版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
云南省建水縣四校2025年高一上數(shù)學期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在數(shù)學中,布勞威爾不動點定理是拓撲學里一個非常重要的不動點定理,它可應用到有限維空間,并構(gòu)成一般不動點定理的基石,布勞威爾不動點定理得名于荷蘭數(shù)學家魯伊茲·布勞威爾(L.E.J.Brouwer),簡單的講就是對于滿足一定條件的連續(xù)函數(shù),存在點,使得,那么我們稱該函數(shù)為“不動點”函數(shù),下列為“不動點”函數(shù)的是()A. B.C. D.2.設,則a,b,c的大小關系為()A. B.C. D.3.已知函數(shù),下面關于說法正確的個數(shù)是()①的圖象關于原點對稱②的圖象關于y軸對稱③的值域為④在定義域上單調(diào)遞減A.1 B.2C.3 D.44.中國宋代的數(shù)學家秦九韶曾提出“三斜求積術(shù)”,即假設在平面內(nèi)有一個三角形,邊長分別為,,,三角形的面積可由公式求得,其中為三角形周長的一半,這個公式也被稱為海倫秦九韶公式,現(xiàn)有一個三角形的邊長滿足,,則此三角形面積的最大值為()A.6 B.C.12 D.5.函數(shù)在上最大值與最小值之和是()A. B.C. D.6.某幾何體的三視圖如圖所示,則該幾何體的表面積等于A. B.C. D.157.已知方程的兩根為與,則()A.1 B.2C.4 D.68.角的終邊落在A.第一象限 B.第二象限C.第三象限 D.第四象限9.已知函數(shù),且在內(nèi)有且僅有兩個不同的零點,則實數(shù)的取值范圍是A. B.C. D.10.已知圓與直線及都相切,圓心在直線上,則圓的方程為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)若關于x的方程有4個解,分別為,,,,其中,則______,的取值范圍是______12.如圖,在平面直角坐標系中,矩形的頂點、分別在軸非負半軸和軸的非負半軸上滑動,頂點在第一象限內(nèi),,,設.若,則點的坐標為______;若,則的取值范圍為______.13.向量在邊長為1的正方形網(wǎng)格中的位置如圖所示,則__________14.已知A,B,C為的內(nèi)角.(1)若,求的取值范圍;(2)求證:;(3)設,且,,,求證:15.設則__________.16.已知是偶函數(shù),且方程有五個解,則這五個解之和為______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.函數(shù)的最小值為.(1)求;(2)若,求a及此時的最大值.18.已知集合,.(1)若,求;(2)若“”是“”的充分不必要條件,求實數(shù)a的取值范圍.19.已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)在有且僅有兩個零點,求實數(shù)取值范圍.20.已知,,()求及()若的最小值是,求的值21.在正方體中挖去一個圓錐,得到一個幾何體,已知圓錐頂點為正方形的中心,底面圓是正方形的內(nèi)切圓,若正方體的棱長為.(1)求挖去的圓錐的側(cè)面積;(2)求幾何體的體積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)已知定義,將問題轉(zhuǎn)化為方程有解,然后逐項進行求解并判斷即可.【詳解】根據(jù)定義可知:若有不動點,則有解.A.令,所以,此時無解,故不是“不動點”函數(shù);B.令,此時無解,,所以不是“不動點”函數(shù);C.當時,令,所以或,所以“不動點”函數(shù);D.令即,此時無解,所以不是“不動點”函數(shù).故選:C.2、D【解析】根據(jù)指數(shù)函數(shù)的性質(zhì)求得,,根據(jù)對數(shù)函數(shù)的性質(zhì)求得,即可得到答案.【詳解】由題意,根據(jù)指數(shù)函數(shù)的性質(zhì),可得,由對數(shù)函數(shù)的性質(zhì),知,即所以.故選:D3、B【解析】根據(jù)函數(shù)的奇偶性定義判斷為奇函數(shù)可得對稱性,化簡解析式,根據(jù)指數(shù)函數(shù)的性質(zhì)可得單調(diào)性和值域.【詳解】因為的定義域為,,即函數(shù)為奇函數(shù),所以函數(shù)的圖象關于原點對稱,即①正確,②不正確;因為,由于單調(diào)遞減,所以單調(diào)遞增,故④錯誤;因為,所以,,即函數(shù)的值域為,故③正確,即正確的個數(shù)為2個,故選:B.【點睛】關鍵點點睛:理解函數(shù)的奇偶性和常見函數(shù)單調(diào)性簡單的判斷方式.4、B【解析】根據(jù)海倫秦九韶公式和基本不等式直接計算即可.【詳解】由題意得:,,當且僅當,即時取等號,故選:B5、A【解析】直接利用的范圍求得函數(shù)的最值,即可求解.【詳解】∵,∴,∴,∴最大值與最小值之和為,故選:.6、B【解析】根據(jù)三視圖可知,該幾何體為一個直四棱柱,底面是直角梯形,兩底邊長分別為,高為,直四棱柱的高為,所以底面周長為,故該幾何體的表面積為,故選B考點:1.三視圖;2.幾何體的表面積7、D【解析】由一元二次方程的根與系數(shù)的關系得出兩根的和與積,再湊配求解【詳解】顯然方程有兩個實數(shù)解,由題意,,所以故選:D8、A【解析】根據(jù)角的定義判斷即可【詳解】,故為第一象限角,故選A【點睛】判斷角的象限,將大角轉(zhuǎn)化為一個周期內(nèi)的角即可9、C【解析】由,即,分別作出函數(shù)和的圖象如圖,由圖象可知表示過定點的直線,當過時,此時兩個函數(shù)有兩個交點,當過時,此時兩個函數(shù)有一個交點,所以當時,兩個函數(shù)有兩個交點,所以在內(nèi)有且僅有兩個不同的零點,實數(shù)的取值范圍是,故選C.10、B【解析】圓的圓心在直線上,設圓心為.圓與直線及都相切,所以,解得.此時半徑為:.所以圓的方程為.故選B.二、填空題:本大題共6小題,每小題5分,共30分。11、①.1②.【解析】作出圖象,將方程有4個解,轉(zhuǎn)化為圖象與圖象有4個交點,根據(jù)二次函數(shù)的對稱性,對數(shù)函數(shù)的性質(zhì),可得的、的范圍與關系,結(jié)合圖象,可得m的范圍,綜合分析,即可得答案.【詳解】作出圖象,由方程有4個解,可得圖象與圖象有4個交點,且,如圖所示:由圖象可知:且因為,所以,由,可得,因為,所以所以,整理得;當時,令,可得,由韋達定理可得所以,因為且,所以或,則或,所以故答案為:1,【點睛】解題的關鍵是將函數(shù)求解問題,轉(zhuǎn)化為圖象與圖象求交點問題,再結(jié)合二次函數(shù),對數(shù)函數(shù)的性質(zhì)求解即可,考查數(shù)形結(jié)合,分析理解,計算化簡的能力,屬中檔題.12、①.②.【解析】分別過點作、軸的垂線,垂足點分別為、,過點分別作、軸的垂線,垂足點分別為、,設點、,根據(jù)銳角三角函數(shù)的定義可得出點、的坐標,然后利用平面向量數(shù)量積的坐標運算和二倍角的正弦公式可求出的取值范圍.【詳解】分別過點作、軸的垂線,垂足點分別為、,過點分別作、軸的垂線,垂足點分別為、,如下圖所示:則,設點、,則,,,.當時,,,則點;由上可知,,,則,因此,的取值范圍是.故答案為:;.【點睛】本題考查點的坐標的計算,同時也考查了平面向量數(shù)量積的取值范圍的求解,解題的關鍵就是將點的坐標利用三角函數(shù)表示,考查運算求解能力,屬于中等題.13、3【解析】由題意可知故答案為314、(1)(2)證明見解析(3)證明見解析【解析】(1)根據(jù)兩角和的正切公式及均值不等式求解;(2)先證明,再由不等式證明即可;(3)找出不等式的等價條件,換元后再根據(jù)函數(shù)的單調(diào)性構(gòu)造不等式,利用不等式性質(zhì)即可得證.【小問1詳解】,為銳角,,,解得,當且僅當時,等號成立,即.【小問2詳解】在中,,,,.【小問3詳解】由(2)知,令,原不等式等價為,在上為增函數(shù),,,同理可得,,,,故不等式成立,問題得證.【點睛】本題第3問的證明需要用到,換元后轉(zhuǎn)換為,再構(gòu)造不等式是證明的關鍵,本題的難點就在利用函數(shù)單調(diào)性構(gòu)造出不等式.15、【解析】先求,再求的值.【詳解】由分段函數(shù)可知,.故答案為:【點睛】本題考查分段函數(shù)求值,屬于基礎題型.16、【解析】根據(jù)函數(shù)的奇偶性和圖象變換,得到函數(shù)的圖象關于對稱,進而得出方程其中其中一個解為,另外四個解滿足,即可求解.【詳解】由題意,函數(shù)是偶函數(shù),可函數(shù)的圖象關于對稱,根據(jù)函數(shù)圖象的變換,可得函數(shù)的圖象關于對稱,又由方程有五個解,則其中一個解為,不妨設另外四個解分別為且,則滿足,即,所以這五個解之和為.故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2),的最大值5【解析】(1)通過配方得,再通過對范圍的討論,利用二次函數(shù)的單調(diào)性即可求得;(2)由于,對分與進行討論,即可求得的值及的最大值【小問1詳解】∵,∴,且,∴若,即,當時,;若,即,當時,;若,即,當時,.綜上所述,.【小問2詳解】∵,∴若,則有,得,與矛盾;若,則有,即,解得或(舍),∴時,,即,∵,∴當時,取得最大值5.18、(1)(2),【解析】(1)時,求出集合,,由此能求出;(2)推導出,求出集合,列出不等式能,能求出實數(shù)的取值范圍【小問1詳解】時,集合,;【小問2詳解】若“”是“”的充分不必要條件,則,集合,,解得,實數(shù)的取值范圍是,19、(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2)【解析】(1)先由三角恒等變換化簡解析式,再由正弦函數(shù)的性質(zhì)得出單調(diào)區(qū)間;(2)由的單調(diào)性結(jié)合零點的定義求出實數(shù)的取值范圍.【小問1詳解】由得故函數(shù)的單調(diào)遞增區(qū)間為.由得故函數(shù)的單調(diào)遞減區(qū)間為【小問2詳解】由(1)可知,在上為增函數(shù),在上為減函數(shù)由題意可知:,即,解得,故實數(shù)的取值范圍為.20、(1);(2).【解析】(1)利用平面向量的數(shù)量積公式、模長公式求解;(2)將的值域,轉(zhuǎn)化為關于的一元二次函數(shù)的值域,根據(jù)【詳解】(1),,(2),,,,當時,當且僅當時,取最小值,解得;當時,當且僅當時,取最小值,解得(舍);當時,當且僅當時,取最小值,解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 苗圃移交協(xié)議書
- 苗木調(diào)解協(xié)議書
- 蜜蜂仔簽協(xié)議書
- 融資協(xié)議書合同
- 解除協(xié)議幾份合同
- 設立分會協(xié)議書
- 評審費用協(xié)議書
- 請假免責協(xié)議書
- 家政派遣合同范本
- 廢料回收合同范本
- 工程造價審計服務投標方案(技術(shù)方案)
- 工控網(wǎng)管理制度
- 液氧泄露應急預案演練方案
- 測量年終工作總結(jié)
- 博士論文寫作精解
- 10年寶馬320i使用說明書
- NB/T 11431-2023土地整治煤矸石回填技術(shù)規(guī)范
- 演講與口才-形成性考核二-國開(HB)-參考資料
- 水稻種植天氣指數(shù)保險條款
- FZ∕T 12013-2014 萊賽爾纖維本色紗線
- “超級電容器”混合儲能在火電廠AGC輔助調(diào)頻中的應用實踐分析報告-培訓課件
評論
0/150
提交評論