北京東城區(qū)北京匯文中學2025-2026學年高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第1頁
北京東城區(qū)北京匯文中學2025-2026學年高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第2頁
北京東城區(qū)北京匯文中學2025-2026學年高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第3頁
北京東城區(qū)北京匯文中學2025-2026學年高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第4頁
北京東城區(qū)北京匯文中學2025-2026學年高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

北京東城區(qū)北京匯文中學2025-2026學年高二上數(shù)學期末學業(yè)水平測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等比數(shù)列中,,是方程的兩個實根,則()A.-1 B.1C.-3 D.32.平行六面體中,若,則()A. B.1C. D.3.若橢圓的一個焦點為,則的值為()A.5 B.3C.4 D.24.下列說法或運算正確的是()A.B.用反證法證明“一個三角形至少有兩個銳角”時需設(shè)“一個三角形沒有銳角”C.“,”的否定形式為“,”D.直線不可能與圓相切5.在正項等比數(shù)列中,,,則()A27 B.64C.81 D.2566.執(zhí)行如圖所示的程序框圖,輸出的值為()A. B.C. D.7.下列函數(shù)是偶函數(shù)且在上是減函數(shù)的是A. B.C. D.8.已知直線交圓于A,B兩點,若點滿足,則直線l被圓C截得線段的長是()A.3 B.2C. D.49.在等差數(shù)列中,已知,則()A.4 B.8C.3 D.610.中國古代有一道數(shù)學題:“今有七人差等均錢,甲、乙均七十七文,戊、己、庚均七十五文,問戊、己各若干?”意思是甲、乙、丙、丁、戊、己、庚七個人分錢,所分得的錢數(shù)構(gòu)成等差數(shù)列,甲、乙兩人共分得77文,戊、己、庚三人共分得75文,則戊、己兩人各分得多少文錢?則下列說法正確的是()A.戊分得34文,己分得31文 B.戊分得31文,己分得34文C.戊分得28文,己分得25文 D.戊分得25文,己分得28文11.直線與直線平行,則兩直線間的距離為()A. B.C. D.12.若直線的斜率為,則的傾斜角為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的焦點坐標為__________14.過點,且垂直于的直線方程為_______________.15.已知點,平面過,,三點,則點到平面的距離為________.16.已知向量,,不共線,點在平面內(nèi),若存在實數(shù),,,使得,那么的值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若在處取得極值,求在處的切線方程;(2)討論的單調(diào)性;(3)若函數(shù)在上無零點,求實數(shù)的取值范圍.18.(12分)已知是各項均為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列的通項公式;(2)數(shù)列通項公式為,求數(shù)列的前n項和.19.(12分)【閱讀材料1】我們在研究兩個變量之間的相關(guān)關(guān)系時,往往先選取若干個樣本點(),(),……,(),將樣本點畫在平面直角坐標系內(nèi),就得到樣本的散點圖.觀察散點圖,如果所有樣本點都落在某一條直線附近,變量之間就具有線性相關(guān)關(guān)系,如果所有的樣本點都落在某一非線性函數(shù)圖象附近,變量之間就有非線性相關(guān)關(guān)系.在統(tǒng)計學中經(jīng)常選擇線性或非線性(函數(shù))回歸模型來刻畫相關(guān)關(guān)系,并且可以用適當?shù)姆椒ㄇ蟪龌貧w模型的方程,還常用相關(guān)指數(shù)R2來刻畫回歸的效果,相關(guān)指數(shù)R2的計算公式為:當R2越大時,回歸方程的擬合效果越好;當R2越小時,回歸方程的擬合效果越差,R2是常用的選擇模型的指標之一,在實際應用中應該盡量選擇R2較大的回歸模型.【閱讀材料2】2021年6月17日9時22分,我國酒泉衛(wèi)星發(fā)射中心用長征二號F遙十二運載火箭,成功將神舟十二號載人飛船送入預定軌道,順利將聶海勝、劉伯明、湯洪胺3名航天員送入太空,發(fā)射取得圓滿成功,這標志著中國人首次進入自己的空間站.某公司負責生產(chǎn)的A型材料是神舟十二號的重要零件,該材料應用前景十分廣泛,該公司為了將A型材料更好地投入商用,擬對A型材料進行應用改造,根據(jù)市場調(diào)研與模擬,得到應用改造投入x(億元)與產(chǎn)品的直接收益y(億元)的數(shù)據(jù)統(tǒng)計如下:序號123456789101112x2346810132122232425y1522274048546068.56867.56665當0<x≤13時,建立了與的兩個回歸模型:模型①:;模型②:;當x>13時,確定y與x滿足的線性回歸直線方程為.根據(jù)以上閱讀材料,解答以下問題:(1)根據(jù)下列表格中的數(shù)據(jù),比較當0<x≤13時模型①,②的相關(guān)指數(shù)R2的大小,并選擇擬合效果更好的模型.回歸模型模型①模型②回歸方程79.1320.2(2)當應用改造的投入為20億元時,以回歸直線方程為預測依據(jù),計算公司的收益約為多少.附:①若最小二乘法求得回歸直線方程為,則;②③,當時,.20.(12分)已知橢圓的焦距為,左、右焦點分別為,為橢圓上一點,且軸,,為垂足,為坐標原點,且(1)求橢圓的標準方程;(2)過橢圓的右焦點的直線(斜率不為)與橢圓交于兩點,為軸正半軸上一點,且,求點的坐標21.(12分)已知圓.(1)過點作圓的切線,求切線的方程;(2)若直線過點且被圓截得的弦長為2,求直線的方程.22.(10分)已知橢圓的離心率為,且點在橢圓上(1)求橢圓的標準方程;(2)若過定點的直線交橢圓于不同的兩點、(點在點、之間),且滿足,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由韋達定理可知,結(jié)合等比中項的性質(zhì)可求出.【詳解】解:在等比數(shù)列中,由題意知:,,所以,,所以且,即.故選:B.2、D【解析】根據(jù)空間向量的運算,表示出,和已知比較可求得的值,進而求得答案.【詳解】在平行六面體中,有,故由題意可知:,即,所以,故選:D.3、B【解析】由題意判斷橢圓焦點在軸上,則,解方程即可確定的值.【詳解】有題意知:焦點在軸上,則,從而,解得:.故選:B.4、D【解析】對于A:可以解決;對于B:“一個三角形至少由兩個銳角”的反面是“只有一個銳角或沒有銳角”;對于C:全稱否定必須是全部否定;對于D:需要觀察出所給直線是過定點的.【詳解】A:,故錯誤;B:“一個三角形至少由兩個銳角”的反面是“只有一個銳角或沒有銳角”,所以用反證法時應假設(shè)只有一個銳角和沒有銳角兩種情況,故錯誤;C:的否定形式是,故錯誤;D:直線是過定點(-1,0),而圓,圓心為(2,0),半徑為4,定點(-1,0)到圓心的距離為2-(-1)=3<4,故定點在圓內(nèi),故正確;故選:D.5、C【解析】根據(jù)等比數(shù)列的通項公式求出公比,進而求得答案.【詳解】設(shè)的公比為,則(負值舍去),所以.故選:C.6、B【解析】根據(jù)程序框圖的循環(huán)邏輯寫出其執(zhí)行步驟,即可確定輸出結(jié)果.【詳解】由程序框圖的邏輯,執(zhí)行步驟如下:1、:執(zhí)行循環(huán),,;2、:執(zhí)行循環(huán),,;3、:執(zhí)行循環(huán),,;4、:執(zhí)行循環(huán),,;5、:執(zhí)行循環(huán),,;6、:不成立,跳出循環(huán).∴輸出的值為.故選:B.7、C【解析】根據(jù)題意,依次分析選項中函數(shù)的奇偶性與單調(diào)性,綜合即可得答案【詳解】根據(jù)題意,依次分析選項:對于A,為一次函數(shù),不是偶函數(shù),不符合題意;對于B,,,為奇函數(shù),不是偶函數(shù),不符合題意;對于C,,為二次函數(shù),是偶函數(shù)且在上是減函數(shù),符合題意;對于D,,,為奇函數(shù),不是偶函數(shù),不符合題意;故選C【點睛】本題考查函數(shù)的奇偶性與單調(diào)性的判定,關(guān)鍵是掌握常見函數(shù)的奇偶性與單調(diào)性,屬于基礎(chǔ)題8、B【解析】由題設(shè)知為圓的圓心且A、B在圓上,根據(jù)已知及向量數(shù)量積的定義求的大小,進而判斷△的形狀,即可得直線l被圓C截得線段的長.【詳解】∵點為圓的圓心且A、B在圓上,又,∴,∴,又,∴,故△為等邊三角形,∴直線l被圓C截得線段的長是2故選:B9、B【解析】根據(jù)等差數(shù)列的性質(zhì)計算出正確答案.【詳解】由等差數(shù)列的性質(zhì)可知,得.故選:B10、C【解析】設(shè)甲、乙、丙、丁、戊、己、庚所分錢數(shù)分別為,,,,,,,再根據(jù)題意列方程組可解得結(jié)果.【詳解】依題意,設(shè)甲、乙、丙、丁、戊、己、庚所分錢數(shù)分別為,,,,,,,則,解得,所以戊分得(文),己分得(文),故選:C.11、B【解析】先根據(jù)直線平行求得,再根據(jù)公式可求平行線之間的距離.【詳解】由兩直線平行,得,故,當時,,,此時,故兩直線平行時又之間的距離為,故選:B.12、C【解析】設(shè)直線l傾斜角為,根據(jù)題意得到,即可求解.【詳解】設(shè)直線l的傾斜角為,因為直線的斜率是,可得,又因為,所以,即直線的傾斜角為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】化成標準形式,結(jié)合焦點定義即可求解.【詳解】由,得,故拋物線的焦點坐標為故答案為:14、【解析】求出,可得垂直于的直線的斜率為,再利用點斜式可得結(jié)果.【詳解】因為,所以,所以垂直于的直線的斜率為,垂直于的直線方程為,化為,故答案為.【點睛】對直線位置關(guān)系的考查是熱點命題方向之一,這類問題以簡單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關(guān)系:在斜率存在的前提下,(1);(2),這類問題盡管簡單卻容易出錯,特別是容易遺忘斜率不存在的情況,這一點一定不能掉以輕心.15、【解析】先求得平面ABC的一個法向量,然后由求解.【詳解】因為,,,,所以,設(shè)平面ABC的一個法向量為,則,即,令,則,所以則點到平面的距離為,故答案:16、1【解析】通過平面向量基本定理推導出空間向量基本定理得推論.【詳解】因為點在平面內(nèi),則由平面向量基本定理得:存在,使得:即,整理得:,又,所以,,,從而.故答案為:1三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析;(3).【解析】(1)根據(jù)在處取極值可得,可求得,驗證可知滿足題意;根據(jù)導數(shù)的幾何意義求得切線斜率,利用點斜式可求得切線方程;(2)求導后,分別在和兩種情況下討論導函數(shù)的符號,從而得到的單調(diào)性;(3)根據(jù)在上無零點可知在上的最大值和最小值符號一致;分別在,兩種情況下根據(jù)函數(shù)的單調(diào)性求解最大值和最小值,利用符號一致構(gòu)造不等式求得結(jié)果.【詳解】(1)由題意得:在處取極值,解得:則當時,,單調(diào)遞減;當時,,單調(diào)遞增為極小值點,滿足題意函數(shù)當時,由得:在處的切線方程為:,即:(2)由題意知:函數(shù)的定義域為,①當時若,恒成立,恒成立在內(nèi)單調(diào)遞減②當時由,得:;由得:在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增綜上所述:當時,在內(nèi)單調(diào)遞減;當時,在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增(3)①當時,在上單調(diào)遞減在上無零點,且②當時(i)若,即,則在上單調(diào)遞增由,知符合題意(ii)若,即,則在上單調(diào)遞減在上無零點,且(iii)若,即,則在上單調(diào)遞減,在上單調(diào)遞增,,符合題意綜上所述,實數(shù)的取值范圍是【點睛】本題考查導數(shù)在研究函數(shù)中的應用問題,涉及到導數(shù)幾何意義、極值與導數(shù)的關(guān)系、討論含參數(shù)函數(shù)的單調(diào)性、根據(jù)區(qū)間內(nèi)零點個數(shù)求解參數(shù)范圍問題.本題的關(guān)鍵是能夠通過分類討論的方式,確定導函數(shù)的符號,從而判斷出函數(shù)的單調(diào)性以及最值.18、(1);(2).【解析】(1)設(shè)的公比為,利用基本量運算求出公比,可得數(shù)列的通項公式;(2)利用錯位相減法計算出數(shù)列的前n項和【詳解】(1)設(shè)的公比為,由題意知:,.又,解得,,所以.(2).令,則,因此,又,兩式相減得所以.【點睛】方法點睛:本題考查等比數(shù)列的通項公式,考查數(shù)列的求和,數(shù)列求和的方法總結(jié)如下:

公式法,利用等差數(shù)列和等比數(shù)列的求和公式進行計算即可;

裂項相消法,通過把數(shù)列的通項公式拆成兩項之差,在求和時中間的一些項可以相互抵消,從而求出數(shù)列的和;

錯位相減法,當數(shù)列的通項公式由一個等差數(shù)列與一個等比數(shù)列的乘積構(gòu)成時使用此方法;

倒序相加法,如果一個數(shù)列滿足首末兩項等距離的兩項之和相等,可以使用此方法求和19、(1)模型②擬合效果更好(2)69.1(億元)【解析】(1)分別求出兩個模型的相關(guān)指數(shù),在進行比較即可,(2)利用最小二乘法求出回歸方程,再求收益即可【小問1詳解】對于模型①,因為,故對應的,故對應的相關(guān)指數(shù),對于模型②,同理對應的相關(guān)指數(shù),故模型②擬合效果更好【小問2詳解】當時,后五組的,由最小二乘法可得,所以當時,確定y與x滿足的線性回歸直線方程為故當投入20億元時,預測公司的收益約為:(億元)20、(1)(2)【解析】(1)利用△∽△構(gòu)造齊次方程,求出離心率,再利用焦距即可求出橢圓方程;(2)將直線方程與橢圓方程聯(lián)立利用韋達定理求出和,利用幾何關(guān)系可知,即可得,將韋達定理代入化簡即可求得點坐標.【小問1詳解】∵橢圓的焦距為,∴,即,軸,∴,則,由,,則△∽△,∴,即,整理得,即,解得或(舍去)∴,∴,則橢圓的標準方程為,【小問2詳解】設(shè)直線的方程為,且,將直線方程與橢圓方程聯(lián)立得,,則,,∵,∴,∴,∴,∴,即.21、(1);(2)或.【解析】(1)根據(jù)直線與圓相切,求得切線的斜率,利用點斜式即可寫出切線方程;(2)利用弦長公式,結(jié)合已知條件求得直線的斜率,即可求得直線方程.【小問1詳解】圓,圓心,半徑,又點的坐標滿足圓方程,故可得點在圓上,則切線斜率滿足,又,故滿足題意的切線斜率,則過點的切線方程為,即.【小問2詳解】直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論