2026屆廣東省廣州市重點初中數(shù)學(xué)高二第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第1頁
2026屆廣東省廣州市重點初中數(shù)學(xué)高二第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第2頁
2026屆廣東省廣州市重點初中數(shù)學(xué)高二第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第3頁
2026屆廣東省廣州市重點初中數(shù)學(xué)高二第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第4頁
2026屆廣東省廣州市重點初中數(shù)學(xué)高二第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆廣東省廣州市重點初中數(shù)學(xué)高二第一學(xué)期期末教學(xué)質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在空間直角坐標(biāo)系中,已知點M是點在坐標(biāo)平面內(nèi)的射影,則的坐標(biāo)是()A. B.C. D.2.若等差數(shù)列的前項和為,首項,,,則滿足成立的最大正整數(shù)是()A. B.C. D.3.設(shè)圓:和圓:交于A,B兩點,則線段AB所在直線的方程為()A. B.C. D.4.南宋數(shù)學(xué)家楊輝在《詳解九章算法》中討論過高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,而是逐項差數(shù)之差或者高次差相等.例如“百層球堆垛”:第一層有1個球,第二層有3個球,第三層有6個球,第四層有10個球,第五層有15個球,…,各層球數(shù)之差:,,,,…即2,3,4,5,…是等差數(shù)列.現(xiàn)有一個高階等差數(shù)列,其前6項分別為1,3,6,12,23,41,則該數(shù)列的第8項為()A.51 B.68C.106 D.1575.已知一個圓錐的體積為,任取該圓錐的兩條母線a,b,若a,b所成角的最大值為,則該圓錐的側(cè)面積為()A. B.C. D.6.如圖已知正方體,點是對角線上的一點且,,則()A.當(dāng)時,平面 B.當(dāng)時,平面C.當(dāng)為直角三角形時, D.當(dāng)?shù)拿娣e最小時,7.兩圓和的位置關(guān)系是()A.內(nèi)切 B.外離C.外切 D.相交8.已知向量=(3,0,1),=(﹣2,4,0),則3+2等于()A.(5,8,3) B.(5,﹣6,4)C.(8,16,4) D.(16,0,4)9.已知F是橢圓C的一個焦點,B是短軸的一個端點,直線BF與橢圓C的另一個交點為D,且,則C的離心率為()A. B.C. D.10.直線與圓的位置關(guān)系是()A.相切 B.相交C.相離 D.不確定11.在等比數(shù)列中,,則等于()A. B.C. D.12.已知雙曲線的兩個焦點,,是雙曲線上一點,且,,則雙曲線的標(biāo)準(zhǔn)方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則曲線在點處的切線方程為___________.14.若,且,則_____________15.經(jīng)過點,,的圓的方程為______.16.一個六棱錐的體積為,其底面是邊長為的正六邊形,側(cè)棱長都相等,則該六棱錐的側(cè)面積為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)在處的切線方程為.(1)求的解析式;(2)求函數(shù)圖象上的點到直線的距離的最小值.18.(12分)已知拋物線的焦點也是橢圓的一個焦點,如圖,過點任作兩條互相垂直的直線,,分別交拋物線于,,,四點,,分別為,的中點.(1)求的值;(2)求證:直線過定點,并求出該定點的坐標(biāo);(3)設(shè)直線交拋物線于,兩點,試求的最小值.19.(12分)如圖,在四棱錐P-ABCD中,底面ABCD,,,且,,點E為棱PC的動點.(1)當(dāng)點E是棱PC的中點時,求直線BE與平面PBD所成角的正弦值;(2)若E為棱PC上任一點,滿足,求二面角P-AB-E的余弦值.20.(12分)某班名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是、、、.(1)估計該班本次測試的平均分;(2)在、中按分層抽樣的方法抽取個數(shù)據(jù),再從這個數(shù)據(jù)中任抽取個,求抽出個中至少有個成績在中的概率.21.(12分)已知函數(shù),為的導(dǎo)函數(shù)(1)求的定義域和導(dǎo)函數(shù);(2)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;(3)若對,都有成立,且存在,使成立,求實數(shù)a的取值范圍22.(10分)已知圓,直線(1)證明直線與圓C一定有兩個交點;(2)求直線與圓相交的最短弦長,并求對應(yīng)弦長最短時的直線方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】點在平面內(nèi)的射影是坐標(biāo)不變,坐標(biāo)為0的點.【詳解】點在坐標(biāo)平面內(nèi)的射影為,故點M的坐標(biāo)是故選:C2、B【解析】由等差數(shù)列的,及得數(shù)列是遞減的數(shù)列,因此可確定,然后利用等差數(shù)列的性質(zhì)求前項和,確定和的正負(fù)【詳解】∵,∴和異號,又?jǐn)?shù)列是等差數(shù)列,首項,∴是遞減的數(shù)列,,由,所以,,∴滿足的最大自然數(shù)為4040故選:B【點睛】關(guān)鍵點睛:本題求滿足的最大正整數(shù)的值,關(guān)鍵就是求出,時成立的的值,解題時應(yīng)充分利用等差數(shù)列下標(biāo)和的性質(zhì)求解,屬于中檔題.3、A【解析】將兩圓的方程相減,即可求兩圓相交弦所在直線的方程.【詳解】設(shè),因為圓:①和圓:②交于A,B兩點所以由①-②得:,即,故坐標(biāo)滿足方程,又過AB的直線唯一確定,即直線的方程為.故選:A4、C【解析】對高階等差數(shù)列按其定義逐一進(jìn)行構(gòu)造數(shù)列,直到出現(xiàn)一般等差數(shù)列為止,再根據(jù)其遞推關(guān)系進(jìn)行求解.【詳解】現(xiàn)有一個高階等差數(shù)列,其前6項分別為1,3,6,12,23,41,各項與前一項之差:,,,,,…即2,3,6,11,18,…,,,,,…即1,3,5,7,…是等差數(shù)列,所以,故選:C5、B【解析】設(shè)圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,根據(jù)體積公式計算可得,利用扇形的面積公式計算即可求得結(jié)果.【詳解】如圖,設(shè)圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,所以,圓錐的體積,解得,所以該圓錐的側(cè)面積為.故選:B6、D【解析】建立空間直角坐標(biāo)系,利用空間向量法一一計算可得;【詳解】解:由題可知,如圖令正方體的棱長為1,建立空間直角坐標(biāo)系,則,,,,,,,所以,因為,所以,所以,,,,設(shè)平面的法向量為,則,令,則,,所以對于A:若平面,則,則,解得,故A錯誤;對于B:若平面,則,即,解得,故B錯誤;當(dāng)為直角三角形時,有,即,解得或(舍去),故C錯誤;設(shè)到的距離為,則,當(dāng)?shù)拿娣e最小時,,故正確故選:7、A【解析】計算出圓心距,利用幾何法可判斷兩圓的位置關(guān)系.【詳解】圓的圓心坐標(biāo)為,半徑為,圓的圓心坐標(biāo)為,半徑為,兩圓圓心距為,則,因此,兩圓和內(nèi)切.故選:A.8、A【解析】直接根據(jù)空間向量的線性運算,即可得到答案;【詳解】,故選:A9、A【解析】設(shè),根據(jù)得,代入橢圓方程即可求得離心率.【詳解】設(shè)橢圓方程,所以,設(shè),所以,所以,在橢圓上,所以,.故選:A10、B【解析】直線恒過定點,而此點在圓的內(nèi)部,故可得直線與圓的位置關(guān)系.【詳解】直線恒過定點,而,故點在圓的內(nèi)部,故直線與圓的位置關(guān)系為相交,故選:B.11、C【解析】根據(jù),然后與,可得,最后簡單計算,可得結(jié)果.【詳解】在等比數(shù)列中,由所以,又,所以所以故選:C【點睛】本題考查等比數(shù)列的性質(zhì),重在計算,當(dāng),在等差數(shù)列中有,在等比數(shù)列中,靈活應(yīng)用,屬基礎(chǔ)題.12、D【解析】根據(jù)條件設(shè),,由條件求得,即可求得雙曲線方程.【詳解】設(shè),則由已知得,,又,,又,,雙曲線的標(biāo)準(zhǔn)方程為.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】對函數(shù)求導(dǎo),由導(dǎo)數(shù)的幾何意義可得切線的斜率,求得切點,由直線的點斜式方程可得所求切線的方程【詳解】函數(shù)的導(dǎo)數(shù)為∴,.曲線在點處的切線方程為,即.故答案為:.14、【解析】由,可得,,,從而利用換底公式及對數(shù)的運算性質(zhì)即可求解.【詳解】解:因為,所以,,,又,所以,所以,所以,故答案為:.15、【解析】設(shè)所求圓的方程為,然后將三個點的坐標(biāo)代入方程中解方程組求出的值,可得圓的方程【詳解】設(shè)所求圓的方程為,則,解得,所以圓的方程為,即,故答案為:16、【解析】判斷棱錐是正六棱錐,利用體積求出棱錐的高,然后求出斜高,即可求解側(cè)面積∵一個六棱錐的體積為,其底面是邊長為2的正六邊形,側(cè)棱長都相等,∴棱錐是正六棱錐,設(shè)棱錐的高為h,則棱錐斜高為該六棱錐的側(cè)面積為考點:棱柱、棱錐、棱臺的體積三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由題可得,然后利用導(dǎo)數(shù)的幾何意義即求;(2)由題可得切點到直線的距離最小,即得.【小問1詳解】∵函數(shù),∴的定義域為,,∴在處切線的斜率為,由切線方程可知切點為,而切點也在函數(shù)圖象上,解得,∴的解析式為;【小問2詳解】由于直線與直線平行,直線與函數(shù)在處相切,所以切點到直線的距離最小,最小值為,故函數(shù)圖象上的點到直線的距離的最小值為.18、(1)(2)證明見解析,(3,0)(3)【解析】(1)求出橢圓的焦點坐標(biāo),從而可知拋物線的焦點坐標(biāo),進(jìn)而可得的值;(2)首先設(shè)出直線的方程,聯(lián)立直線與拋物線的方程,得到,坐標(biāo),令,可得直線過點,再證明當(dāng),,,三點共線即可;(3)設(shè)出的直線方程,聯(lián)立直線與拋物線的方程,利用韋達(dá)定理找出根的關(guān)系,再利用兩點間的距離公式求出最小值即可.【小問1詳解】橢圓的焦點坐標(biāo)為,由于拋物線的焦點也是橢圓的一個焦點,故,即,;小問2詳解】由(1)知,拋物線的方程為,設(shè),,,,由題意,直線的斜率存在且設(shè)直線的方程為,代入可得,則,故,故的中點坐標(biāo)為,由,設(shè)直線的方程為,代入可得,則,故,可得的中點坐標(biāo)為,令得,此時,故直線過點,當(dāng)時,,所以,,,三點共線,所以直線過定點.【小問3詳解】設(shè),由題意直線的斜率存在,設(shè)直線的方程為,代入可得,則,,,故,當(dāng)即直線垂直軸時,取得最小值.19、(1)(2)【解析】(1)由題意可得兩兩垂直,所以以為原點,以所在的直線分別為軸,建立空間直角坐標(biāo)系,利用空間向量求解,(2)設(shè),表示出點的坐標(biāo),然后根據(jù)求出的值,從而可得點的坐標(biāo),然后利用空間向量求二面角【小問1詳解】因為底面ABCD,平面,所以因為,所以兩兩垂直,所以以為原點,以所在的直線分別為軸,建立空間直角坐標(biāo)系,如圖所示,因為,,點E為棱PC的動點,所以,所以,,設(shè)平面的法向量為,則,令,則設(shè)直線BE與平面PBD所成角為,則,所以直線BE與平面PBD所成角的正弦值為,【小問2詳解】,因為E為棱PC上任一點,所以設(shè),所以,因為,所以,解得,所以,設(shè)平面的法向量為,則,令,則,取平面的一個法向量為,設(shè)二面角P-AB-E的平面角為,由圖可知為銳角,則,所以二面角P-AB-E余弦值為20、(1);(2).【解析】(1)將每個矩形底邊的中點值乘以對應(yīng)矩形的面積,再將所得結(jié)果全部相加可得的值;(2)分析可知,所抽取的個數(shù)據(jù)中,成績在內(nèi)的有個,分別記為、、、,成績在內(nèi)的有個,分別記為、,列舉出所有的基本事件,并確定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:由頻率分布直方圖可得.【小問2詳解】解:因為數(shù)學(xué)成績在、內(nèi)的頻率分別為、,所以,所抽取的個數(shù)據(jù)中,成績在內(nèi)的有個,分別記為、、、,成績在內(nèi)的有個,分別記為、,從這個數(shù)據(jù)中,任取抽取個,所有的基本事件有:、、、、、、、、、、、、、、,共個,其中,事件“抽出個中至少有個成績在中”所包含的基本事件有:、、、、、、、、,共個,故所求概率為.21、(1),(2)在單減,也單減,無增區(qū)間(3)【解析】(1)根據(jù)分母不等于0,對數(shù)的真數(shù)大于零即可求得函數(shù)的定義域,根據(jù)基本初等函數(shù)的求導(dǎo)公式及商的導(dǎo)數(shù)公式即可求出函數(shù)的導(dǎo)函數(shù);(2)求出函數(shù)的導(dǎo)函數(shù),再根據(jù)導(dǎo)函數(shù)的符號即可得出答案;(3)若對,都有成立,即,即,令,,只要即可,利用導(dǎo)數(shù)求出函數(shù)的最小值即可求出的范圍,,,求出函數(shù)的值域,根據(jù)存在,使成立,則0在函數(shù)的值域中,從而可得出的范圍,即可得解.【小問1詳解】解:的定義域為,;【小問2詳解】解:當(dāng)時,,恒成立,所以在和上遞減;【小問3詳解】解:若對,都有成立,即,即,令,,則,對于函數(shù),,當(dāng)時,,當(dāng)時,,所以函數(shù)在上遞增,在上遞減,所以,當(dāng)時,,所以,所以,故恒成立,在為減函數(shù),所以,所以,由(1)知,,所以,記,令,,則原式的值域為,因為存在,使成立,所以,,所以,綜上,【點睛】本題考查了函數(shù)的定義域及導(dǎo)數(shù)的四則運算,考查了利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查了不等式恒成立問題,考查了計算能力及數(shù)據(jù)分析能力,對不

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論