2025年下學期高一數(shù)學解決問題能力試題(二)_第1頁
2025年下學期高一數(shù)學解決問題能力試題(二)_第2頁
2025年下學期高一數(shù)學解決問題能力試題(二)_第3頁
2025年下學期高一數(shù)學解決問題能力試題(二)_第4頁
2025年下學期高一數(shù)學解決問題能力試題(二)_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025年下學期高一數(shù)學解決問題能力試題(二)一、函數(shù)與實際應(yīng)用(共30分)1.環(huán)境保護中的函數(shù)模型(15分)某工廠為減少碳排放,計劃投入資金進行技術(shù)改造。已知改造后碳排放減少量(y)(噸/月)與投入資金(x)(萬元)的函數(shù)關(guān)系為(y=kx+b)。當投入10萬元時,每月減少碳排放30噸;投入20萬元時,每月減少碳排放50噸。(1)求(k)和(b)的值,并解釋其實際意義;(2)若該工廠每月可用于改造的資金不超過50萬元,求最多可減少的碳排放量;(3)已知每噸碳排放權(quán)交易價格為120元,若工廠希望通過減排獲得每月不低于4000元的收益(收益=減排量×碳價-投入資金),求投入資金(x)的取值范圍。2.物流優(yōu)化問題(15分)某電商企業(yè)計劃在A、B兩地建立倉庫,向甲、乙兩個配送中心供貨。已知A倉庫最多可存儲1200件商品,B倉庫最多可存儲800件商品。甲配送中心每日需600件,乙配送中心每日需1000件。從A倉庫向甲、乙配送的單位運費分別為10元/件和15元/件;從B倉庫向甲、乙配送的單位運費分別為12元/件和8元/件。設(shè)從A倉庫向甲配送中心運輸(x)件商品,每日總運費為(z)元。(1)寫出(z)關(guān)于(x)的函數(shù)關(guān)系式,并求出定義域;(2)當(x)為何值時,總運費最低?最低運費是多少?(3)若乙配送中心的需求量增加200件,其他條件不變,重新計算最低運費。二、數(shù)列與數(shù)學建模(共30分)3.人口增長預(yù)測(15分)某城市2025年初人口為100萬,根據(jù)統(tǒng)計數(shù)據(jù),人口年增長率為1.2%,且每年新增就業(yè)崗位數(shù)量與當年人口數(shù)量成正比,比例系數(shù)為0.005。設(shè)第(n)年初的人口為(a_n)萬,新增就業(yè)崗位為(b_n)萬個。(1)寫出數(shù)列({a_n})的遞推公式,并判斷其類型;(2)求2030年初的人口數(shù)量(精確到0.1萬);(3)計算從2025年到2030年新增就業(yè)崗位的總和。4.設(shè)備折舊問題(15分)某工廠購買一臺生產(chǎn)設(shè)備,原價80萬元,預(yù)計使用壽命5年,殘值5萬元。(1)若采用直線折舊法(每年折舊額相同),求第(n)年的設(shè)備價值(v_n)((1\leqn\leq5));(2)若采用雙倍余額遞減法(年折舊率為直線法的2倍,最后兩年改為直線折舊),求第3年末的設(shè)備價值;(3)已知設(shè)備每年的維護費用與設(shè)備價值成正比,比例系數(shù)為0.02。分別計算兩種折舊方式下5年的總維護費用,并比較哪種方式更經(jīng)濟。三、立體幾何與空間想象(共25分)5.倉儲貨架設(shè)計(15分)某倉庫貨架為正四棱柱結(jié)構(gòu),底面邊長為2米,高為5米。貨架分為3層,每層高度相等,層間有水平隔板。(1)求貨架的體積和表面積(不考慮隔板面積);(2)若在貨架頂部安裝一個監(jiān)控攝像頭,能覆蓋貨架內(nèi)部所有區(qū)域,求攝像頭的安裝位置(需說明理由);(3)若將貨架底面邊長增加(x)米((x>0)),高不變,當體積增加20立方米時,求(x)的值,并計算此時貨架的側(cè)面積。6.空間幾何體體積計算(10分)一個幾何體由圓柱和圓錐組成,圓柱底面半徑為3厘米,高為8厘米,圓錐底面與圓柱上底面重合,頂點到底面的距離為6厘米。(1)求該幾何體的體積;(2)若將圓錐替換為同底的半球,求新幾何體的表面積。四、概率統(tǒng)計與數(shù)據(jù)分析(共25分)7.產(chǎn)品質(zhì)量檢測(15分)某工廠生產(chǎn)的電子元件分為A、B、C三個等級,合格率分別為98%、95%、90%,三個等級的產(chǎn)量占比分別為60%、30%、10%。(1)從該廠產(chǎn)品中隨機抽取一件,求該產(chǎn)品為合格品的概率;(2)若已知抽取的產(chǎn)品為合格品,求其為A等級的概率;(3)現(xiàn)隨機抽取10件產(chǎn)品,設(shè)其中合格品數(shù)量為(X),求(X)的數(shù)學期望和方差。8.學習時間與成績相關(guān)性分析(10分)某班級40名學生的每周數(shù)學學習時間(單位:小時)與期末成績(單位:分)的統(tǒng)計數(shù)據(jù)如下表:學習時間區(qū)間[0,5)[5,10)[10,15)[15,20]人數(shù)515128平均成績55688290(1)計算該班級的平均學習時間和平均成績;(2)根據(jù)數(shù)據(jù)判斷學習時間與成績的相關(guān)性(正相關(guān)/負相關(guān)/無相關(guān)),并說明理由。五、三角函數(shù)與優(yōu)化(共20分)9.建筑遮陽設(shè)計(10分)某建筑窗戶高度為2米,在窗戶上方安裝一個水平遮陽板,遮陽板寬度為(L)米,與窗戶上沿的垂直距離為0.5米。當太陽光線與水平面夾角為(\theta)時,遮陽板在窗戶上的投影高度為(h)米,滿足(h=0.5\tan\theta-L)((0<\theta<\frac{\pi}{2}))。(1)若夏至日正午太陽高度角(\theta=75^\circ),要使投影高度(h=0),求遮陽板寬度(L);(2)若遮陽板寬度(L=1)米,求當(\theta=60^\circ)時的投影高度,并判斷此時陽光是否會直射到窗戶底部(窗戶底部到地面高度為1米)。10.運動軌跡問題(10分)一個物體在平面直角坐標系中運動,其位置坐標((x,y))隨時間(t)(秒)的變化規(guī)律為:(x=2\cost),(y=\sint)((t\geq0))。(1)判斷該物體的運動軌跡類型,并求出軌跡方程;(2)求(t=\frac{\pi}{4})時物體的速度方向(用與x軸正方向的夾角表示)。六、綜合應(yīng)用與創(chuàng)新(共30分)11.新能源汽車續(xù)航優(yōu)化(15分)某新能源汽車電池容量為60kWh,在勻速行駛時,耗電量(單位:kWh/百公里)與速度(v)(單位:km/h)的關(guān)系為(C(v)=0.01v^2-0.5v+20)((20\leqv\leq100))。(1)求耗電量最低時的速度;(2)若汽車以60km/h的速度行駛,續(xù)航里程是多少?(續(xù)航里程=電池容量/耗電量×100)(3)若行駛過程中存在逆風阻力,耗電量增加(0.005v)kWh/百公里,求此時的最低耗電量及對應(yīng)速度。12.校園綠化規(guī)劃(15分)某校計劃在一塊長100米、寬80米的矩形空地上進行綠化,規(guī)劃如下:中央建一個圓形花壇,半徑為(r)米;花壇周圍鋪設(shè)寬度為2米的環(huán)形步道;剩余區(qū)域種植草坪,草坪面積不低于總面積的60%。(1)寫出草坪面積(S)關(guān)于(r)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論