版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
ArtificialIntelligence’sEnergy
Paradox:
Balancing
ChallengesandOpportunitiesTransformationofIndustries
intheAgeofAIW
H
IT
E
PA
P
E
RJA
N
UA
RY
2
0
2
5IncollaborationwithAccentureAIGovernance
AllianceImages:Getty
ImagesContentsReading
guide3Foreword
4Executivesummary5Introduction61
ElectricityconsumptionofAI
71.1TheAI
life
cycle71.2The
roleof
data
centres81.3Opportunitiesto
reduceAIsystemelectricityconsumption92
AI-enabledenergytransition112.1Non-exhaustiveexampleopportunitiesforAI-enabled11electricityreduction2.2Sample
use
cases123
Primarychallengesandecosystemenablers143.1
Infrastructurechallenges
143.2
Environmentalchallenges
143.3Overviewofecosystem
enablers153.4
Regulatoryand
policyenablers163.5
Financial
incentiveenablers
163.6Technological
innovationenablers173.7
Marketdevelopmentenablers174
FutureoutlookofAIenergy
impact184.1Thedeploymentandcollaboration
landscape184.2AIandenergy–2024to
2025
outlook22Conclusion
23Contributors24Endnotes26DisclaimerThisdocumentispublished
bytheWorld
Economic
Forumas
a
contribution
to
a
project,
insight
area
or
interaction.Thefindings,interpretationsandconclusionsexpressed
hereinarearesultofacollaborative
processfacilitated
and
endorsed
bytheWorld
Economic
Forumbutwhoseresultsdo
not
necessarilyrepresent
the
views
of
the
World
Economic
Forum,nor
theentirety
of
its
Members,
Partners
or
other
stakeholders.?2025World
Economic
Forum.All
rights
reserved.
No
partofthispublicationmaybe
reproduced
or
transmitted
in
anyformorbyanymeans,
including
photocopying
and
recording,or
by
any
information
storage
and
retrieval
system.Artificial
Intelligence,s
Energy
Paradox:BalancingChallengesandOpportunities2AsAIcontinuestoevolveat
an
unprecedentedpace,each
paper
inthisseriescaptures
a
unique
perspectiveonAI–
includingadetailed
snapshot
ofthe
landscapeatthetimeofwriting.
Recognizing
thatongoingshiftsandadvancements
are
already
in
motion,theaim
istocontinuouslydeepen
andupdatethe
understandingofAI’s
implications
andapplicationsthroughcollaborationwiththecommunityofWorld
Economic
Forum
partnersandstakeholdersengaged
inAIstrategy
and
implementationacrossorganizations.Together,these
papersofferacomprehensive
viewofAI’scurrentdevelopmentand
adoption,
aswellasaview
of
itsfuture
potential
impact.Each
papercan
be
readstand-aloneoralongside
theothers,withcommonthemesemergingacross
industries.TheWorld
Economic
Forum’sAITransformationof
Industries
initiativeseekstocatalyse
responsibleindustrytransformation
byexploringthestrategicimplications,opportunitiesandchallenges
ofpromotingartificial
intelligence
(AI)-driven
innovation
across
businessandoperating
models.ReadingguideThiswhite
paperseriesexploresthetransformative
roleofAIacross
industries.
It
provides
insightsthrough
both
broadanalysesand
in-depthexplorationsofindustry-specificand
regional
deep
dives.Theseries
includes:AIGovernanceAllianceIncollaborationwithAccentureTransformationofIndustriesintheAgeofAIAI
in
Action:BeyondExperimentationtoTransform
IndustryF
LAGSH
I
P
W
H
ITE
PA
PE
R
S
E
RI
ES
JANUA
RY2025Incollaborationwith
PwC
IncollaborationwithMcKnsey&CompanyTransformationofIndustresntheAgeofAIIntelligentTransport,Greener
Future:AIasa
CatalysttoDecarbonizeGlobal
LogisticsW
H
IT
E
PA
P
ERJAN
UARY2025IncollaborationwithBostonConsultingGroupTransformationofIndustriesintheAgeofAITheFutureof
AI-EnabledHealth:
LeadingtheWayWH
IT
E
PA
P
E
RJANUA
RY2025AIGovernanceAllianceIncollaborationwiththeGlobalCyberSecurity
CapacityCentre,UniversityofOxfordTransformationofIndustriesintheAgeofAIArtificialIntelligence
andCybersecurity:Balancing
Risksand
RewardsWH
IT
E
PA
P
E
RJANUA
RY2025Media,entertainmentand
sport
Healthcare
TransportImpactonindustries,sectorsandfunctionsImpactonindustrialecosystemsIndustryorfunctionspecificArtificial
Intelligence,s
Energy
Paradox:BalancingChallengesandOpportunities3FrontierTechnologies
inIndustrialOperations:TheRiseof
ArtificialIntelligence
AgentsIntelligentTransport,
Greener
Future:AIas
aCatalysttoDecarbonizeGlobalLogisticsArtificialIntelligence’s
EnergyParadox:BalancingChallenges
andOpportunitiesLeveragingGenerative
AIfor
Job
AugmentationandWorkforceProductivityBlueprintto
Action:
China’sPathtoAI-PoweredIndustry
TransformationArtificialIntelligence
andCybersecurity:
BalancingRisksandRewardsImpacton
regionsArtificialIntelligencein
Media,Entertainment
and
SportRegionalspecificAIin
Action:Beyond
Experimentationto
TransformIndustryTheFutureofAI-EnabledHealth:Leadingthe
WayCrossindustryAdvancedmanufacturingandsupplychainsUpcomingindustryreport:TelecommunicationsUpcomingindustryreport:ConsumergoodsAIGovernanceAllianceIncollaborationwithAccentureTransformationofIndustriesintheAgeofAIArtificialIntelligence’sEnergyParadox:
BalancingChallengesandOpportunitiesWH
IT
E
PA
P
E
RJANUA
RY2025AIGovernanceAllianceIncollaborationwithAccentureTransformationofIndustriesintheAgeofAIArtificialIntelligencein
Media,EntertainmentandSportWH
IT
E
PA
P
E
RJANUA
RY2025AIGovernanceAllianceIncollaborationwithAccentureTransformationofIndustriesintheAgeofAIBlueprinttoAction:China’sPathtoAI-Powered
IndustryTransformationWH
IT
E
PA
P
E
RJANUA
RY2025ArtificialIntelligence
inFinancialServicesAdditionalreportstobeannounced.AIGovernanceAllianceIncollaborationwithAccentureTransformationofIndustries
intheAgeofAIArtificialIntelligence
inFinancialServicesW
HIT
E
PA
P
E
RJA
N
UA
RY202
5Leveraging
Generative
AIforJobAugmentationandWorkforceProductivity:Scenarios,CaseStudiesandaFrameworkforActionINS
IG
HT
R
E
PORTN
OV
EM
BE
R
2
024FrontierTechnologiesinIndustrialOperations:The
RiseofArtificialIntelligenceAgentsW
HIT
E
PA
P
E
RJA
N
UA
RY202
5ConsumergoodsFinancialservicesTelecommunicationsTransformationofIndustries
intheAgeofAIIncollaborationwithBostonConsultingGroupachievementofefficiencygains.To
achievethis,it
s
pivotalto
understand
innovative
mitigationstrategiesandsolutionsthatcan
effectivelyfacilitate
this
balance.Overthe
pastyear,theWorld
Economic
Forum
sAIGovernanceAlliance
has
united
industryandgovernmentwithcivilsocietyand
academia,establishingaglobal
multistakeholderefforttoensureAIservesthegreatergoodwhile
maintaining
responsibility,
inclusivityandaccountability.
Players
fromacrosstheAIvaluechainareconvenedtocultivate
meaningfuldialogueonemergingAI
issues.WithAccentureasa
knowledge
partner,thealliance
sAI
Energy
ImpactCommunity(composed
ofover40global
members)
hasfacilitated
cross-
industrydiscoursetowardsconsensusandsurfacedapplied
usecasesonAI
s
energy
impact.This
paper
highlightscross-industry
insights
fromadiversestakeholder
groupto
outline
mitigationstrategies:Identifyingelectricity
use
reductionstrategies
forAIsystemsTouching
uponAI
s
potentialforthewider
energytransitionOutlining
key
partnerships,frameworksand
policiestosupportsustainableAIadoptionTheincreaseinAIadoption,alongside
other
market
factorsiscontributingtoincreasedelectricity
use.Annualglobalelectricitydemandgrowthis
nowforecastedtoreachnearly3.5%
inthecomingyears.3,4
Thischallengeisamplified
by
globalcompetitionforAIprojectsacrossregions.Thiswillrequirestakeholdersacrossthevaluechaintonavigatemarketpressuresforcomputing
power,whilebalancingsustainabilitytargets,gridconstraints
andcommunityimpacts.Intoday
seconomy,artificial
intelligence(AI)
systems
offer
bothchallengesandopportunities.As
integral
componentsofdigitalinfrastructure,thedatacentres
thatenableAIsupportavarietyof
applications,fromcloudcomputingtocomplexdata
processing.
AI
s
rapidexpansion,however,isaccompanied
bygrowingelectricitydemand,withthelargestfacilitiesintheworldusingthesameamount
of
power
assmallcitiestoensureuninterrupted
operation.
Data
centrescomeinvaryingsizeshowever,
rangingfrom
large,hyperscalefacilitieswith
morethan
1gigawatt
(GW)ofpowercapacity,
to
smaller,
micro
edgedeploymentsthat
maydraw
lessthan
10
kilowatts
(kW)
of
power.1Oneestimatenowexpects
data-centre-relatedelectricityconsumptiontogrowfromapproximately
1%ofglobalelectricity
demandto
over
2%
by2026,
potentially
reaching3%
by2030
ifforecasted
growthcontinues.2
Such
projections
have
raisedconcernsaboutsupportingthisdemandwhile
also
meeting
net-zerocommitments.Simultaneously,AI
can
bea
powerfultoolto
positivelysupportwider
energysystemtransformation.
Forexample,
it
isalready
being
usedto
improveenergyefficiency
across
industries,accelerate
renewableenergy
integrationand
make
powergrids
more
resilient.This
istheAIenergy
paradoxbalancingthese
challengesagainstAI-enabledopportunities.However,currentestimatesofAI
senergy
impact
vary,andthe
magnitudeofelectricity
demandgrowth
remains
unclear.Other
issues
includea
lackofstandardizedtaxonomiesanddefinitions.Theextenttowhichelectricitydemand
growthwillbeoffset
byefficiencygainsfromadvancementsintechnologies(e.g.chips,algorithms
etc.),
datacentredesignandchanging
regional
dynamicsisalso
uncertain.Whilea
near-term
rise
inAI
selectricityconsumption
isexpected,thefuturemagnitudeofthisgrowth
maydecline
duetotheArtificial
Intelligence,s
Energy
Paradox:BalancingChallengesandOpportunitiesForewordCathy
LiHead,AI,
Dataand
Metaverse;Deputy
Head,Centrefor
the
Fourth
IndustrialRevolution;
Member,ExecutiveCommittee,World
Economic
ForumRoberto
BoccaHead,Centre
for
Energyand
Materials;
Member,ExecutiveCommittee,World
Economic
ForumJames
MazurekManaging
Director,
US
Utilities
Strategy
Lead,AccentureArtificial
Intelligence,s
Energy
Paradox:BalancingChallengesandOpportunities4JeremyJurgensManaging
Director,WorldEconomic
ForumJanuary2025Artificial
intelligence(AI)
is
facilitating
a
new
eraofinnovation,withnearlythreeinfour
companies
usingAIforatleastone
businessfunction.5Thisinnovationbringsmany
benefits,
includingenhancedproductivity,newwaysofworkingandrevenuegrowth.AI-relatedelectricityconsumptionisexpectedtogrowbyas
muchas
50%
annuallyfrom2023to2030.AIdatacentreconsumption,whilegrowingrapidly,is
projectedto
remaina
small
fractionofglobalelectricitydemand,startingatjust0.04%in2023(see
Figure
4).
However,
whencombinedwithothermarketfactors(suchasgrowing
electricitydemandfortransport,buildingsandmore),
AI’sacceleratedadoptioncouldpotentially
increase
thestrainonpowergridsand
electricity
providers.However,suchprojectionscanvary.6
UncertaintyremainsaroundhowprofoundAI’soverall
energyimpactwillbeandwhichstrategiescould
mitigate
challengesthatariseorenablenew
solutionopportunities.
Inthiscontext,it’sessentialtoassess
howAIcouldacceleratetheenergytransitionin
line
withnet-zerogoals,aswellaswhichsupportingecosystemenablerscansupportthis.ThispaperfocusesonAI’selectricityimpactswhileaddressing
thebroaderenergylandscape,
includinggeneration
andfuelsourcessupportingAI.Work
undertheAIGovernanceAlliance(AIGA)AI
Energy
Impact
Initiative
hassurfaced
key
insights
onthesetopics.The
initiativecollaborateswithover40globalorganizationsacross
more
than
nine
industriesdrivingAIadoption.Thisanalysis
highlights
keyfindings
relevanttothree
distinctareas
relatedtoAI’s
role
intransformingenergysystems:1.ElectricityconsumptionofAI:ReviewingtheAIlifecycle,strategiesforreducingits
consumption
andnewopportunitiesforprocessdigitalization–AIadoptionvaries
bysector,with
electricity
demandexpectedto
risesharply.
However,
projections
remain
uncertain,
underscoring
a
needforongoingassessment.–OptimizingAI’sconsumption
includesharnessingtechnological
innovationssuch
asenergy-efficientAIchip
hardwareandAI-
optimizedcoolingsolutions.–Companiesare
reducing
datacentreelectricityconsumptionthrough
operationalstrategies
likeAI-drivenenvironmentalcontrols,servervirtualization
andworkloaddistribution.2.
AI-enabled
energy
transition:Exploringinnovative,emergingcompany
usecasesandthe
potentialforscalingacross
industries–Existing
usecases
demonstrate
reduced
energyconsumptionof
10-60%
insome
instances,with
potentialfor
furtheroptimization.–AI
is
helpingelectricity
providersoptimize
operationsviaenergystorage,enhanced
batteryefficiencyand
smart
grid.–
AIcansupportdecarbonization,
helpingto
loweremissions,
reducewasteand
improve
resource
use.3.
Primarychallengesandecosystemenablers:Analysing
regulation,
policyand
partnerships
necessaryforsustainableAIadoptionat
scale–Enabling
sustainableAI
requires
amultifacetedapproachspanning:
regulation
and
policy,financial
incentives,technological
innovationand
marketdevelopment.–Regulatory,
policy
andfinancialenablerscan
incentivize
responsibleAI
throughcomplianceframeworksand
funding
mechanisms.–Technological
innovationand
marketdevelopmentfoster
research,collaboration
andsustainableAIadoption.Thiswhite
paper
isa
preliminaryexplorationof
AI’senergy-related
impact,andoutlinesthe
key
challengesandopportunitiesthatemerge
asAI
adoptiongrowsacross
industries.
Itconcludes
bysharingfourareasto
monitorfor
continued
understandingofAI’sevolvingenergy
impact:–
AIdeploymentfordecarbonization–TransparentandefficientAI
electricity
use–Innovation
intechnology
and
design–Effectiveecosystem
collaborationExecutivesummaryArtificialintelligencepresentsenergyopportunities
andchallenges–strategic
mitigationcan
helpto
maximize
benefitswhile
reducing
burdens.Artificial
Intelligence,s
Energy
Paradox:BalancingChallengesandOpportunities5FIGURE1Electricitydemandgrowth
by
end
use
inthe
Stated
Policies
Scenario
(STEPS)
2023-2030,ingrowingelectricitydemand,
but
predicting
AI-specificenergy
impacts
remainscomplex.Introductionemergedasa
powerfultransformationalcatalystandthe
risingadoptionofdigitaleconomysolutions.
capableofautomatingtasksand
reinventingAI
is
revolutionizing
industries,
resultingGrowing
demand
for
AI
Overall
electricity
demandOther
Heavy
industryacross
industries
growth
driversinnovation,
increasingefficiencyandchanging
howother
growth
drivers
include
industrial
shifts
towardstoenablingcomplex
problem-solving,AI
isdrivingtheelectrificationof
bothtransport
and
buildings,societyoperates.
In
particular,generativeAI
haselectric
motors,
urbanization,
populationgrowthArtificial
intelligence
(AI)
istransformingseveralSeveral
marketfactorscontributeto
increasedperformanceandcompetitiveness.7
however,astechnologicaladvancementsandAI-relatedelectricitydemandgrowth
plays
inthe
contextofglobalenergy
trends.aspectsofdaily
life.
Fromautomatingsimpletasksglobalelectricitydemand.
Aside
from
AI
andprocessesacrossvaluechains,therebyenhancingProjectingAI-specificgrowth
is
challenging,Data
centres
6760
TWhArtificial
Intelligence,s
Energy
Paradox:BalancingChallengesandOpportunities6Source:
International
EnergyAgency(IEA).(2024).
WorldEnergyOutlook.differingadoption
ratescomplicate
predictions.While
Figure
1givessome
indication,furtherresearch
is
neededtoelucidatethe
rolethatanddatacentresensitivitycasesElectricitydemandgrowth,2023-30ElectricvehiclesOthertransportOther
buildingsSpace
heatingSpacecoolingOther
industryDesalinationElectricityconsumption
of
AIModeldeployment
isAI
smostenergy-intensive
stage(accountingforapproximately
60%)innovativestrategiescan
mitigateconsumption.*Insufficient
data
available
for
estimationSource:
Electric
Power
Research
Institute(EPRI).(2024).PoweringIntelligence:
Analyzing
ArtificialIntelligenceandDataCenter
EnergyConsumption.
InternationalEnergy
Agency(IEA).(2023).
Tracking
Data
Centres
and
Data
Transmission
Networks.https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks;
D.
Patterson
et
al.(2022).The
Carbon
Footprint
of
Machine
Learning
Training
Will
Plateau,Then
Shrink.
Computer,vol.
55,
no.
7,
pp.
18-28.
https://ieeexplore.ieee.org/document/9810097.Furtherresearchisneededto
estimate
consumption
forstages
1and5,howeverestimates
existfor
stages
2-4.Withinthesethreestages,modeldeploymentisthemostenergy-intensive(approximately60-70%
ofcombinedelectricityconsumption),butwilllikelycontinuegrowinginthelongterm.
Modeltraining
isthenextmostenergy-intensive,accountingfor20-40%ofconsumption,followedbymodeldevelopment
at
upto
10%.9
Theseestimateshowever,will
likelyvaryacrossdifferingAImodeltypes.TheAI
lifecycle
beginswith
planninganddatacollection,duringwhichdataisgathered,
processed
andstored.8
Next,the
modeldevelopment
phaseincludesdesign,
problemanalysisand
datapreparation.
Modeltrainingthenoptimizesthe
modelthrough
iterativedataexposure.
Model
deploymentsubsequentlyopensthemodel
for
real-worldapplication.
Lastly,
monitoringand
maintenancesupportongoing
refinement.1.1FIGURE2Stage5:Monitoringandmaintenance*</>Stage4:Deployment60%Stage
1:Planningand
datacollectionsonnature*The
AI
life
cycleArtificial
Intelligence,s
Energy
Paradox:BalancingChallengesandOpportunities7ElectricityconsumptionacrosstheAIlifecycleStage
2:Modeldevelopment10%Stage3:Modeltraining30%1C41253RacksSecurityTheroleofdata
centresHarnessing
powerfulservers,specialized
hardware
andadvanced
networkingcapabilities,datacentres
enablethehigh-speedcomputationsand
dataprocessing
requiredforAI.Withindatacentres,electricity
consumption
includesthree
maincomponents:10–ITequipment
(40-50%),
including
servers,
storageandnetwork
systems.Exampledatacentrelayout–Coolingsystems(30-40%)to
maintain
optimal
temperatures.–Auxiliarycomponents(10-30%),
including
power
supplies,securityand
lighting.Notethatthese
proportionswillevolveovertime
as
AI
use
becomes
more
prevalent.1.2FIGURE3
Enginegenerators
*UninterruptiblepowersupplySource:Vianova.(n.d.).Data
Center
offer.https://www.vianova.it/en/data-center/. Fire
system
HoldandcoldaislesArtificial
Intelligence,s
Energy
Paradox:BalancingChallengesandOpportunities8UPS*
Cooling
DSource:
International
Energy
Agency(IEA);Goldman;Accenture.Enabling
a
more
energy
efficient
AI
system
includesexploringopportunitieswithindatacentrestoreduce
electricityconsumption.Accordingly,anon-exhaustive
inventoryofexamplestrategiesareexploredbelow.DatamanagementstrategiesWithinAI’sfirststage(planningand
data
collection),
“digitaldecarbonization”techniquescanaddressNon-AIdemand(TWh)
AI
demand
(TWh)Note:This
is
an
extrapolated
scenario
that
extends
the
IEA’s
forecast
from
2023to2026
through2030
using
a
combination
of
2021-2023
historical
growth
andtheir
proposed
growth
rate
from
2023-2026.“darkdata”,whichoccupiesserver
space
and
consumeselectricitywithout
providingvalue.Forsomeorganizations,darkdata
may
account
forasmuch
as
60-75%
ofstored
data.11Digitaldecarbonizationstrategiescan
identifyand
eliminatedarkdata,
reducingstorageand
electricity
consumption.Opportunities
mayalsoexisttorepurposedarkdatato
generatevalue.FIGURE4Data
centre
demand
over
timeDatacentredemand(TWh):
Non-AI
versusAITABLE1Featured
data
management
use
caseLoughboroughUniversity:automotiveindustrycollaboration:
unlockingdarkdataforsustainable
industrial
maintenance1.3Opportunities
to
reduce
AIsystemelectricityconsumptionResultsIntotal,
10-20%of
dark
datawastransformed
intoactionable
knowledge,improvingfaultanalysisand
maintenance,enhancingdata
reliability,
reducingdowntime,
loweringtheenvironmentalfootprint
andhighlightingwaste
data.ApproachA
knowledge
managementsystemwithdatascrapingand
enrichmenttechniqueswasdevelopedto
integrateand
structuredarkdata,organizing
it
intovaluable
datasetsfordecision-making,andwaste
categoriesfor
disposal.This
increasedenergy
intensity,
however,
isaccompanied
bytheadditional
benefitsthatcapabilities
likegenerativeAIcan
provide,
including
theabilityto
perform
morecomplexworkandtoenableexpandedvalueopportunities.14001200100080060040020002023Datacentreconsumption
includes
bothAIand
non-AIelements.AI
processing,
particularly
forgenerativeAI,
is
moreenergy-intensivedueto
large
modelcomplexity,
longertraining
durationsandsubstantialdata
processing.Situation/context“Darkdata”
remained
instorage,
underuseddueto
poorlystructuredformats.2024
2025
2026
2027
2028
2029
2030Artificial
Intelligence,s
Energy
Paradox:BalancingChallengesandOpportunities9Source:Communityconsultation.SAP:Aiming
for“green”data
centresApproachSAPdatacentres
track
resource
use
andminimiz
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 喚醒護理的培訓與教育
- 大豐市小海中學高二生物三同步課程講義第講生態(tài)系統(tǒng)的信息傳遞
- 2025年辦公自動化設備租賃合同(公司)
- 《PCB 電路板智能化專用設備運維技術規(guī)范》標準征求意見稿
- 大數據驅動的風險管理模型
- 鼻竇炎患者的心理護理
- 金融系統(tǒng)對抗攻擊的防御策略
- 土地整治優(yōu)化
- 房顫冷凍消融治療與及進展
- 2026 年中職康復治療技術(關節(jié)松動訓練)試題及答案
- 學堂在線 臨床中成藥應用 章節(jié)測試答案
- 物流協(xié)會管理辦法
- 跑步健康課件圖片
- 醫(yī)用耗材管理辦法原文
- 高州市緬茄杯數學試卷
- 傳承紅色基因鑄就黨紀之魂建黨104周年七一黨課
- 詩詞大會搶答題庫及答案
- 立式油罐知識培訓課件
- 口腔健康科普指南
- 2025年《智能客戶服務實務》課程標準
- 公司便民雨傘管理制度
評論
0/150
提交評論