版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川省宜賓市長(zhǎng)寧縣2024-2025學(xué)年八年級(jí)上學(xué)期11月期中數(shù)學(xué)試題
一、選擇題(本大題12小題,每題4分,共48分)
1.Q的算術(shù)平方根是2,貝必的值是()
A.2B.4C.-4D.±4
2.2022年10月9日,我國(guó)發(fā)射“夸父一號(hào)''科學(xué)衛(wèi)星對(duì)太陽(yáng)進(jìn)行探測(cè).這次發(fā)射“夸父一號(hào)''將利用太陽(yáng)活動(dòng)
峰年的契機(jī)對(duì)太陽(yáng)進(jìn)行觀測(cè).地球的體積約為1(?2立方千米,太陽(yáng)的體積約為地球體積的14x105倍,則太
陽(yáng)的體積是()立方千米.
A.1.4x1018B.1.4x1017C.1.4x10sD.1.4x107
3.在3.14,等V3,V8,7C,企,4.141141114中,無(wú)理數(shù)的個(gè)是()
A.1個(gè)B.2個(gè)C.3個(gè)D.5個(gè)
4.下列各式中,正確的是()
A.a4-a3=a12B.Q4?Q3=Q7C.a4+a3=a7D.
5.下列四個(gè)從左到右的變形中,是因式分解的是()
A.(2X+1)(2X-1)=4X2-1B.x2+2x-3=x(x+2)-3
C.ab-a-b+l=(a-l)(b-1)D.m2—2m—3=m(m—2—
6.已知△ABC和△DEF,下列條件中,不能保證^ABC^ADEF的是()
A.AB=DE,AC=DF,BC=EFB.ZA=ZD,ZB=ZE,AC=DF
C.AB=DE,AC=DF,ZA=ZDD.AB=DE,BC=EF,ZC=ZF
7.已知2x+5y-3=0,則4*?32,的值是()
A.16B.64C.6D.8
8.若褥萬(wàn)5々1.554,V375?3.347.MV3750?)
A.33.47B.15.54c.155.4D.334.7
9.某同學(xué)在計(jì)算一3x乘一個(gè)多項(xiàng)式時(shí)錯(cuò)將乘法做成了加法,得到的答案是3/-3/+3x,由此可以推斷出
正確的計(jì)算結(jié)果是()
A.-9x4+9x3-18x2B.-12x4+3x3-3x2
C.-x4+4%-1D.x4-4x4-1
10.如圖,陰影部分是邊長(zhǎng)為a的大正方形中剪去一個(gè)邊長(zhǎng)為b的小正方形后所得到的圖形,將陰影部分通
過(guò)割、拼,形成新的圖形,給出下列四種割拼方法,其中能夠驗(yàn)證平方差公式的有()
第1頁(yè)
圖①圖②
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
11.已知a、b滿(mǎn)足等式%=Q2+墳+9,y=2(a-3b-2),則x、y的大小關(guān)系是().
A.x<yB.x<yC.x>yD.x>y
12.如圖,Rt^ACB^P,乙4c8=90。,△ABC的角平分線(xiàn)40、BE相交于點(diǎn)P,過(guò)P作P/J.交8c的延長(zhǎng)
線(xiàn)于點(diǎn)F,交"于點(diǎn)H,則下列結(jié)論:@Z-APB=135°:@PF=PA,③/H+B£)=/①④連接OH,△
P?!盀榈妊苯侨切危孩葸B接OE,S四邊形為BOE=9S“8P,其中正確的個(gè)數(shù)是()
A.5B.4C.3D.2
二、填空題(本大題6小題,每題4分,共24分)
13.一個(gè)數(shù)的平方根和立方根都等于它本身,這個(gè)數(shù)是
14.分解因式2b3-45+2b=.
15.若Qm=2,Q〃=3,則q3m-2”=.
16.已知Q2+Q=2,則代數(shù)式(。+2)(。-2)+。(。+2)值為.
17.如圖,AD,BC相交于點(diǎn)O,己知44要直接根據(jù)“4S/T證明A40B三△COD,還要添加一個(gè)條件
18.“山高水闊知何處?巧構(gòu)全等覓飛痕”如圖所示,兩條互相垂直的數(shù)軸相交于。,點(diǎn)A在。右側(cè)6個(gè)單位長(zhǎng)度
第2頁(yè)
處,點(diǎn)B是。下方y(tǒng)軸上一動(dòng)點(diǎn),連接48,過(guò)點(diǎn)A作AC_L48,若AC=48,點(diǎn)M在。左側(cè)工軸上1個(gè)單位長(zhǎng)度
處,連接CM,CM的最小值為個(gè)單位長(zhǎng)度.
三、解答題(共計(jì)78分)
19.計(jì)算:
(1)-I12+V16+V^S-IV3-2|;
⑵a3-a3+(a2)4+(2a4)2.
20.化簡(jiǎn)與求值:
(1)化簡(jiǎn):(16Q/—8Q3/?)+(4ab)+(a+2/J)(Q—2b);
(2)化簡(jiǎn)求值:(—2。+1)2+(-2。+1)(-2。-1)一4磯2。-1),其中a=l.
21.因式分解:
(1)a(m-1)+b(l-m).
(2)(m2+4)2-16m2.
22.如圖,在448C中,乙4c8=90。,AC=BC.過(guò)點(diǎn)C的射線(xiàn)仃1交邊A8于點(diǎn)心401C”于點(diǎn)。,BE1CF
于點(diǎn)E,AD=3,BE=1.
(1)求證:AADCACEB;
(2)求DE的長(zhǎng).
23.已知(7+小》一3)(2"+幾)的展開(kāi)式中不含工的一次項(xiàng),常數(shù)項(xiàng)是一6.
(1)求m,幾的值.
(2)先化簡(jiǎn)再求值(m+〃)(租2一6"+九2).
24.數(shù)學(xué)活動(dòng)課.匕老師準(zhǔn)備了若干個(gè)如圖1的三種紙片,A種紙片是邊長(zhǎng)為a的正方形,8種紙片是邊長(zhǎng)為6
的正方形,「種紙片是長(zhǎng)為從寬為。的長(zhǎng)方形,并用4種紙片一張.9種紙片一張,C種紙片兩張拼成如圖2的
大正方形.
第3頁(yè)
(1)請(qǐng)用兩種不同的方法求圖2大正方形的面積:方法1:;方法2:
(2)觀察圖2,請(qǐng)你寫(xiě)出代數(shù)式:(a+b)2,/+必,好之間的等量關(guān)系;
(3)根據(jù)(2)題中的等量關(guān)系,解決如下問(wèn)題:
①己知:a+b=5,a2+b2=13?求ab的值;
②已知(2024-.)2+(a-2023)2=5,求(2024-a)(a-2023)的值.
25.【問(wèn)題背景】
如圖①在四邊形4BC。中,AB=AD,/-BAD=120°,zB=^ADC=90%E,F分別是BC,CD上的
點(diǎn),且乙EAF=60。,試探究線(xiàn)段BE,EF,FO之間的數(shù)量關(guān)系.
【初步探索】
小亮同學(xué)認(rèn)為:延長(zhǎng)FD到點(diǎn)G,使DG=BE,連接AG,先證明△48E三△AOG,再證明△4EF三4
4GF,則可得到BE,EF,尸。之間的數(shù)量關(guān)系是
【探索延伸】
如圖②,在四邊形4BCD中,AB=AD,乙B=180。,E,5分別是BC,上的點(diǎn),LEAF=
^BAD,上述結(jié)論是否仍然成立?說(shuō)明理由.
【結(jié)論運(yùn)用】
如圖③,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30。的A處,艦艇乙在指揮中心南偏東
70。的B處,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以60海里/時(shí)的速度
前進(jìn),艦艇乙沿北偏東北。的方向以80海里/時(shí)的速度前進(jìn),1.5小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別
到達(dá)E,F處,且兩艦艇之間的夾角(乙七。尸)為70。,試求此時(shí)兩艦艇之間的距離.
第4頁(yè)
答案解析部分
1.【答案】B
【解析】【解答】解:???a的算術(shù)平方根是2,
/.a=22=4,
故答案為:B.
【分析】根據(jù)一個(gè)正數(shù)的平方根有兩個(gè),期中正的平方根叫這個(gè)數(shù)的算術(shù)平方根,由此即可求解.
2.【答案】A
【解析】【解答】解:依題意,14X1O5X1O12=1.4X1O18.
故選:A.
【分析】
用科學(xué)記數(shù)法表示較大的數(shù)時(shí),一般形式為QX10",其中1W|Q|V1O,n為整數(shù).確定九的值時(shí),要看把原
來(lái)的數(shù),變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,幾的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.確定a與幾的,直是解題的關(guān)
鍵.
3.【答案】D
【解析】【解答】解:在3.14,竿,V3,V8,兀,V2,4.141141114..........中,無(wú)理數(shù)有:V5,屜,
兀,V2.4.141141114...........共5個(gè),
故選:D.
【分析】無(wú)理數(shù)就是無(wú)限不循環(huán)小數(shù),有理數(shù)是整數(shù)與分?jǐn)?shù)的統(tǒng)稱(chēng)(有限小數(shù)和無(wú)限循環(huán)小數(shù));掌握無(wú)理
數(shù)的定義是關(guān)鍵,同時(shí)要清楚有理數(shù)的范疇,通過(guò)對(duì)比兩者的區(qū)別來(lái)準(zhǔn)確判斷.
4.【答案】B
【解析】【解答】解:A、a4-a3=a7,原選項(xiàng)計(jì)算錯(cuò)誤,不符合題意;
B、04/3=Q7,原選項(xiàng)計(jì)算正確,符合題意;
C、。4?3不能合并,原選項(xiàng)計(jì)算錯(cuò)誤,不符合題意;
D、Q4.Q4=Q8,原選項(xiàng)計(jì)算錯(cuò)誤,不符合題意:
故選B.
【分析】本題考查同底數(shù)暴的乘法和合并同類(lèi)項(xiàng)(同底數(shù)暴相乘,底數(shù)不變,指數(shù)相加;同類(lèi)項(xiàng)才能合
并),熟練掌握運(yùn)算法則是解題關(guān)鍵.
5.【答案】C
【解析】【解答】解:A.(2%+1)(2%-1)=4/一1為多項(xiàng)式乘法,不符合題意;
B.X2+2X-3=X(X+2)-3,結(jié)果不是整式的積的形式,不是因式分解,不符合題意:
C.ab-a-b+l=(a-l)(b-li,符合因式分解的定義,符合題意;
第5頁(yè)
D.m2—2m—3=m(jn—2—,結(jié)果中存在分式,不是整式的積的形式,不符合題意.
故選C.
【分析】本題考查因式分解的定義(把多項(xiàng)式轉(zhuǎn)化為幾個(gè)整式的積的形式),逐一分析選項(xiàng):選項(xiàng)A是多項(xiàng)式
乘法;選項(xiàng)B結(jié)果不是整式的積;選項(xiàng)C將多項(xiàng)式轉(zhuǎn)化為兩個(gè)整式的積;選項(xiàng)D結(jié)果中含有分式,不是整
式的積.
6.【答案】D
【解析】【解答】A、???利用“SSS”可證出△ABCg^DEF,???A正確,不符合題意;
B、??,利用“AAS”可證出AABC^ADEF,BB正確,不符合題意;
C、??,利用“ASA”可證出ZkABC@4DEF,1.C正確,不符合題意;
D、???利用“SSA”無(wú)法證出aABC空Z(yǔ)SDEF,???D不正確,符合題意;
故答案為:D.
【分析】利用全等三角形的判定方法逐項(xiàng)分析判斷即可.
7.【答案】D
【解析】【解答】解:???2%+5y—3=0,即2x+5y=3,
必.32y=(22/-(25/=22x+5y=23=8,
故選D.
【分析】
由己知得2x+5y=3,再熟練掌握哥的乘方和同底數(shù)塞的乘法法則,通過(guò)方程變形和轉(zhuǎn)化為同底數(shù)塞得到
4"?32,=(22)r-(25)y=22x+5-y;代入計(jì)算即可.
8.【答案】B
【解析】【解答】解::VT75=1.554,
???V3750=V3.75x1000=10xV375?15.54,
故選:B.
【分析】
本題考查了立方根的性質(zhì),解題的關(guān)鍵是掌握立方根的縮放性質(zhì),即被開(kāi)方擴(kuò)大1000倍,立方根擴(kuò)大10
倍,將我碗變形為十3.75x7000,進(jìn)而轉(zhuǎn)化為10x癖汴,即可求解.
9.【答案】A
【解析】【解答】解:由題意知,
這個(gè)多項(xiàng)式為:3%3—3x2+3%—(-3%)=3%3—3x2+6x,
???正確的計(jì)算結(jié)果為:
(-3%)-(3%3-3x2+6x)=-9x4+9x3-18x2,
第6頁(yè)
故選:A.
【分析】本題考查整式的混合運(yùn)算,先根據(jù)錯(cuò)誤的加法運(yùn)算求出原多項(xiàng)式(用結(jié)果減去?3x),再將原多項(xiàng)式
與?3x相乘,得到正確的計(jì)算結(jié)果.
10.【答案】A
【解析】【解答】解:圖①:左邊圖中陰影部分面積為次一房,右邊圖中陰影部分面積為(a+b)(a-b),
則有小一吊=9+b)(Q_b);
圖②:左邊圖中陰影部分面積為小一房,右邊圖中陰影部分是一邊長(zhǎng)為Q+b,這條邊上的高為Q-b的平行
四邊形,其面積為(。+匕)(。-匕),
則有Q2—廬=(Q+b)(a—b);
圖③:左邊圖中陰影部分面積為十一房,右邊圖中陰影部分面積為(a+b)(a-b),
2
則有Q2—b=(a+b)(a—b);
圖④:左邊圖中陰影部分面積為次一扇,右邊圖中陰影部分是一邊長(zhǎng)為Q+b,這條邊上的高為Q-b的平行
四邊形,其面積為(Q+b)(Q—b),
則有次—吊=(0+b)(a—b);
綜上,能夠驗(yàn)證平方差公式的有4個(gè),
故選:A.
【分析】本題考查平方差公式的幾何意義,通過(guò)分析每個(gè)圖形割拼前后的面積,判斷是否能驗(yàn)證該公式即可.
圖①:根據(jù)陰影面積。2一房等于長(zhǎng)方形面積(a+b)(Q—b)可證:圖②:根據(jù)陰影部分面積&2一戶(hù)等于他+
b)(a-b)可證;圖③:根據(jù)十一戶(hù)等于(Q+b)(a-b)即可得證;圖④:根據(jù)陰影面積十一戶(hù)等于一邊長(zhǎng)
為a+b,這條邊上的高為Q-b的平行四邊形即可得證.最終能夠驗(yàn)證平方差公式的有四個(gè).
11.【答案】C
【解析】【解答】解:??%-y=a2+b2+9-2(a-3b-2)
=a2+爐+9—2Q+6白+4
=Q2-2Q+1+〃-6b+9+3
=(a-I)2+(b-3)2+3>0,
:.x>y,
故選:C.
【分析】
利用作差法判斷即可.作差法是比較代數(shù)式大小的常用方法,將差式轉(zhuǎn)化為完全平方和的形式,利用非負(fù)
性,判斷x-y的符號(hào),從而得到x和y的大小關(guān)系.
12.【答案】B
【解析】【解答】解:???〃CB=90c,
第7頁(yè)
Z-BAC+/-ABC=90°,
XvAD.分另|J平分乙34C、乙ABC,
???/.BAD+4ABE=1(ZS71C+乙ABC)=45%
...乙APB=180°-(^BAD+乙ABE)=135°,故①正確.
:.乙BPD=45°,
又???PF1AD,
???乙FPB=900+45°=135°,
???4APB=乙FPB,
又?:乙ABP=LFBP,BP=BP,
:.〉A(chǔ)BP三△"BPG4S4),
4BAP=乙BFP,AB=FB,PA=PF,故②正確.
在△?1「/"口△FP。中,
???乙APH=Z.FPD=90°,乙PAH=LBAP=乙BFP,PA■PF,
APH三AFPD(ASA),
AH=FD,
XvAB=FB,
AB=FD+BD=AH+BD.故③正確.
連接DH,如圖,
???Z.ACD=90°,
:.Z-ADC十乙PAH=90°,
vZ.FPD=90°,
^PFD+AADC=90°,
:.Z.PAH=乙PFD,
???乙APH=乙FPD=90°,PA=PF.
,△APH三△尸尸。(ASA)
:?PH=PD
???△PD”為等腰直角三角形,故④iE確;
第8頁(yè)
連接。E,如圖:
,:AABPZAFBP,△APH=△FPD,
'S^APB=S&FPB,SMPH=SAFPD,PH=PD,
???乙HPD=90°,
4HOP=(DHP=45°=乙BPD,
???HD||EP,
S^EPH=S^EPD?
=
I,四邊形HBDES^ABP+S&AEP+S^EPD+S&PBD
=SMBP+(SfEP+S&EPH)+SwBD
=S£^ABP+S&APH+SNBD
=S&ABP+S“PD+S&PBD
=S△48P+S?BP
=2s2、BP,故⑤不正確?
???正確的有①②③④,共4個(gè);
故選:B.
【分析】
本題考查了三角形全等的判定與性質(zhì)、等腰直角三角形的判定、三角形面積關(guān)系、雙內(nèi)角角平分線(xiàn)模型等知
識(shí)點(diǎn).對(duì)于①,證出4BAD+448E=45。,利用內(nèi)角和度數(shù)計(jì)算即可得證;對(duì)于②,利用ASA證出△
ABP=△FBP,即可得證;對(duì)于③,利用ASA證出△力P”三△FPD,結(jié)合三角形全等的性質(zhì)以及等量代換
可證;對(duì)于④,根據(jù)有一個(gè)角是直角且兩條直角邊相等的三角形是等腰直角三角形可證△PDH是等腰直角
三角形;對(duì)于⑤,分析S四邊形48DE與SMBpd的關(guān)系,證出,四邊形/IBDE=2S.A8P,可知結(jié)論錯(cuò)誤.
13.【答案】0
【解析】【解答】解:的平方根是它本身0,0的立方根是它本身0,
???一個(gè)數(shù)的平方根和立方根都等于它本身,這個(gè)數(shù)是0.
故答案為:0.
【分析】
第9頁(yè)
此題主要考查了平方根和立方根的定義,。的平方根是0,。的立方根是0;正數(shù)的平方根有兩個(gè),負(fù)數(shù)沒(méi)有
平方根;正數(shù)的立方根足正數(shù),負(fù)數(shù)的立方根足負(fù)數(shù):因此只有。的平方根和立方根都等于它本身.
14.【答案】2b(b-1)2
【解析】【解答】解:2b3-4b2+2b=2bs2-2b+1)=2b(b-l)2.
故答案為:2b(b-l)2.
【分析】先提取公因式2b,再利用公式法分解因式.
15.【答案】5
【解析】【解答】解:???優(yōu)〃=2,斷=3,
32
.??Q3m-2n=q3m+Q2n=(出“)3+(出)2=2-3=1
故答案為:5
【分析】木題考查了同底數(shù)幕的除法和幕的乘方的逆用,關(guān)鍵是將所求式子轉(zhuǎn)化為己知鼎的形式,體現(xiàn)”轉(zhuǎn)化
”思想,熟練利用法則變形為Q3mVn=(Qm)3+(Qn)Z,再代入數(shù)據(jù)計(jì)算即可.
16.【答案】0
【解析】【解答】解:???。2+。=2,
:.(a+2)(。-2)+a(Q+2)
=a?-4+標(biāo)+2Q
=2a2+2Q—4
=2(Q2+Q)-4
=2x2-4
=4—4
=0;
故答案為:0
【分析】
本題主要考查整式的乘法法則和合并同類(lèi)項(xiàng)運(yùn)算,利用整體代入思想簡(jiǎn)化計(jì)算是解題的核心.
17.【答案】AO=CO
【解析】【解答】解:添加4。=CO,
在△408和4C。。中,
ZLA=Z.C
AO=CO,
LAOS=乙COD
:.^A0BCOD(ASA),
第10頁(yè)
故答案為:AO=CO.
【分析】
本題主要考查了三角形全等的判定方法,明確ASA判定定理的條件(兩角及其夾邊對(duì)應(yīng)相等),結(jié)合圖形中的
對(duì)頂角,找出所需添加的邊的條件.
18.【答案】6
【解析】【解答】解:如圖,過(guò)點(diǎn)C作CD1一軸于點(diǎn)D,
LCAD+乙BAO=90°,
:.^ACD=乙BAO,
在△4。0和484。中,
ZAOB=/-CDA=90°
Z-ACD=Z.BAO?
AC=AB
???△AC。BAO(AAS),
:.CD=AO,
V4(6,0),
:.CD=AO=6,
???點(diǎn),在平行于x軸且與x軸距離為6¥J直線(xiàn)上運(yùn)動(dòng),當(dāng)CM垂直于這條直線(xiàn)時(shí),CM最短,此時(shí)CM=C0=6,
故答案為:6.
【分析】
本題考查了全等三角形的判定與性質(zhì),通過(guò)全等三角形確定點(diǎn)的運(yùn)動(dòng)軌跡,再利用垂線(xiàn)段最短的性質(zhì)求最短
距離是解決本題的關(guān)鍵.先過(guò)點(diǎn)C作CD軸,證明△4COWAB/I。,得出CD=4。=6,從而確定點(diǎn)C在平行
于X軸且與不軸距離為6的直線(xiàn)上運(yùn)動(dòng),根據(jù)垂線(xiàn)段最短,當(dāng)CM垂直于這條直線(xiàn)時(shí),CM最短,其長(zhǎng)度為6.
19?【答案】(1)解:原式二-1+4-2+再一2
=-1+V3:
(2)解:原式=Q6+Q8+4Q8
=Q6+5a8.
第11頁(yè)
【解析】【分析】本題主要考查了實(shí)數(shù)運(yùn)算和整式運(yùn)算,熟練乘方和絕對(duì)值的計(jì)算以及整式乘法和合并同類(lèi)項(xiàng)
的運(yùn)算法則足解題的關(guān)鍵.(1)分別根據(jù)乘方,算術(shù)平方根,立方根,絕對(duì)值的性質(zhì)進(jìn)行計(jì)算,然后按照順
序進(jìn)行加減運(yùn)算即可;
(2)根據(jù)同底數(shù)昂的乘法,鼎的乘方,積的乘方法則(同底數(shù)累相乘,底數(shù)不變,指數(shù)相加;鼎的乘方底數(shù)
不變指數(shù)相乘;積的乘方等于各因式乘方的積)分別計(jì)算出各項(xiàng),然后合并同類(lèi)項(xiàng);
(1)解:原式=-1+4—2+遍一2
=-1-rV3;
(2)解:原式=+Q°+4Q°
=d+5a8.
20.【答案】(1)解:原式=16Q/+(4ab)—8a3b+(4ab)+a2—4力2
=4b2—2a2+a2-4b2
=-a2;
(2)解:原式=(-2a)2+2x(-2a)+l2+(—2a)2—l2—4ax2a—4ax(-1)=4a2—4Q+1+4a2—
1—8az+4a
=0,
???Q取何值時(shí),
原式二0.
【解析】【分析】本題考查整式的化簡(jiǎn)與求值,正確利用運(yùn)算法貝]計(jì)算即可.(1)先進(jìn)行多項(xiàng)式除以單項(xiàng)式運(yùn)
算,再利用平方差公式展開(kāi),最后合并同類(lèi)項(xiàng);
(2)先根據(jù)完全平方公式和平方差公式展開(kāi),再進(jìn)行單項(xiàng)式乘多項(xiàng)式運(yùn)算,然后合并同類(lèi)項(xiàng)化簡(jiǎn),最后將
a=l代入求值;
(1)解:原式=16ab3+(4ab)-Sa3b+(4ab)+a2-4b2
=4b2-2a2+a2-4b2
=-a2;
(2)解:原式=(-2a)2+2x(-2a)+l2+(—2a)2-I2-4ax2a-4ax(-1)
=4Q2—4Q+I+4Q2—I_8Q2+4a
=0,
???Q取何值時(shí),
原式=0.
21.【答案】(1)解:a(m-1)+b(l-tn)
=(a-b)(m—1);
(2)解:(病+4)2-167n2
第12頁(yè)
=(TH2+4+4m)(m2+4-4rri)
-(771+2)2(?"-2>
【解析】【分析】本題主要考查了分解因式:
(1)本題考查提取公因式法因式分解.先將式子變形,然后直接提取公因式(m-l),進(jìn)而得出答案:
(1)本題考查平方差公式和完全平方公式因式分解.先將式子看成(巾2+4)2一16加2,利用平方差公式因式
分解,再分別對(duì)兩個(gè)因式進(jìn)行完全平方公式分解.
(1)解:a(m-1)+b(l-m)
=(cz-b)(zn-1):
(^2)I?:(m2+4)2—16m2
=(77i2+4+4m)(m2+4-4m)
=(m+2)2(m-2尸
22.【答案】解:(1)證明:?.?NBCE+NACD=90。,NACD+NCAD=90。,AZCAD=ZBCE,
在aACD和^BCE中,
(乙BEC=/-ADC=90°
/.CAD=乙BCE
(BC=AC
???△ACD^ABCE(AAS);
(2)解:VAACD^ABCE,
;?CD=BE,AD=CE,
?;AD=3,BE=1,
ADE=CE-CD=3-1=2.
【解析】【分析】本題考查的是全等三角形的判定與性質(zhì).(1)通過(guò)角的互余關(guān)系得出NCAD二NBCE,再結(jié)
合題目已知條件,根據(jù)AAS證明△ACDgABCE;
(2)利用全等三角形的對(duì)應(yīng)邊相等,將已知線(xiàn)段長(zhǎng)度轉(zhuǎn)化為所求線(xiàn)段的組成部分,進(jìn)而計(jì)算.
23.t答案】(1)解:?.?(靖十mx—3)(2%十幾)=2%3十九%2十2M%2十加幾》一6%—
=2x3+(幾+2m)x2+(mn-6)x-3n,
又???展開(kāi)式中不含x的一次項(xiàng),常數(shù)項(xiàng)是-6,
mn-6=0?—3n=-6,
解得m=3?n=2;
(2)原式=m3-m2n+mn2+m2n-mn2+n3=m3+n3,
m=3,n=2,
?,?原式=33+23
第13頁(yè)
=27+8
=35.
【解析】【分析】本題考查多項(xiàng)式乘法與代數(shù)式的化簡(jiǎn)求值,熟練掌握相關(guān)運(yùn)算法則是解題關(guān)健.
(1)先原式展開(kāi)得2/+(九+2m)d+(m幾—6)x—3n,根據(jù)”不含工的一次項(xiàng),常數(shù)項(xiàng)是一6”列方程,求解
m,11即可.
(2)化簡(jiǎn)原式,利用立方和公式簡(jiǎn)化計(jì)算,再代入m,n即可.
(1)蟀:V(x2+mx-3)(2%+n)
=2x3+nx2+2mx2+mnx-6x—3n
=2x3+(n4-2m)x24-(mn—6)x-3n,
又???展開(kāi)式中不含x的一次項(xiàng),常數(shù)項(xiàng)是-6,
mn—6=0>—3n=—6?
解得m=3,n=2;
(2)原式=m3—mln+mn1+mln-mn2+n3
=3〒幾3°,
;m=3,n=2,
???原式=33+23
=27+8
=35.
24.【答案】(1)(a+b)2,a2+2afe+d2;
(2)(a+b)?=(a2+b2)+2ab;
(3)解:①由(2)得:(Q+b)2=4+配+2M,a+b=5,a24-b2=13,
A52=13+2ab,
??ab—6;
@2024—a=x,a—2023=y>則x+y=l,x2+y2=5,
2
???由(2)可得:(x+y)=d+y2+2Xyf
Al2=5+2盯,
'?xy=-2,
A(2024-a)(a-2023)=-2.
22
【解析】【解答】解:⑴方法1:(a+b)2,方法析a+2ab+bt
故答案為:(a+b)2,a2+2ab+b2;
(2)由(1)得:(a+b)2=a2+b2+2Qb,
第14頁(yè)
故答案為:(a+b)2=+方+2ab;
【分析】
(1)從“整體邊長(zhǎng)“和“部分圖形面積和”兩個(gè)角度計(jì)算大正方形面積,整體角度用正方形面積公式,部分角度
用各小圖形面積相加;
(2)根據(jù)兩種方法所表示的面積相等,直接推導(dǎo)得出完全平方公式即可;
(3)①根據(jù)完全平方公式,將已知的a+b=5和次+戶(hù)二口代入完全平方公式,通過(guò)移項(xiàng)計(jì)算ab;
②通過(guò)設(shè)未知數(shù)2024-Q=X,a-2023=y,則x+y=l,將所求式子轉(zhuǎn)化為完全平方公式中的形式,再代
入已知條件計(jì)算:
(1)解:方法1:(a+b)2,方法2:小+2必+產(chǎn),
故答案為:(a+b)2,a2+2ab+b2;
(2)解:由(1)得:(a+力產(chǎn)=*+*+2附,
故答案為:(a+b)2=a2+b2+2ab;
(3)解:由(2)得:(a+-)2=*+匕2+之也,
a+b=5,a2+b2=13?
**.52=13+2ab,
'?ab=6;
@2024-a=x,a—2023=則%+y=l,x2+y2=5>
,由(2)可得:(x4-y)2=x2+y2+2xy,
Al2=5+2xy,
xy=-2,
???(2024-a)(a—2023)=-2.
25.【答案】[初步探索]EF=8E+H)
解:[探索延伸]:結(jié)論仍然成立,理由如下:
如圖2,延長(zhǎng)尸。到G,使。G=BE,連接力G,
???乙B+Z-ADC=180°,Z-ADG+^ADC=180°,
???乙B=(ADG,
第15頁(yè)
在和△AOG中,
BE=DG
乙B=乙AOG,
AB=AD
:,LABE三△4DG(S4S)
???AE=AG>Z-BAE=Z-DAG>
1
?;LEAF=
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中藥材凈選潤(rùn)切工操作能力模擬考核試卷含答案
- 井下膠輪車(chē)司機(jī)崗前技能實(shí)操考核試卷含答案
- 毛衫套口工安全技能測(cè)試知識(shí)考核試卷含答案
- 感光材料乳劑熔化工安全知識(shí)能力考核試卷含答案
- 有機(jī)實(shí)芯電阻器、電位器制造工安全知識(shí)模擬考核試卷含答案
- 涂料涂覆工崗前崗位知識(shí)考核試卷含答案
- 果樹(shù)育苗工操作規(guī)程能力考核試卷含答案
- 天然氣開(kāi)采工安全管理競(jìng)賽考核試卷含答案
- 乙烯-醋酸乙烯共聚乳液(VAE)裝置操作工班組管理水平考核試卷含答案
- 中高頻爐工安全生產(chǎn)規(guī)范競(jìng)賽考核試卷含答案
- 2024廣東廣州市海珠區(qū)琶洲街道招聘雇員(協(xié)管員)5人 備考題庫(kù)帶答案解析
- 蓄電池安全管理課件
- 建筑業(yè)項(xiàng)目經(jīng)理目標(biāo)達(dá)成度考核表
- 2025江蘇南京市市場(chǎng)監(jiān)督管理局所屬事業(yè)單位招聘工作人員6人考試歷年真題匯編帶答案解析
- 2025廣東肇慶四會(huì)市建筑安裝工程有限公司招聘工作人員考試參考題庫(kù)帶答案解析
- 2025貴州黔西南州水資源開(kāi)發(fā)投資(集團(tuán))有限公司招聘3人備考題庫(kù)有答案詳解
- 第五單元國(guó)樂(lè)飄香(一)《二泉映月》課件人音版(簡(jiǎn)譜)初中音樂(lè)八年級(jí)上冊(cè)
- 簡(jiǎn)約物業(yè)交接班管理制度
- 收購(gòu)摩托駕校協(xié)議書(shū)
- 戰(zhàn)略大單品課件
- 2025年安康杯知識(shí)競(jìng)賽題庫(kù)及答案
評(píng)論
0/150
提交評(píng)論