版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
初中一年級數(shù)學知識點總結(jié)初中一年級(七年級)數(shù)學是小學與初中數(shù)學的銜接關(guān)鍵,核心是實現(xiàn)從“具體數(shù)字運算”到“抽象符號運算”的思維跨越。本總結(jié)圍繞“數(shù)與式”“方程與不等式”“圖形認識初步”“數(shù)據(jù)收集與整理”四大模塊,系統(tǒng)梳理基礎(chǔ)概念、核心法則、易錯點及解題方法,搭配典型例題幫助同學們夯實基礎(chǔ)、突破難點,快速適應初中數(shù)學學習節(jié)奏。第一模塊數(shù)與式:抽象思維的起點本模塊是初中數(shù)學的基礎(chǔ),包括有理數(shù)、整式的加減兩部分,重點掌握負數(shù)的引入、數(shù)軸工具的運用及代數(shù)式的運算規(guī)則,建立符號感和數(shù)感。一、有理數(shù)有理數(shù)是整數(shù)(正整數(shù)、0、負整數(shù))和分數(shù)的統(tǒng)稱,是初中階段研究的第一類數(shù)系,核心考點集中在概念辨析、運算規(guī)則及實際應用。1.核心概念概念名稱核心定義易錯提醒示例正數(shù)與負數(shù)大于0的數(shù)是正數(shù),在正數(shù)前加“-”的數(shù)是負數(shù);0既不是正數(shù)也不是負數(shù),是分界點忽略“0的特殊性”,誤將0歸為正數(shù)或負數(shù);負數(shù)表示“相反意義的量”時需帶單位上升5米記為+5米,則下降3米記為-3米數(shù)軸規(guī)定了原點、正方向、單位長度的直線;任何有理數(shù)都可以用數(shù)軸上的點表示畫數(shù)軸時遺漏三要素(原點、正方向、單位長度);混淆“有理數(shù)與數(shù)軸上點的關(guān)系”(數(shù)軸上的點不一定都是有理數(shù))在數(shù)軸上表示-2.5:在原點左側(cè)2.5個單位長度處描點相反數(shù)只有符號不同的兩個數(shù)互為相反數(shù);0的相反數(shù)是0;數(shù)軸上表示相反數(shù)的兩點關(guān)于原點對稱求含字母的相反數(shù)時忘記加括號(如-a的相反數(shù)是a,不是-a)3的相反數(shù)是-3;-(-5)的相反數(shù)是-5絕對值數(shù)軸上表示數(shù)a的點與原點的距離,記為|a|;正數(shù)絕對值是本身,負數(shù)是相反數(shù),0是0忽略絕對值的非負性(|a|≥0);解決|a|=b(b≥0)時漏解(a=±b)|5|=5;|-3.2|=3.2;若|x|=4,則x=4或x=-4倒數(shù)乘積為1的兩個數(shù)互為倒數(shù);0沒有倒數(shù);倒數(shù)等于本身的數(shù)是1和-1混淆“相反數(shù)”與“倒數(shù)”;誤認為0有倒數(shù)2的倒數(shù)是1/2;-1/3的倒數(shù)是-32.有理數(shù)運算(重點)運算核心是“先定符號,再算絕對值”,需熟練掌握加減乘除及乘方的運算法則,注意運算順序和運算律的運用。運算類型運算法則易錯點例題加法同號相加:取相同符號,絕對值相加;異號相加:取絕對值大的符號,用大絕對值減小絕對值;互為相反數(shù)相加得0異號相加時符號判斷錯誤;忽略小數(shù)或分數(shù)的通分(-3)+(-5)=-8;(-6)+4=-2;7+(-7)=0減法減去一個數(shù)等于加這個數(shù)的相反數(shù)(a-b=a+(-b))減負數(shù)時符號出錯(如5-(-3)誤算為5-3)8-12=8+(-12)=-4;(-5)-(-7)=(-5)+7=2乘法同號得正,異號得負,絕對值相乘;任何數(shù)乘0得0;幾個非0數(shù)相乘,負因數(shù)個數(shù)為偶數(shù)得正,奇數(shù)得負多個數(shù)相乘時符號判斷錯誤;漏看因數(shù)中的0(-4)×(-6)=24;(-3)×5=-15;(-2)×(-3)×(-1)=-6除法同號得正,異號得負,絕對值相除;除以一個數(shù)等于乘它的倒數(shù)(0不能作除數(shù))0作除數(shù);除分數(shù)時未轉(zhuǎn)化為乘法18÷(-3)=-6;(-25)÷(-5/3)=(-25)×(-3/5)=15乘方求n個相同因數(shù)的積的運算(a?表示n個a相乘);正數(shù)的任何次冪為正,負數(shù)的奇次冪為負、偶次冪為正;0的任何正次冪為0混淆(-a)?與-a?(如(-2)2=4,-22=-4);誤算1的任何次冪和-1的偶次冪(-3)3=-27;2?=16;-(-1)?=13.運算順序與運算律運算順序:先乘方,再乘除,最后加減;有括號先算括號內(nèi)(小括號→中括號→大括號);同級運算從左到右。運算律:加法交換律(a+b=b+a)、加法結(jié)合律((a+b)+c=a+(b+c))、乘法交換律(ab=ba)、乘法結(jié)合律((ab)c=a(bc))、乘法分配律(a(b+c)=ab+ac,反向運用:ab+ac=a(b+c))。有理數(shù)運算高頻易錯點:1.符號錯誤(尤其是負號的處理);2.運算順序顛倒(如先算加減再算乘除);3.乘方運算中符號歸屬錯誤;4.運用乘法分配律時漏乘或符號出錯(如-2(3-5)誤算為-6-10)。二、整式的加減整式是代數(shù)式的基礎(chǔ),包括單項式和多項式,核心是掌握同類項的判斷與合并法則,實現(xiàn)從“數(shù)的運算”到“式的運算”的過渡。1.核心概念概念名稱核心定義示例單項式數(shù)或字母的積組成的代數(shù)式;單獨的一個數(shù)或一個字母也是單項式;單項式中的數(shù)字因數(shù)叫系數(shù),所有字母的指數(shù)和叫次數(shù)-3xy2:系數(shù)是-3,次數(shù)是1+2=3;5(常數(shù)項,次數(shù)是0)多項式幾個單項式的和;每個單項式叫多項式的項(含符號),不含字母的項叫常數(shù)項;多項式中次數(shù)最高的項的次數(shù)叫多項式的次數(shù)2x3-5x+1:項為2x3、-5x、1,常數(shù)項是1,次數(shù)是3(三次三項式)同類項所含字母相同,并且相同字母的指數(shù)也相同的項;常數(shù)項都是同類項3a2b與-5a2b是同類項;4與-7是同類項;2ab與3a2b不是同類項(字母指數(shù)不同)2.整式加減法則整式加減的本質(zhì)是“合并同類項”,步驟為:1.去括號(括號前是“+”,去括號后各項不變號;括號前是“-”,去括號后各項變號);2.合并同類項(同類項的系數(shù)相加,字母和字母的指數(shù)不變)。3.典型例題例1:化簡3(2x2-y)-2(3y2-2x2)解:去括號→6x2-3y-6y2+4x2;合并同類項→(6x2+4x2)+(-3y)+(-6y2)=10x2-3y-6y2例2:已知A=2x2+3xy-2x-1,B=-x2+xy-1,求A-2B的值。解:A-2B=(2x2+3xy-2x-1)-2(-x2+xy-1)=2x2+3xy-2x-1+2x2-2xy+2=(2x2+2x2)+(3xy-2xy)-2x+(-1+2)=4x2+xy-2x+1第二模塊方程與不等式:數(shù)學建模的基礎(chǔ)本模塊包括一元一次方程和一元一次不等式(組),是初中階段運用數(shù)學解決實際問題的核心工具,重點掌握“建模思想”(將實際問題轉(zhuǎn)化為數(shù)學方程/不等式)和求解步驟。一、一元一次方程只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是1的整式方程,標準形式為ax+b=0(a≠0)。1.核心概念與解法核心內(nèi)容詳細說明例題:解方程(2x-1)/3=(x+2)/4-1方程的解使方程左右兩邊相等的未知數(shù)的值;檢驗解的方法:將值代入方程,看兩邊是否相等解得x=-2,代入左邊:(2×(-2)-1)/3=-5/3;右邊:(-2+2)/4-1=-1=-5/3,左邊=右邊,是解求解步驟1.去分母(兩邊同乘各分母最小公倍數(shù),不含分母的項也要乘);2.去括號(注意符號);3.移項(把含未知數(shù)的項移到左邊,常數(shù)項移到右邊,移項要變號);4.合并同類項;5.系數(shù)化為1(兩邊同除以未知數(shù)系數(shù),注意系數(shù)為負時不等號方向)1.去分母:4(2x-1)=3(x+2)-12;2.去括號:8x-4=3x+6-12;3.移項:8x-3x=6-12+4;4.合并:5x=-2;5.系數(shù)化1:x=-2/52.一元一次方程的實際應用(重點)核心是“找等量關(guān)系”,常見題型及等量關(guān)系如下:題型類型核心等量關(guān)系例題示范行程問題路程=速度×時間;相遇問題:甲路程+乙路程=總路程;追及問題:快者路程-慢者路程=路程差甲、乙兩車相距360km,甲車速度60km/h,乙車速度40km/h,兩車同時相向而行,幾小時后相遇?解:設(shè)x小時后相遇,60x+40x=360→x=3.6工程問題工作總量=工作效率×工作時間;甲工作量+乙工作量=總工作量(通常設(shè)總工作量為1)一項工程,甲單獨做10天完成,乙單獨做15天完成,兩人合作幾天完成?解:設(shè)x天完成,(1/10)x+(1/15)x=1→x=6利潤問題利潤=售價-進價;利潤率=(利潤/進價)×100%;售價=進價×(1+利潤率)一件商品進價200元,按利潤率20%定價銷售,售價多少?解:設(shè)售價x元,(x-200)/200=20%→x=240數(shù)字問題兩位數(shù)=十位數(shù)字×10+個位數(shù)字;三位數(shù)=百位數(shù)字×100+十位數(shù)字×10+個位數(shù)字一個兩位數(shù),十位數(shù)字比個位數(shù)字大2,交換個位與十位后,新數(shù)比原數(shù)小18,求原數(shù)。解:設(shè)個位數(shù)字x,十位數(shù)字x+2,原數(shù)=10(x+2)+x,新數(shù)=10x+(x+2),10(x+2)+x-[10x+(x+2)]=18→解得x為任意數(shù),結(jié)合題意取x=1,原數(shù)31二、一元一次不等式(組)用不等號(>、<、≥、≤、≠)連接的式子叫不等式;只含一個未知數(shù),未知數(shù)最高次數(shù)1的不等式叫一元一次不等式;幾個一元一次不等式組成不等式組。1.不等式的性質(zhì)(核心)性質(zhì)內(nèi)容示例性質(zhì)1不等式兩邊加(減)同一個數(shù)(或式子),不等號方向不變?nèi)鬭>b,則a+3>b+3;a-5>b-5性質(zhì)2不等式兩邊乘(除)同一個正數(shù),不等號方向不變?nèi)鬭>b,c>0,則ac>bc;a/c>b/c性質(zhì)3不等式兩邊乘(除)同一個負數(shù),不等號方向改變(易錯點)若a>b,c<0,則ac<bc;a/c<b/c2.一元一次不等式的解法步驟與一元一次方程類似,僅在“系數(shù)化為1”時需注意:若系數(shù)為負數(shù),不等號方向必須改變。例題:解不等式(3x-1)/2>(x+1)/3-1解:1.去分母:3(3x-1)>2(x+1)-6;2.去括號:9x-3>2x+2-6;3.移項:9x-2x>2-6+3;4.合并:7x>-1;5.系數(shù)化1:x>-1/7(系數(shù)7為正,不等號方向不變)3.一元一次不等式組的解法分別解出不等式組中每個不等式的解集;借助數(shù)軸找出兩個解集的“公共部分”,即為不等式組的解集(無公共部分則無解);解集規(guī)律:同大取大,同小取小,大小小大中間找,大大小小找不到。例題:解不等式組{2x-1≥5①;3x-2<7②}解:解①得x≥3;解②得x<3;數(shù)軸上無公共部分,故不等式組無解。4.不等式的實際應用核心是“找不等關(guān)系”,關(guān)鍵詞如“至少”(≥)、“最多”(≤)、“不超過”(≤)、“大于”(>)、“小于”(<),注意結(jié)合實際問題檢驗解的合理性(如人數(shù)、物品數(shù)為正整數(shù))。例題:某商店計劃購進甲、乙兩種商品,甲商品每件進價10元,乙商品每件進價30元,計劃用不超過2000元購進兩種商品共100件,問甲商品至少購進多少件?解:設(shè)甲商品購進x件,則乙商品購進(100-x)件,列不等式:10x+30(100-x)≤2000→10x+3000-30x≤2000→-20x≤-1000→x≥50(系數(shù)為負,不等號變向)。答:甲商品至少購進50件。第三模塊圖形認識初步:空間與幾何的入門本模塊是幾何學習的基礎(chǔ),包括線段、射線、直線、角、相交線、平行線等內(nèi)容,重點掌握幾何概念、表示方法、度量與計算,培養(yǎng)空間想象能力和幾何語言表達能力。一、基本圖形(線段、射線、直線)圖形名稱表示方法性質(zhì)區(qū)別線段用兩個端點字母表示(如線段AB)或一個小寫字母表示(如線段a)有兩個端點,可度量長度;兩點之間,線段最短有端點,可度量,不能延伸射線用端點和射線上另一點表示(端點在前,如射線OA)有一個端點,不可度量長度,向一端無限延伸一個端點,不可度量,向一端延伸直線用直線上兩點表示(如直線AB)或一個小寫字母表示(如直線l)沒有端點,不可度量長度,向兩端無限延伸;經(jīng)過兩點有且只有一條直線無端點,不可度量,向兩端延伸線段計算技巧1.中點性質(zhì):若點M是線段AB的中點,則AM=MB=1/2AB;2.線段和差:AB=AC+CB(C在線段AB上);AB=AC-CB(C在線段AB的延長線上)。例題:已知線段AB=10cm,點C是AB上一點,點M是AC中點,點N是BC中點,求MN的長度。解:MN=MC+CN=1/2AC+1/2BC=1/2(AC+BC)=1/2AB=5cm二、角由兩條有公共端點的射線組成的圖形,公共端點叫角的頂點,兩條射線叫角的邊。1.核心概念與表示內(nèi)容詳細說明表示方法1.用三個大寫字母表示(頂點在中間,如∠AOB);2.用頂點字母表示(頂點唯一時,如∠O);3.用數(shù)字表示(如∠1);4.用希臘字母表示(如∠α)角的度量單位:度(°)、分(′)、秒(″);換算:1°=60′,1′=60″(六十進制);測量工具:量角器角的分類銳角(0°<α<90°)、直角(α=90°)、鈍角(90°<α<180°)、平角(α=180°)、周角(α=360°)2.角的性質(zhì)與計算角平分線:從一個角的頂點出發(fā),把這個角分成兩個相等的角的射線;若OC平分∠AOB,則∠AOC=∠COB=1/2∠AOB。余角與補角:若兩個角和為90°,則互余;和為180°,則互補;性質(zhì):同角(等角)的余角相等,同角(等角)的補角相等。對頂角:兩條直線相交形成的對頂角相等(如∠1與∠3是對頂角,則∠1=∠3)。3.典型例題例1:已知∠AOB=120°,OC平分∠AOB,OD平分∠AOC,求∠BOD的度數(shù)。解:∠AOC=1/2∠AOB=60°,∠AOD=1/2∠AOC=30°,∠BOD=∠AOB-∠AOD=120°-30°=90°例2:一個角的補角比它的余角的3倍大10°,求這個角的度數(shù)。解:設(shè)這個角為x°,則補角為(180-x)°,余角為(90-x)°,列方程:180-x=3(90-x)+10→180-x=270-3x+10→2x=100→x=50。答:這個角為50°。三、相交線與平行線(七年級下冊重點)1.相交線與垂線1.兩條直線相交,有且只有一個交點;2.垂線:當兩條直線相交所成的四個角中有一個角是直角時,這兩條直線互相垂直,其中一條叫另一條的垂線,交點叫垂足;3.性質(zhì):過一點有且只有一條直線與已知直線垂直;直線外一點到直線的垂線段最短(垂線段長度叫點到直線的距離)。2.平行線的判定與性質(zhì)類別核心內(nèi)容(與三線八角相關(guān):同位角、內(nèi)錯角、同旁內(nèi)角)判定(由角的關(guān)系推線平行)1.同位角相等,兩直線平行;2.內(nèi)錯角相等,兩直線平行;3.同旁內(nèi)角互補,兩直線平行;4.平行于同一直線的兩直線平行性質(zhì)(由線平行推角的關(guān)系)1.兩直線平行,同位角相等;2.兩直線平行,內(nèi)錯角相等;3.兩直線平行,同旁內(nèi)角互補;4.兩直線平行,同旁內(nèi)角互補3.典型例題例:如圖,已知AB∥CD,∠1=120°,求∠2的度數(shù)。解:∵AB∥CD(已知),∴∠1與∠2的同旁內(nèi)角互補(兩直線平行,同旁內(nèi)角互補),又∵∠1=120°,∴∠2=180°-120°=60°第四模塊數(shù)據(jù)收集與整理:統(tǒng)計思想的萌芽本模塊包括數(shù)據(jù)的收集、整理、描述和分析,核心是掌握統(tǒng)計圖表的繪制與解讀,培養(yǎng)用數(shù)據(jù)說話的意識。一、數(shù)據(jù)收集與整理步驟收集數(shù)據(jù):通過調(diào)查(全面調(diào)查、抽樣調(diào)查)、實驗等方式獲取數(shù)據(jù);全面調(diào)查適用于范圍小、易操作的情況(如班級同學身高),抽樣調(diào)查適用于范圍大、破壞性大的情況(如一批燈泡使用壽命)。整理數(shù)據(jù):用“劃記法”(如“正”字)記錄數(shù)據(jù),整理成頻數(shù)分布表(頻數(shù):每個數(shù)據(jù)出現(xiàn)的次數(shù);頻率:頻數(shù)與總數(shù)的比)。描述數(shù)據(jù):用統(tǒng)計圖表直觀展示數(shù)據(jù)(條形圖、扇形圖、折線圖)。分析數(shù)據(jù):根據(jù)圖表提取信息,做出判斷或預測。二、三種統(tǒng)計圖表的特點與應用圖表類型特點適用場景條形統(tǒng)計圖能清楚表示出每個項目的具體數(shù)目比較不同類別數(shù)據(jù)的數(shù)量多少(如各班人數(shù)對比)扇形統(tǒng)計圖能清楚表示出各部分在總體中所占的百分比展示各部分與總體的關(guān)系(如各科成績占總分比例)折線統(tǒng)計圖能清楚反映數(shù)據(jù)的變化趨勢展示數(shù)據(jù)隨時間或順序的變化(如某同學一學期數(shù)學成績變化)三、典型例題某班40名同學最喜歡的運動項目統(tǒng)計如下:跑步12人,籃球8人,足球10人,跳繩6人,其他4人。請繪制扇形統(tǒng)計圖,并計算跑步項目的圓心角度數(shù)。解:1.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 真空電子器件裝配工操作評估競賽考核試卷含答案
- 民族彈撥樂器制作工安全專項評優(yōu)考核試卷含答案
- 通信終端設(shè)備制造工崗前客戶服務(wù)考核試卷含答案
- 美容美發(fā)器具制作工崗前變更管理考核試卷含答案
- 危險品物流員崗前風險評估與管理考核試卷含答案
- 雷管制造工崗前持續(xù)改進考核試卷含答案
- 多功能機組操作工操作水平評優(yōu)考核試卷含答案
- 熱力管網(wǎng)運行工安全生產(chǎn)意識強化考核試卷含答案
- 城市軌道交通車場調(diào)度員安全綜合考核試卷含答案
- 自然保護區(qū)環(huán)境巡護監(jiān)測工安全操作強化考核試卷含答案
- 2023年新高考(新課標)全國2卷數(shù)學試題真題(含答案解析)
- 2024年中考英語閱讀理解C篇真題匯編(附答案)3651
- GB/T 4706.23-2024家用和類似用途電器的安全第23部分:室內(nèi)加熱器的特殊要求
- 職業(yè)技術(shù)學校安全保衛(wèi)管理專業(yè)人才培養(yǎng)方案
- (高清版)DZT 0399-2022 礦山資源儲量管理規(guī)范
- 腦卒中慢病管理
- 蔬菜主要病蟲害及防治技術(shù)剖析課件
- 淺談通信工程中的設(shè)計手段
- GB/T 7000.217-2023燈具第2-17部分:特殊要求舞臺燈光、電視、電影及攝影場所(室內(nèi)外)用燈具
- 牧場糞污處理原則與工藝
- 如果歷史是一群喵10宋遼金夏篇
評論
0/150
提交評論