依題意,,故.將點的坐標代入函數(shù)的解析式可得,則,,故,故函數(shù)解析式為.(2)當時,,則,,所以函數(shù)的值域為.點睛:求函數(shù)f(x)=Asin(ωx+φ)在區(qū)間[a,b]上值域的一般步驟:第一步:三角函數(shù)式的化簡,一般化成形如y=Asin(ωx+φ)+k的形式或y=Acos(ωx+φ)+k的形式第二步:由x的取值范圍確定ωx+φ的取值范圍,再確定sin(ωx+φ)(或cos(ωx+φ))的取值范圍第三步:求出所求函數(shù)的值域(或最值)20、(1)或.(2)【解析】(1)分切線的斜率不存在與存在兩種情況分析.當斜率存在時設(shè)方程為,再根據(jù)圓心到直線的距離等于半徑求解即可.(2)利用垂徑定理根據(jù)圓心到直線的距離列出等式求解即可.【詳解】解:(1)由題意知圓心的坐標為,半徑,當過點M的直線的斜率不存在時,方程為由圓心到直線的距離知,此時,直線與圓相切當過點M的直線的斜率存在時,設(shè)方程為,即.由題意知,解得,∴方程為故過點M的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 五官科住院部制度
- 東莞消防安全制度
- 品德交通安全伴我行課件
- 2026年昭平縣公安局公開招聘警務輔助人員備考題庫及一套答案詳解
- 東莞市公安局橫瀝分局2025年第5批警務輔助人員招聘備考題庫及答案詳解參考
- 東莞市公安局水上分局麻涌水上派出所2025年第1批警務輔助人員招聘備考題庫及1套參考答案詳解
- 中共啟東市委組織部2026年校園招聘備考題庫及答案詳解1套
- 2025至2030中國抗結(jié)核藥物市場供需狀況及未來趨勢預測報告
- 2026中國汽車熱交換器行業(yè)運營態(tài)勢與應用前景預測報告
- 2025至2030教育云計算服務模式創(chuàng)新與行業(yè)應用深度研究報告
- 廢舊材料回收合同范本
- 2026年酒店服務員考試題及答案
- 普速鐵路行車技術(shù)管理課件 項目二 行車組織基礎(chǔ)
- 《(2025年)中國類風濕關(guān)節(jié)炎診療指南》解讀課件
- 炎德·英才·名校聯(lián)考聯(lián)合體2026屆高三年級1月聯(lián)考語文試卷(含答及解析)
- 麥當勞行業(yè)背景分析報告
- 中國心理行業(yè)分析報告
- 2025至2030中國生物芯片(微陣列和和微流控)行業(yè)運營態(tài)勢與投資前景調(diào)查研究報告
- 結(jié)核性支氣管狹窄的診治及護理
- 2025年鐵嶺衛(wèi)生職業(yè)學院單招職業(yè)適應性考試模擬測試卷附答案
- 急腹癥的識別與護理
評論
0/150
提交評論