版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇吳江青云中學(xué)2025年數(shù)學(xué)高一第一學(xué)期期末復(fù)習(xí)檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,在平面直角坐標(biāo)系xOy中,角的頂點與原點O重合,它的始邊與x軸的非負半軸重合,終邊OP交單位圓O于點P,則點P的坐標(biāo)為A.
,B.
,
C.
,D.
2.,則()A.64 B.125C.256 D.6253.下列函數(shù)中,在區(qū)間上是增函數(shù)的是()A. B.C. D.4.“角小于”是“角是第一象限角”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件5.已知函數(shù),則“”是“函數(shù)在區(qū)間上單調(diào)遞增”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知點(a,2)在冪函數(shù)的圖象上,則函數(shù)f(x)的解析式是()A. B.C. D.7.“”是“”的()A.充分必要條件 B.充分而不必要條件C.必要而不充分條件 D.既不充分也不必要條件8.直線與函數(shù)的圖像恰有三個公共點,則實數(shù)的取值范圍是A. B.C. D.9.若-<α<0,則點P(tanα,cosα)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限10.已知,,則下列不等式正確的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)在上的最小值為__________.12.莖葉圖表示的是甲,乙兩人在5次綜合測評中的成績,記甲,乙的平均成績分別為a,b,則a,b的大小關(guān)系是______13.若,則____14.定義在上的奇函數(shù)滿足:對于任意有,若,則的值為__________.15.如圖1是我國古代著名的“趙爽弦圖”的示意圖,它由四個全等的直角三角形圍成,其中,現(xiàn)將每個直角三角形的較長的直角邊分別向外延長一倍,得到如圖2的數(shù)學(xué)風(fēng)車,則圖2“趙爽弦圖”外面(圖中陰影部分)的面積與大正方形面積之比為_______________16.若正實數(shù)滿足,則的最大值是________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)函數(shù)(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;(2)求函數(shù)在上的最大值與最小值及相應(yīng)的x的值.18.已知函數(shù),(1)求函數(shù)的最大值及取得最大值時的值;(2)若方程在上的解為,,求的值19.已知,函數(shù).(1)若關(guān)于的不等式對任意恒成立,求實數(shù)的取值范圍;(2)若關(guān)于的方程有兩個不同實數(shù)根,求的取值范圍.20.在平面直角坐標(biāo)系中,為坐標(biāo)原點,已知兩點、在軸的正半軸上,點在軸的正半軸上.若,()求向量,夾角的正切值()問點在什么位置時,向量,夾角最大?21.已知二次函數(shù)滿足,且求的解析式;設(shè),若存在實數(shù)a、b使得,求a的取值范圍;若對任意,都有恒成立,求實數(shù)t取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】直接利用任意角的三角函數(shù)的定義求得點P的坐標(biāo)【詳解】設(shè),由任意角的三角函數(shù)的定義得,,點P的坐標(biāo)為故選D【點睛】本題考查任意角的三角函數(shù)的定義,是基礎(chǔ)題2、D【解析】根據(jù)對數(shù)的運算及性質(zhì)化簡求解即可.【詳解】,,,故選:D3、B【解析】根據(jù)函數(shù)單調(diào)性的定義和性質(zhì)分別進行判斷即可【詳解】解:對于選項A.的對稱軸為,在區(qū)間上是減函數(shù),不滿足條件對于選項B.在區(qū)間上是增函數(shù),滿足條件對于選項C.在區(qū)間上是減函數(shù),不滿足條件對于選項D.在區(qū)間上是減函數(shù),不滿足條件故滿足條件的函數(shù)是故選:B【點睛】本題主要考查函數(shù)單調(diào)性的判斷,要求熟練掌握常見函數(shù)的單調(diào)性,屬基礎(chǔ)題4、D【解析】利用特殊值法結(jié)合充分、必要條件的定義判斷可得出結(jié)論.【詳解】若角小于,取,此時,角不是第一象限角,即“角小于”“角是第一象限角”;若角是第一象限角,取,此時,,即“角小于”“角是第一象限角”.因此,“角小于”是“角是第一象限角”的既不充分也不必要條件.故選:D.5、A【解析】先由在區(qū)間上單調(diào)遞增,求出的取值范圍,再根據(jù)充分條件,必要條件的定義即可判斷.【詳解】解:的對稱軸為:,若在上單調(diào)遞增,則,即,在區(qū)間上單調(diào)遞增,反之,在區(qū)間上單調(diào)遞增,,故“”是“函數(shù)在區(qū)間上單調(diào)遞增”的充分不必要條件.故選:A.6、A【解析】由冪函數(shù)的定義解出a,再把點代入解出b.【詳解】∵函數(shù)是冪函數(shù),∴,即,∴點(4,2)在冪函數(shù)的圖象上,∴,故故選:A.7、B【解析】由等價于,或,再根據(jù)充分、必要條件的概念,即可得到結(jié)果.【詳解】因為,所以,或,所以“”是“”的充分而不必要條件.故選:B.8、C【解析】解方程組,得,或由直線與函數(shù)的圖像恰有三個公共點,作出圖象,結(jié)合圖象,知∴實數(shù)的取值范圍是故選C【點睛】本題考查滿足條件的實數(shù)的取值范圍的求法,解題時要認真審題,注意數(shù)形結(jié)合思想的合理運用9、B【解析】∵-<α<0,∴tanα<0,cosα>0,∴點P(tanα,cosα)位于第二象限,故選B考點:本題考查了三角函數(shù)值的符號點評:熟練掌握三角函數(shù)的定義及三角函數(shù)的值的求法是解決此類問題的關(guān)鍵,屬基礎(chǔ)題10、C【解析】利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性即可求解.【詳解】由為單調(diào)遞減函數(shù),則,為單調(diào)遞減函數(shù),則,為單調(diào)遞增函數(shù),則故.故選:C【點睛】本題考查了指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性比較指數(shù)式、對數(shù)式的大小,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】正切函數(shù)在給定定義域內(nèi)單調(diào)遞增,則函數(shù)的最小值為.12、【解析】分別計算出甲,乙的平均分,從而可比較a,b的大小關(guān)系.【詳解】易知甲的平均分為,乙的平均分為,所以.故答案為:.13、##0.25【解析】運用同角三角函數(shù)商數(shù)關(guān)系式,把弦化切代入即可求解.【詳解】,故答案為:.14、【解析】由可得,則可化簡,利用可得,由是在上的奇函數(shù)可得,由此【詳解】由題,因為,所以,由,則,則,因為,令,則,所以,因為是在上的奇函數(shù),所以,所以,故答案:0【點睛】本題考查函數(shù)奇偶性、周期性的應(yīng)用,考查由正切值求正、余弦值15、24:25【解析】設(shè)三角形三邊的邊長分別為,分別求出陰影部分面積和大正方形面積即可求解.【詳解】解:由題意,“趙爽弦圖”由四個全等的直角三角形圍成,其中,設(shè)三角形三邊的邊長分別為,則大正方形的邊長為5,所以大正方形的面積,如圖,將延長到,則,所以,又到的距離即為到的距離,所以三角形的面積等于三角形的面積,即,所以“趙爽弦圖”外面(圖中陰影部分)的面積,所以“趙爽弦圖”外面(圖中陰影部分)的面積與大正方形面積之比為.故答案為:24:25.16、4【解析】由基本不等式及正實數(shù)、滿足,可得的最大值.【詳解】由基本不等式,可得正實數(shù)、滿足,,可得,當(dāng)且僅當(dāng)時等號成立,故的最大值為,故答案為:4.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)最小正周期,單調(diào)遞增區(qū)間為,;(2)時函數(shù)取得最小值,時函數(shù)取得最大值;【解析】(1)利用二倍角公式及輔助角公式將函數(shù)化簡,再根據(jù)正弦函數(shù)的性質(zhì)計算可得;(2)由的取值范圍,求出的取值范圍,再根據(jù)正弦函數(shù)的性質(zhì)計算可得;【小問1詳解】解:因為,即,所以函數(shù)的最小正周期,令,,解得,,所以函數(shù)的單調(diào)遞增區(qū)間為,;【小問2詳解】解:因為,所以,所以當(dāng),即時函數(shù)取得最小值,即,當(dāng),即時函數(shù)取得最大值,即;18、(1)當(dāng)時,函數(shù)取得最大值為;(2).【解析】(1)利用同角三角函數(shù)的平方關(guān)系化簡,再利用換元法即可求最值以及取得最值時的值;(2)求出函數(shù)的對稱軸,得到和的關(guān)系,利用誘導(dǎo)公式化簡可得答案.【詳解】(1),令,可得,對稱軸為,開口向下,所以在上單調(diào)遞增,所以當(dāng),即,時,,所以當(dāng)時,函數(shù)取得最大值為;(2)令,可得,當(dāng)時,是的對稱軸,因為方程在上的解為,,,,且,所以,所以,所以,所以的值為.19、(1);(2).【解析】(1)利用函數(shù)的單調(diào)性去掉法則轉(zhuǎn)化成不等式組恒成立,再借助均值不等式計算作答.(2)求出方程的二根,再結(jié)合對數(shù)函數(shù)的意義討論即可計算作答.【小問1詳解】依題意,,,,,而恒有,于是得,,,而,當(dāng)且僅當(dāng),即時取“=”,于得,因此有,所以實數(shù)取值范圍是.【小問2詳解】依題意,,由,因此,,,解得,,因原方程有兩個不同實數(shù)根,則,解得且,所以的取值范圍是.【點睛】結(jié)論點睛:對于恒成立問題,函數(shù)的定義域為D,(1)成立?;(2)成立?.20、(1)見解析;(2)見解析.【解析】分析:()設(shè)向量與軸的正半軸所成的角分別為,則向量所成的夾角為,由兩角差的正切公式可得向量夾角的正切值為;()由(1)知,利用基本不等式即可的結(jié)果.詳解:(1)由題意知,A的坐標(biāo)為A(0,6),B的坐標(biāo)為B(0,4),C(x,0),x>0設(shè)向量,與x軸的正半軸所成的角分別為α,β,則向量,所成的夾角為|β﹣α|=|α﹣β|,由三角函數(shù)的定義知:tanα=,tanβ=,由公式tan(α﹣β)=,得向量,的夾角的正切值等于tan(α﹣β)==,故所求向量,夾角的正切值為tan(α﹣β)=;(2)由(1)知tan(α﹣β)==≤=,所以tan(α﹣β)的最大值為時,夾角|α﹣β|的值也最大,當(dāng)x=時,取得最大值成立,解得x=2,故點C在x的正半軸,距離原點為2,即點C的坐標(biāo)為C(2,0)時,向量,夾角最大點睛:本題主要考查利用平面向量的夾角、兩角差的正切公式以及基本不等式求最值,屬于難題.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最?。?;三相等是,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)否在定義域內(nèi),二是多次用或時等號能否同時成立).21、(1);(2)或;(3).【解析】利用待定系數(shù)法求出二次函數(shù)的解析式;求出函數(shù)的值域,再由題意得出關(guān)于a的不等式,求出解集即可;由題意知對任
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴金屬首飾檢驗員風(fēng)險評估與管理測試考核試卷含答案
- 海水捕撈工成果知識考核試卷含答案
- 2025年結(jié)核病的自查報告
- 銅粉購銷合同范本
- 廣安市全肥養(yǎng)殖家庭農(nóng)場生豬養(yǎng)殖項目報告書
- 分銷商合同協(xié)議書
- 異地簽協(xié)議書合同
- 房產(chǎn)合同補償協(xié)議
- 沖床購銷合同范本
- 分銷協(xié)議銷售合同
- 2024年6月大學(xué)英語四級真題與答案解析完整版
- 迪士尼收購??怂箙f(xié)議書
- 售電交易員考試題及答案
- 食品添加劑檢驗員崗位面試問題及答案
- 礦山機電專業(yè)人才培養(yǎng)方案(中職)
- 電商公司選品管理制度
- 鋁合金鑄造項目可行性研究報告
- 《旅游職業(yè)禮儀》課件 項目三:日常交際禮儀/任務(wù)一:見面禮儀
- 第19課《只有一個地球》第二課時 課件
- 噴涂角度對鋁-銅接觸件冷噴涂銅防護涂層結(jié)構(gòu)形成及耐蝕性能的影響
- 義務(wù)教育《藝術(shù)課程標(biāo)準(zhǔn)》2022年修訂版(原版)
評論
0/150
提交評論