版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省井研中學2025-2026學年高二數(shù)學第一學期期末檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如果橢圓上一點到焦點的距離等于6,則線段的中點到坐標原點的距離等于()A.7 B.10C.12 D.142.拋物線的準線方程為()A B.C. D.3.若、、為空間三個單位向量,,且與、所成的角均為,則()A.5 B.C. D.4.經(jīng)過點且圓心是兩直線與的交點的圓的方程為()A. B.C. D.5.設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是A.y與x具有正的線性相關關系B.回歸直線過樣本點中心(,)C.若該大學某女生身高增加1cm,則其體重約增加0.85kgD.若該大學某女生身高為170cm,則可斷定其體重必為58.79kg6.運行如圖所示程序后,輸出的結果為()A.15 B.17C.19 D.217.直線經(jīng)過兩點,那么其斜率為()A. B.C. D.8.從編號為1~120的商品中利用系統(tǒng)抽樣的方法抽8件進行質檢,若所抽樣本中含有編號66的商品,則下列編號一定被抽到的是()A.111 B.52C.37 D.89.已知數(shù)列滿足,則()A.2 B.C.1 D.10.已知數(shù)列滿足:對任意的均有成立,且,,則該數(shù)列的前2022項和()A0 B.1C.3 D.411.橢圓的左、右焦點分別為,過焦點的傾斜角為直線交橢圓于兩點,弦長,若三角形的內切圓的面積為,則橢圓的離心率為()A. B.C. D.12.設是雙曲線的一個焦點,,是的兩個頂點,上存在一點,使得與以為直徑的圓相切于,且是線段的中點,則的漸近線方程為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,棱長為2的正方體中,E,F(xiàn)分別為棱、的中點,G為面對角線上一個動點,則三棱錐的外接球表面積的最小值為___________.14.過點作圓的切線l,直線與l平行,則直線l過定點_________,與l間的距離為____________15.已知是首項為,公差為1的等差數(shù)列,數(shù)列滿足,若對任意的,都有成立,則實數(shù)的取值范圍是________16.已知圓:,:.則這兩圓的連心線方程為_________(答案寫成一般式方程)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某高校自主招生考試分筆試與面試兩部分,每部分考試成績只記“通過”與“不通過”,兩部分考試都“通過”者,則考試“通過”,并給予錄取.甲、乙兩人在筆試中“通過”的概率依次為,在面試中“通過”的概率依次為,筆試和面試是否“通過”是獨立的,那么(1)甲、乙兩人都參加此高校的自主招生考試,誰獲得錄取的可能性大?(2)甲、乙兩人都參加此高校的自主招生考試,求恰有一人獲得錄取的概率.18.(12分)如圖,在四棱錐中,側面底面,是以為斜邊的等腰直角三角形,,,,點E為的中點.(1)證明:平面;(2)求二面角的余弦值.19.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,側棱底面ABCD,,,E為PB中點,F(xiàn)為PC上一點,且(1)求證:;(2)求平面DEF與平面ABCD所成銳二面角的余弦值20.(12分)如圖,在正四棱柱中,是上的點,滿足為等邊三角形.(1)求證:平面;(2)求點到平面的距離.21.(12分)平行六面體,(1)若,,,,,,求長;(2)若以頂點A為端點的三條棱長均為2,且它們彼此的夾角都是60°,則AC與所成角的余弦值22.(10分)已知拋物線的焦點為,直線與拋物線交于,兩點,且(1)求拋物線的方程;(2)若,是拋物線上一點,過點的直線與拋物線交于,兩點(均與點不重合),設直線,的斜率分別為,,求證:為定值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】可由橢圓方程先求出,在利用橢圓的定義求出,利用已知求解出,再取的中點,連接,利用中位線,即可求解出線段的中點到坐標原點的距離.【詳解】因為橢圓,,所以,結合得,,取的中點,連接,所以為的中位線,所以.故選:A.2、D【解析】根據(jù)拋物線方程求出,進而可得焦點坐標以及準線方程.【詳解】由可得,所以焦點坐標為,準線方程為:,故選:D.3、C【解析】先求的平方后再求解即可.【詳解】,故,故選:C4、B【解析】求出圓心坐標和半徑后,直接寫出圓的標準方程.【詳解】由得,即所求圓的圓心坐標為.由該圓過點,得其半徑為1,故圓的方程為.故選:B.【點睛】本題考查了圓的標準方程,屬于基礎題.5、D【解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關關系,A正確;回歸直線過樣本點的中心(),B正確;該大學某女生身高增加1cm,預測其體重約增加0.85kg,C正確;該大學某女生身高為170cm,預測其體重約為0.85×170﹣85.71=58.79kg,D錯誤故選D6、D【解析】根據(jù)給出的循環(huán)程序進行求解,直到滿足,輸出.【詳解】,,,,,,,,,,,,所以.故選:D7、B【解析】由兩點的斜率公式可得答案.【詳解】直線經(jīng)過兩點,則故選:B8、A【解析】先求出等距抽樣的組距,從而得到被抽到的是,從而求出答案.【詳解】120件商品中抽8件,故,因為含有編號66的商品被抽到,故其他能被抽到的是,當時,,其他三個選項均不合要求,故選:A9、D【解析】首先得到數(shù)列的周期,再計算的值.【詳解】由條件,可知,兩式相加可得,即,所以數(shù)列是以周期為的周期數(shù)列,.故選:D10、A【解析】根據(jù)可知,數(shù)列具有周期性,即可解出【詳解】因為,所以,即,所以數(shù)列中的項具有周期性,,由,,依次對賦值可得,,一個周期內項的和為零,而,所以數(shù)列的前2022項和故選:A11、C【解析】由題可得直線AB的方程,從而可表示出三角形面積,又利用焦點三角形及三角形內切圓的性質,也可表示出三角形面積,則橢圓的離心率即求.【詳解】由題知直線AB的方程為,即,∴到直線AB距離,又三角形的內切圓的面積為,則半徑為1,由等面積可得,.故選:C.12、C【解析】根據(jù)圖形的幾何特性轉化成雙曲線的之間的關系求解.【詳解】設另一焦點為,連接,由于是圓的切線,則,且,又是的中點,則是的中位線,則,且,由雙曲線定義可知,由勾股定理知,,,即,漸近線方程為,所以漸近線方程為故選C.【點睛】本題考查雙曲線的簡單的幾何性質,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】以DA,DC,分別為x軸,y軸,z軸建系,則,設,球心,得到外接球半徑關于的函數(shù)關系,求出的最小值,即可得到答案;【詳解】解:以DA,DC,分別為x軸,y軸,z軸建系.則,設,球心,,又.聯(lián)立以上兩式,得,所以時,,為最小值,外接球表面積最小值為.故答案為:.14、①.②.##2.4【解析】利用直線與平行,結合切線的性質求出切線的方程,即可確定定點坐標,再利用兩條平行線間的距離公式求兩線距離.【詳解】由題意,直線斜率,設直線的方程為,即∴直線l過定點,由與圓相切,得,解得,∴的方程為,的方程為,則兩直線間的距離為故答案為:;.15、【解析】先求得,再得出,對于任意的,都有成立,說明是中的最小項【詳解】由題意,∴,易知函數(shù)在和上都是減函數(shù),且時,,即,時,,,由題意對于任意的,都有成立,則是最小項,∴,解得,故答案為:16、【解析】求出兩圓的圓心坐標,再利用兩點式求出直線方程,再化成一般式即可【詳解】解:圓,即,兩圓的圓心為:和,這兩圓的連心線方程為:,即故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)甲獲得錄取的可能性大;(2)【解析】(1)利用獨立事件的乘法公式求出甲、乙兩人被錄取的概率并比較大小,即得結果.(2)應用對立事件、獨立事件的概率求法,結合互斥事件的加法公式求恰有一人獲得錄取的概率.【小問1詳解】記“甲通過筆試”為事件,“甲通過面試”為事件,“甲獲得錄取”為事件A,“乙通過筆試”為事件,“乙通過面試”為事件,“乙獲得錄取”為事件B,則,,即,所以甲獲得錄取的可能性大.【小問2詳解】記“甲乙兩人恰有一人獲得錄取”為事件C,則.18、(1)見解析;(2)【解析】(1)用線線平行證明線面平行,∴在平面PCD內作BE的平行線即可;(2)求二面角的大小,可以用空間向量進行求解,根據(jù)已知條件,以AD中點O為原點,OB,AD,OP分別為x、y、z軸建立坐標系﹒【小問1詳解】如圖,取PD中點F,連接EF,F(xiàn)C﹒∵E是AP中點,∴EFAD,由題知BCAD,∴BCEF,∴BCFE是平行四邊形,∴BE∥CF,又CF平面PCD,BE平面PCD,∴BE∥平面PCD;【小問2詳解】取AD中點O,連接OP,OB,∵是以為斜邊等腰直角三角形,∴OP⊥AD,又平面平面,平面PAD∩平面=AD,∴OP⊥平面ABCD,∵OB平面ABCD,∴OP⊥OB,由BC∥AD,CD⊥AD,AD=2BC知OB⊥OD,∴OP、OB、OD兩兩垂直,故以O原點,OB、OD、OP分別為x、y、z軸,建立空間直角坐標系Oxyz,如圖:設|BC|=1,則B(1,0,0),D(0,1,0),E(0,),P(0,0,1),則,設平面BED的法向量為,平面PBD的法向量為則,取,,取設二面角的大小為θ,則cosθ=﹒19、(1)證明見解析(2)【解析】(1)依題意可得,再由,即可得到平面,從而建立空間直角坐標系,利用空間向量法證明即可;(2)利用空間向量法求出二面角的余弦值;【小問1詳解】證明:因為平面,平面,平面,則,,又,因為,,平面,所以平面,故以點為坐標原點,建立空間直角坐標系如圖所示,則,0,,,0,,,1,,,1,,,0,,,所以,則,所以,故;【小問2詳解】解:解:因為,設平面的法向量為,則,即,令,則,,故,因為底面,所以的一個法向量為,所以,故平面與平面夾角的余弦值為20、(1)證明見解析;(2).【解析】(1)根據(jù)題意證明,,然后根據(jù)線面垂直的判定定理證明問題;(2)結合(1),進而利用等體積法求得答案.【小問1詳解】由題意,,為等邊三角形,,∵平面ABCD,∴,則,即為中點.連接,∵平面,平面,∴,易得,則,又,于是,即,同理,即,又平面.【小問2詳解】設M到平面的距離為d,,∴.易得,取BD的中點N,連接,則,所以,,所以,,.即M到平面的距離為1.21、(1);(2).【解析】(1)由,可得,再利用數(shù)量積運算性質即可得出;(2)以為一組基底,設與所成的角為,由求解.【小問1詳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025河南輕工職業(yè)學院招聘工作人員(碩士)46人考試筆試備考試題及答案解析
- 健康保險業(yè)務崗位的面試題集及答案
- 軟件測試面試常見問題及應對策略
- 辦公室文員面試高分技巧及標準答案解析
- 2025廣西桂林電子科技大學第二批教職人員控制數(shù)工作人員招聘32人筆試考試備考試題及答案解析
- 中化控股副總經(jīng)理管理能力考試題集含答案
- 2025年溫州甌海區(qū)仙巖街道社區(qū)衛(wèi)生服務中心面向社會公開招聘考試筆試模擬試題及答案解析
- 華為軟件開發(fā)工程師面試題集及答案
- 景區(qū)管理員面試題及答案
- 基金投資分析與策略考試題集
- 2025中原農業(yè)保險股份有限公司招聘67人筆試備考重點試題及答案解析
- 2025中原農業(yè)保險股份有限公司招聘67人備考考試試題及答案解析
- 2025年度河北省機關事業(yè)單位技術工人晉升高級工考試練習題附正確答案
- 交通運輸布局及其對區(qū)域發(fā)展的影響課時教案
- 2025年中醫(yī)院護理核心制度理論知識考核試題及答案
- GB/T 17981-2025空氣調節(jié)系統(tǒng)經(jīng)濟運行
- 比亞迪儲能項目介紹
- 2025年9月廣東深圳市福田區(qū)事業(yè)單位選聘博士11人備考題庫附答案
- 糖尿病足潰瘍VSD治療創(chuàng)面氧自由基清除方案
- 《公司治理》期末考試復習題庫(含答案)
- 自由職業(yè)者項目合作合同協(xié)議2025年
評論
0/150
提交評論