初一數(shù)學下冊期末幾何壓軸題測試題(含答案)-培優(yōu)試題_第1頁
初一數(shù)學下冊期末幾何壓軸題測試題(含答案)-培優(yōu)試題_第2頁
初一數(shù)學下冊期末幾何壓軸題測試題(含答案)-培優(yōu)試題_第3頁
初一數(shù)學下冊期末幾何壓軸題測試題(含答案)-培優(yōu)試題_第4頁
初一數(shù)學下冊期末幾何壓軸題測試題(含答案)-培優(yōu)試題_第5頁
已閱讀5頁,還剩41頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

一、解答題1.在平面直角坐標系中描出下列兩組點,分別將每組里的點用線段依次連接起來.第一組:、;第二組:、.(1)線段與線段的位置關系是;(2)在(1)的條件下,線段、分別與軸交于點,.若點為射線上一動點(不與點,重合).①當點在線段上運動時,連接、,補全圖形,用等式表示、、之間的數(shù)量關系,并證明.②當與面積相等時,求點的坐標.2.如圖,已知直線,點在直線上,點在直線上,點在點的右側,平分平分,直線交于點.(1)若時,則___________;(2)試求出的度數(shù)(用含的代數(shù)式表示);(3)將線段向右平行移動,其他條件不變,請畫出相應圖形,并直接寫出的度數(shù).(用含的代數(shù)式表示)3.已知AB∥CD,線段EF分別與AB,CD相交于點E,F(xiàn).(1)請在橫線上填上合適的內容,完成下面的解答:如圖1,當點P在線段EF上時,已知∠A=35°,∠C=62°,求∠APC的度數(shù);解:過點P作直線PH∥AB,所以∠A=∠APH,依據(jù)是;因為AB∥CD,PH∥AB,所以PH∥CD,依據(jù)是;所以∠C=(),所以∠APC=()+()=∠A+∠C=97°.(2)當點P,Q在線段EF上移動時(不包括E,F(xiàn)兩點):①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立嗎?請說明理由;②如圖3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,請直接寫出∠M,∠A與∠C的數(shù)量關系.4.如圖,已知,是的平分線.(1)若平分,求的度數(shù);(2)若在的內部,且于,求證:平分;(3)在(2)的條件下,過點作,分別交、于點、,繞著點旋轉,但與、始終有交點,問:的值是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍.5.如圖,∠EBF=50°,點C是∠EBF的邊BF上一點.動點A從點B出發(fā)在∠EBF的邊BE上,沿BE方向運動,在動點A運動的過程中,始終有過點A的射線AD∥BC.(1)在動點A運動的過程中,(填“是”或“否”)存在某一時刻,使得AD平分∠EAC?(2)假設存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之間有何數(shù)量關系?并請說明理由;(3)當AC⊥BC時,直接寫出∠BAC的度數(shù)和此時AD與AC之間的位置關系.6.已知,AB∥DE,點C在AB上方,連接BC、CD.(1)如圖1,求證:∠BCD+∠CDE=∠ABC;(2)如圖2,過點C作CF⊥BC交ED的延長線于點F,探究∠ABC和∠F之間的數(shù)量關系;(3)如圖3,在(2)的條件下,∠CFD的平分線交CD于點G,連接GB并延長至點H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.7.(概念學習)規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.類比有理數(shù)的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)記作(﹣3)④,讀作“﹣3的圈4次方”,一般地,把n個a(a≠0)記作a?,讀作“a的圈n次方”.(初步探究)(1)直接寫出計算結果:2③=,(﹣)⑤=;(深入思考)我們知道,有理數(shù)的減法運算可以轉化為加法運算,除法運算可以轉化為乘法運算,有理數(shù)的除方運算如何轉化為乘方運算呢?(1)試一試:仿照上面的算式,將下列運算結果直接寫成乘方的形式.(﹣3)④=;5⑥=;(﹣)⑩=.(2)想一想:將一個非零有理數(shù)a的圈n次方寫成乘方的形式等于;8.閱讀下面文字:對于可以如下計算:原式上面這種方法叫拆項法,你看懂了嗎?仿照上面的方法,計算:(1)(2)9.閱讀型綜合題對于實數(shù)我們定義一種新運算(其中均為非零常數(shù)),等式右邊是通常的四則運算,由這種運算得到的數(shù)我們稱之為線性數(shù),記為,其中叫做線性數(shù)的一個數(shù)對.若實數(shù)都取正整數(shù),我們稱這樣的線性數(shù)為正格線性數(shù),這時的叫做正格線性數(shù)的正格數(shù)對.(1)若,則,;(2)已知,.若正格線性數(shù),(其中為整數(shù)),問是否有滿足這樣條件的正格數(shù)對?若有,請找出;若沒有,請說明理由.10.據(jù)說,我國著名數(shù)學家華羅庚在一次訪問途中,看到飛機鄰座的乘客閱讀的雜志上有一道智力題:一個數(shù)32768,它是一個正數(shù)的立方,希望求它的立方根,華羅庚不假思索給出了答案,鄰座乘客非常驚奇,很想得知其中的奧秘,你知道華羅庚是怎樣準確計算出的嗎?請按照下面的問題試一試:(1)由,因為,請確定是______位數(shù);(2)由32768的個位上的數(shù)是8,請確定的個位上的數(shù)是________,劃去32768后面的三位數(shù)768得到32,因為,請確定的十位上的數(shù)是_____________;(3)已知和分別是兩個數(shù)的立方,仿照上面的計算過程,請計算:;.11.a(chǎn)是不為1的有理數(shù),我們把稱為a的差倒數(shù).如:2的差倒數(shù)是,現(xiàn)已知a1=,a2是a1的差倒數(shù),a3是a2的差倒數(shù),a4是a3的差倒數(shù),…(1)求a2,a3,a4的值;(2)根據(jù)(1)的計算結果,請猜想并寫出a2016?a2017?a2018的值;(3)計算:a33+a66+a99+…+a9999的值.12.規(guī)律探究,觀察下列等式:第1個等式:第2個等式:第3個等式:第4個等式:請回答下列問題:(1)按以上規(guī)律寫出第5個等式:=___________=___________(2)用含n的式子表示第n個等式:=___________=___________(n為正整數(shù))(3)求13.如圖,在平面直角坐標系中,已知,,,,滿足.平移線段得到線段,使點與點對應,點與點對應,連接,.(1)求,的值,并直接寫出點的坐標;(2)點在射線(不與點,重合)上,連接,.①若三角形的面積是三角形的面積的2倍,求點的坐標;②設,,.求,,滿足的關系式.14.如圖,已知//,點是射線上一動點(與點不重合),分別平分和,分別交射線于點.(1)當時,的度數(shù)是_______;(2)當,求的度數(shù)(用的代數(shù)式表示);(3)當點運動時,與的度數(shù)之比是否隨點的運動而發(fā)生變化?若不變化,請求出這個比值;若變化,請寫出變化規(guī)律.(4)當點運動到使時,請直接寫出的度數(shù).15.如圖所示,A(1,0)、點B在y軸上,將三角形OAB沿x軸負方向平移,平移后的圖形為三角形DEC,且點C的坐標為(﹣3,2).(1)直接寫出點E的坐標;(2)在四邊形ABCD中,點P從點B出發(fā),沿“BC→CD”移動.若點P的速度為每秒1個單位長度,運動時間為t秒,回答下列問題:①當t=秒時,點P的橫坐標與縱坐標互為相反數(shù);②求點P在運動過程中的坐標,(用含t的式子表示,寫出過程);③當點P運動到CD上時,設∠CBP=x°,∠PAD=y°,∠BPA=z°,試問x,y,z之間的數(shù)量關系能否確定?若能,請用含x,y的式子表示z,寫出過程;若不能,說明理由.16.在平面直角坐標系中,對于任意兩點,,如果,則稱與互為“距點”.例如:點,點,由,可得點與互為“距點”.(1)在點,,中,原點的“距點”是_____(填字母);(2)已知點,點,過點作平行于軸的直線.①當時,直線上點的“距點”的坐標為_____;②若直線上存在點的“點”,求的取值范圍.(3)已知點,,,的半徑為,若在線段上存在點,在上存在點,使得點與點互為“距點”,直接寫出的取值范圍.17.在平面直角坐標系中,點,滿足關系式.(1)求,的值;(2)若點滿足的面積等于,求的值;(3)線段與軸交于點,動點從點出發(fā),在軸上以每秒個單位長度的速度向下運動,動點從點出發(fā),以每秒個單位長度的速度向右運動,問為何值時有,請直接寫出的值.18.在平面直角坐標系中,點,的坐標分別為,,現(xiàn)將線段先向上平移3個單位,再向右平移1個單位,得到線段,連接,.(1)如圖1,求點,的坐標及四邊形的面積;圖1(2)如圖1,在軸上是否存在點,連接,,使?若存在這樣的點,求出點的坐標;若不存在,試說明理由;(3)如圖2,在直線上是否存在點,連接,使?若存在這樣的點,直接寫出點的坐標;若不存在,試說明理由.圖2(4)在坐標平面內是否存在點,使?若存在這樣的點,直接寫出點的坐標的規(guī)律;若不存在,請說明理由.19.如圖,學校印刷廠與A,D兩地有公路、鐵路相連,從A地購進一批每噸8000元的白紙,制成每噸10000元的作業(yè)本運到D地批發(fā),已知公路運價1.5元/(t?km),鐵路運價1.2元/(t?km).這兩次運輸支出公路運費4200元,鐵路運費26280元.(1)白紙和作業(yè)本各多少噸?(2)這批作業(yè)本的銷售款比白紙的購進款與運輸費的和多多少元?20.閱讀下列材料,解答下面的問題:我們知道方程有無數(shù)個解,但在實際生活中我們往往只需求出其正整數(shù)解.例:由,得:,(x、y為正整數(shù))∴,則有.又為正整數(shù),則為正整數(shù).由2與3互質,可知:x為3的倍數(shù),從而x=3,代入∴2x+3y=12的正整數(shù)解為問題:(1)請你寫出方程的一組正整數(shù)解:.(2)若為自然數(shù),則滿足條件的x值為.(3)七年級某班為了獎勵學習進步的學生,購買了單價為3元的筆記本與單價為5元的鋼筆兩種獎品,共花費35元,問有幾種購買方案?21.我市某包裝生產(chǎn)企業(yè)承接了一批上海世博會的禮品盒制作業(yè)務,為了確保質量,該企業(yè)進行試生產(chǎn).他們購得規(guī)格是的標準板材作為原材料,每張標準板材再按照裁法一或裁法二裁下A型與B型兩種板材.如圖甲,(單位:)(1)列出方程(組),求出圖甲中a與b的值;(2)在試生產(chǎn)階段,若將30張標準板材用裁法一裁剪,4張標準板材用裁法二裁剪,再將得到的A型與B型板材做側面和底面,做成圖乙的豎式與橫式兩種禮品盒.①兩種裁法共產(chǎn)生A型板材________張,B型板材_______張;②已知①中的A型板材和B型板材恰好做成豎式有蓋禮品盒x個,橫式無蓋禮品盒的y個,求x、y的值.22.在平面直角坐標系中,若點P(x,y)的坐標滿足x﹣2y+3=0,則我們稱點P為“健康點”:若點Q(x,y)的坐標滿足x+y﹣6=0,則我們稱點Q為“快樂點”.(1)若點A既是“健康點”又是“快樂點”,則點A的坐標為;(2)在(1)的條件下,若B是x軸上的“健康點”,C是y軸上的“快樂點”,求△ABC的面積;(3)在(2)的條件下,若P為x軸上一點,且△BPC與△ABC面積相等,直接寫出點P的坐標.23.如圖,在平面直角坐標系中,已知兩點,且a、b滿足點在射線AO上(不與原點重合).將線段AB平移到DC,點D與點A對應,點C與點B對應,連接BC,直線AD交y軸于點E.請回答下列問題:(1)求A、B兩點的坐標;(2)設三角形ABC面積為,若4<≤7,求m的取值范圍;(3)設,請給出,滿足的數(shù)量關系式,并說明理由.24.對于實數(shù)x,若,則符合條件的中最大的正數(shù)為的內數(shù),例如:8的內數(shù)是5;7的內數(shù)是4.(1)1的內數(shù)是______,20的內數(shù)是______,6的內數(shù)是______;(2)若3是x的內數(shù),求x的取值范圍;(3)一動點從原點出發(fā),以3個單位/秒的速度按如圖1所示的方向前進,經(jīng)過秒后,動點經(jīng)過的格點(橫,縱坐標均為整數(shù)的點)中能圍成的最大實心正方形的格點數(shù)(包括正方形邊界與內部的格點)為,例如當時,,如圖2①……;當時,,如圖2②,③;……①用表示的內數(shù);②當?shù)膬葦?shù)為9時,符合條件的最大實心正方形有多少個,在這些實心正方形的格點中,直接寫出離原點最遠的格點的坐標.(若有多點并列最遠,全部寫出)25.閱讀材料:如果x是一個有理數(shù),我們把不超過x的最大整數(shù)記作.例如,,,,那么,,其中.例如,,,.請你解決下列問題:(1)__________,__________;(2)如果,那么x的取值范圍是__________;(3)如果,那么x的值是__________;(4)如果,其中,且,求x的值.26.如圖,數(shù)軸上兩點A、B對應的數(shù)分別是-1,1,點P是線段AB上一動點,給出如下定義:如果在數(shù)軸上存在動點Q,滿足|PQ|=2,那么我們把這樣的點Q表示的數(shù)稱為連動數(shù),特別地,當點Q表示的數(shù)是整數(shù)時我們稱為連動整數(shù).(1)在-2.5,0,2,3.5四個數(shù)中,連動數(shù)有;(直接寫出結果)(2)若k使得方程組中的x,y均為連動數(shù),求k所有可能的取值;(3)若關于x的不等式組的解集中恰好有4個連動整數(shù),求這4個連動整數(shù)的值及a的取值范圍.27.某超市分別以每盞150元,190元的進價購進A,B兩種品牌的護眼燈,下表是近兩天的銷售情況.銷售日期銷售數(shù)量(盞)銷售收入(元)A品牌B品牌第一天21680第二天341670(1)求A,B兩種品牌護眼燈的銷售價;(2)若超市準備用不超過4900元的金額購進這兩種品牌的護眼燈共30盞,求B品牌的護眼燈最多采購多少盞?28.如圖,以直角三角形AOC的直角頂點O為原點,以OC、OA所在直線為x軸和y軸建立平面直角坐標系,點A(0,a),C(b,0)滿足+|b﹣2|=0,D為線段AC的中點.在平面直角坐標系中,以任意兩點P(x1,y1)、Q(x2,y2)為端點的線段中點坐標為(,).(1)則A點的坐標為;點C的坐標為,D點的坐標為.(2)已知坐標軸上有兩動點P、Q同時出發(fā),P點從C點出發(fā)沿x軸負方向以1個單位長度每秒的速度勻速移動,Q點從O點出發(fā)以2個單位長度每秒的速度沿y軸正方向移動,點Q到達A點整個運動隨之結束.設運動時間為t(t>0)秒.問:是否存在這樣的t,使S△ODP=S△ODQ,若存在,請求出t的值;若不存在,請說明理由.(3)點F是線段AC上一點,滿足∠FOC=∠FCO,點G是第二象限中一點,連OG,使得∠AOG=∠AOF.點E是線段OA上一動點,連CE交OF于點H,當點E在線段OA上運動的過程中,請確定∠OHC,∠ACE和∠OEC的數(shù)量關系,并說明理由.29.對,定義一種新的運算,規(guī)定:(其中).(1)若已知,,則_________.(2)已知,.求,的值;(3)在(2)問的基礎上,若關于正數(shù)的不等式組恰好有2個整數(shù)解,求的取值范圍.30.某生態(tài)柑橘園現(xiàn)有柑橘21噸,計劃租用A,B兩種型號的貨車將柑橘運往外地銷售.已知滿載時,用2輛A型車和3輛B型車一次可運柑橘12噸;用3輛A型車和4輛B型車一次可運柑橘17噸.(1)1輛A型車和1輛B型車滿載時一次分別運柑橘多少噸?(2)若計劃租用A型貨車m輛,B型貨車n輛,一次運完全部柑橘,且每輛車均為滿載.①請幫柑橘園設計租車方案;②若A型車每輛需租金120元/次,B型車每輛需租金100元/次.請選出最省錢的租車方案,并求出最少租車費.【參考答案】***試卷處理標記,請不要刪除一、解答題1.(1)AC∥DE;(2)①∠CAM+∠MDE=∠AMD,證明見解析;②點M的坐標為(0,)或(0,).【分析】(1)根據(jù)兩點的縱坐標相等,連線平行x軸進行判斷即可;(2)①過點M作MN∥AC,運用平行線的判定和性質即可;②設M(0,m),分兩種情況:(i)當點M在線段OB上時,(ii)當點M在線段OB的延長線上時,分別運用三角形面積公式進行計算即可.【詳解】解:(1)∵A(?3,3)、C(4,3),∴AC∥x軸,∵D(?2,?1)、E(2,?1),∴DE∥x軸,∴AC∥DE;(2)①如圖,∠CAM+∠MDE=∠AMD.理由如下:過點M作MN∥AC,∵MN∥AC(作圖),∴∠CAM=∠AMN(兩直線平行,內錯角相等),∵AC∥DE(已知),∴MN∥DE(平行公理推論),∴∠MDE=∠NMD(兩直線平行,內錯角相等),∴∠CAM+∠MDE=∠AMN+∠NMD=∠AMD(等量代換).②由題意,得:AC=7,DE=4,設M(0,m),(i)當點M在線段OB上時,BM=3?m,F(xiàn)M=m+1,∴S△ACM=AC?BM=×7×(3?m)=,S△DEM=DE?FM=×4×(m+1)=2m+2,∵S△ACM=S△DEM,∴=2m+2,解得:m=,∴M(0,);(ii)當點M在線段OB的延長線上時,BM=m?3,F(xiàn)M=m+1,∴S△ACM=AC?BM=×7×(m?3)=,S△DEM=DE?FM=×4×(m+1)=2m+2,∵S△ACM=S△DEM,∴=2m+2,解得:m=,∴M(0,);綜上所述,點M的坐標為(0,)或(0,).【點睛】本題考查了三角形面積,平行坐標軸的直線上的點的坐標的特征,平行線的判定和性質等,解題關鍵是運用數(shù)形結合思想和分類討論思想.2.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)過點E作EF∥AB,然后根據(jù)兩直線平行內錯角相等,即可求∠BED的度數(shù);(2)同(1)中方法求解即可;(3)分當點B在點A左側和當點B在點A右側,再分三種情況,討論,分別過點E作EF∥AB,由角平分線的定義,平行線的性質,以及角的和差計算即可.【詳解】解:(1)當n=20時,∠ABC=40°,過E作EF∥AB,則EF∥CD,∴∠BEF=∠ABE,∠DEF=∠CDE,∵BE平分∠ABC,DE平分∠ADC,∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=60°;(2)同(1)可知:∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=n°+40°;(3)當點B在點A左側時,由(2)可知:∠BED=n°+40°;當點B在點A右側時,如圖所示,過點E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;如圖所示,過點E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;如圖所示,過點E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=∠ABC=n°,∠CDE=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;綜上所述,∠BED的度數(shù)為n°+40°或n°-40°或220°-n°.【點睛】此題考查了平行線的判定與性質,以及角平分線的定義,正確應用平行線的性質得出各角之間關系是解題關鍵.3.(1)兩直線平行,內錯角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由見解答過程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根據(jù)平行線的判定與性質即可完成填空;(2)結合(1)的輔助線方法即可完成證明;(3)結合(1)(2)的方法,根據(jù)∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可證明∠PMQ,∠A與∠C的數(shù)量關系.【詳解】解:過點P作直線PH∥AB,所以∠A=∠APH,依據(jù)是兩直線平行,內錯角相等;因為AB∥CD,PH∥AB,所以PH∥CD,依據(jù)是平行于同一條直線的兩條直線平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案為:兩直線平行,內錯角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:過點P作直線PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如圖3,過點P作直線PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【點睛】考核知識點:平行線的判定和性質.熟練運用平行線性質和判定,添加適當輔助線是關鍵.4.(1)90°;(2)見解析;(3)不變,180°【分析】(1)根據(jù)鄰補角的定義及角平分線的定義即可得解;(2)根據(jù)垂直的定義及鄰補角的定義、角平分線的定義即可得解;(3),過,分別作,,根據(jù)平行線的性質及平角的定義即可得解.【詳解】解(1),分別平分和,,,,;(2),,即,,是的平分線,,,又,,又在的內部,平分;(3)如圖,不發(fā)生變化,,過,分別作,,則有,,,,,,,,,,,,不變.【點睛】此題考查了平行線的性質,熟記平行線的性質及作出合理的輔助線是解題的關鍵.5.(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質可得∠B=∠EAD,∠ACB=∠CAD,則當∠ACB=∠B時,有AD平分∠EAC;(2)根據(jù)角平分線可得∠EAD=∠CAD,由平行線的性質可得∠B=∠EAD,∠ACB=∠CAD,則有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,則可求∠BAC=40°,由平行線的性質可得AC⊥AD.【詳解】解:(1)是,理由如下:要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質可得∠B=∠EAD,∠ACB=∠CAD,則當∠ACB=∠B時,有AD平分∠EAC;故答案為:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【點睛】此題考查了角平分線和平行線的性質,熟練掌握角平分線和平行線的有關性質是解題的關鍵.6.(1)證明見解析;(2);(3).【分析】(1)過點作,先根據(jù)平行線的性質可得,再根據(jù)平行公理推論可得,然后根據(jù)平行線的性質可得,由此即可得證;(2)過點作,同(1)的方法,先根據(jù)平行線的性質得出,,從而可得,再根據(jù)垂直的定義可得,由此即可得出結論;(3)過點作,延長至點,先根據(jù)平行線的性質可得,,從而可得,再根據(jù)角平分線的定義、結合(2)的結論可得,然后根據(jù)角的和差、對頂角相等可得,由此即可得出答案.【詳解】證明:(1)如圖,過點作,,,,,即,,;(2)如圖,過點作,,,,,即,,,,,;(3)如圖,過點作,延長至點,,,,,平分,平分,,由(2)可知,,,又,.【點睛】本題考查了平行線的性質、對頂角相等、角平分線的定義等知識點,熟練掌握平行線的性質是解題關鍵.7.初步探究:(1),-8;深入思考:(1)(?)2,()4,;(2)【分析】初步探究:(1)分別按公式進行計算即可;深入思考:(1)把除法化為乘法,第一個數(shù)不變,從第二個數(shù)開始依次變?yōu)榈箶?shù),由此分別得出結果;(2)結果前兩個數(shù)相除為1,第三個數(shù)及后面的數(shù)變?yōu)?,則;【詳解】解:初步探究:(1)2③=2÷2÷2=,;深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=1×(?)2=(?)2;5⑥=5÷5÷5÷5÷5÷5=()4;同理可得:(﹣)⑩=;(2)【點睛】本題是有理數(shù)的混合運算,也是一個新定義的理解與運用;一方面考查了有理數(shù)的乘除法及乘方運算,另一方面也考查了學生的閱讀理解能力;注意:負數(shù)的奇數(shù)次方為負數(shù),負數(shù)的偶數(shù)次方為正數(shù),同時也要注意分數(shù)的乘方要加括號,對新定義,其實就是多個數(shù)的除法運算,要注意運算順序.8.(1)(2)【分析】(1)根據(jù)例子將每項的整數(shù)部分相加,分數(shù)部分相加即可解答;(2)根據(jù)例子將每項的整數(shù)部分相加,分數(shù)部分相加即可解答.【詳解】(1)(2)原式【點睛】此題考察新計算方法,正確理解題意是解題的關鍵,根據(jù)例子即可仿照計算.9.(1)5,3;(2)有正格數(shù)對,正格數(shù)對為【分析】(1)根據(jù)定義,直接代入求解即可;(2)將代入求出b的值,再將代入,表示出kx,再根據(jù)題干分析即可.【詳解】解:(1)∵∴5,3故答案為:5,3;(2)有正格數(shù)對.將代入,得出,,解得,,∴,則∴∵,為正整數(shù)且為整數(shù)∴,,,∴正格數(shù)對為:.【點睛】本題考查的知識點是實數(shù)的運算,理解新定義是解此題的關鍵.10.(1)兩;(2)2,3;(3)24,﹣48;【分析】(1)由題意可得,進而可得答案;(2)由只有個位數(shù)是2的數(shù)的立方的個位數(shù)是8,可確定的個位上的數(shù),由可得27<32<64,進而可確定,于是可確定的十位上的數(shù),進而可得答案;(3)仿照(1)(2)兩小題中的方法解答即可.【詳解】解:(1)因為,所以,所以是一個兩位數(shù);故答案為:兩;(2)因為只有個位數(shù)是2的數(shù)的立方的個位數(shù)是8,所以的個位上的數(shù)是2,劃去32768后面的三位數(shù)768得到32,因為,27<32<64,所以,所以的十位上的數(shù)是3;故答案為:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10<<100,∴是兩位數(shù);∵只有個位數(shù)是4的數(shù)的立方的個位數(shù)是4,∴的個位上的數(shù)是4,劃去13824后面的三位數(shù)824得到13,∵8<13<27,∴20<<30.∴=24;由103=1000,1003=1000000,1000<110592<1000000,∴10<<100,∴是兩位數(shù);∵只有個位數(shù)是8的數(shù)的立方的個位數(shù)是2,∴的個位上的數(shù)是8,劃去110592后面的三位數(shù)592得到110,∵64<110<125,∴40<<50,∴;∴=﹣48.【點睛】本題考查了立方根和立方數(shù)的規(guī)律探求,具有一定的難度,正確理解題意、確定所求的數(shù)的個位數(shù)字和十位數(shù)字是解題的關鍵.11.(1)a2=2,a3=-1,a4=(2)a2016?a2017?a2018=-1(3)a33+a66+a99+…+a9999=-1【分析】(1)將a1=代入中即可求出a2,再將a2代入求出a3,同樣求出a4即可.(2)從(1)的計算結果可以看出,從a1開始,每三個數(shù)一循環(huán),而2016÷3=672,則a2016=-1,a2017=,a2018=2然后計算a2016?a2017?a2018的值;(3)觀察可得a3、a6、a9、…a99,都等于-1,將-1代入,即可求出結果.【詳解】(1)將a1=,代入,得;將a2=2,代入,得;將a3=-1,代入,得.(2)根據(jù)(1)的計算結果,從a1開始,每三個數(shù)一循環(huán),而2016÷3=672,則a2016=-1,a2017=,a2018=2所以,a2016?a2017?a2018=(-1)××2=-1(3)觀察可得a3、a6、a9、…a99,都等于-1,將-1代入,a33+a66+a99+…+a9999=(-1)3+(-1)6+(-1)9+…+(-1)99=(-1)+1+(-1)+…(-1)=-1【點睛】此類問題考查了數(shù)字類的變化規(guī)律,解題的關鍵是要嚴格根據(jù)定義進行解答,同時注意分析循環(huán)的規(guī)律.12.(1);;(2);;(3).【分析】(1)觀察前4個等式的分母先得出第5個式子的分母,再依照前4個等式即可得出答案;(2)根據(jù)前4個等式歸納類推出一般規(guī)律即可;(3)利用題(2)的結論,先寫出中各數(shù)的值,然后通過提取公因式、有理數(shù)加減法、乘法運算計算即可.【詳解】(1)觀察前4個等式的分母可知,第5個式子的分母為則第5個式子為:故應填:;;(2)第1個等式的分母為:第2個等式的分母為:第3個等式的分母為:第4個等式的分母為:歸納類推得,第n個等式的分母為:則第n個等式為:(n為正整數(shù))故應填:;;(3)由(2)的結論得:則.【點睛】本題考查了有理數(shù)運算的規(guī)律類問題,依據(jù)已知等式歸納總結出等式的一般規(guī)律是解題關鍵.13.(1);(2)①或;②點在B點左側時,;點在B點右側時,.【分析】(1)根據(jù)非負數(shù)的性質分別求出、,根據(jù)平移規(guī)律得到平移方式,再由平移的坐標變化規(guī)律求出點的坐標;(2)①設,根據(jù)三角形的面積公式列出方程,解方程求出,得到點P的坐標;②分點點在B點左側、點在B點右側時,過點P作,根據(jù)平行線的性質解答.【詳解】解:(1),,,,解得,,.,,平移線段得到線段,使點與點對應,∴平移線段向上平移4個單位,再向右平移2個單位得到線段,∴,即;(2)①設,∵線段平移得到線段,∴,∵,∵,∴,∵,∴解得,當P在B點左側時,坐標為(1,0),當P在B點右側時,坐標為(7,0),或;②I、點在射線(不與點,重合)上,點在B點左側時,,,滿足的關系式是.理由如下:如圖1,過點作,,∴,由平移得到,點與點對應,點與點對應,,∴∴,;即,II、如圖2,點在射線(不與點,重合)上,點在B點右側時,,,滿足的關系式是.同①的方法得,,,;即:綜上所述:點在B點左側時,.點在B點右側時,.【點睛】本題考查了坐標與圖形平移的關系,坐標與平行四邊形性質的關系,平行線的性質及三角形、平行四邊形的面積公式.關鍵是理解平移規(guī)律,作平行線將相關角進行轉化.14.(1)120°;(2)90°-x°;(3)不變,;(4)45°【分析】(1)由平行線的性質:兩直線平行同旁內角互補可得;(2)由平行線的性質可得∠ABN=180°-x°,根據(jù)角平分線的定義知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根據(jù)BD平分∠PBN知∠PBN=2∠DBN,從而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,當∠ACB=∠ABD時有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根據(jù)角平分線的定義可得∠ABP=∠PBN=∠ABN=2∠DBN,由平行線的性質可得∠A+∠ABN=90°,即可得出答案.【詳解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=(180°-x°)=90°-x°;(3)不變,∠ADB:∠APB=.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=;(4)∵AM∥BN,∴∠ACB=∠CBN,當∠ACB=∠ABD時,則有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴∠A+∠ABN=90°,∴∠A+2∠DBN=90°,∴∠A+∠DBN=(∠A+2∠DBN)=45°.【點睛】本題主要考查平行線的性質和角平分線的定義,熟練掌握平行線的性質是解題的關鍵.15.(1)(-2,0);(2)①t=2;②當點P在線段BC上時,點P的坐標(-t,2),當點P在線段CD上時,點P的坐標(-3,5-t);③能確定,z=x+y.【分析】(1)根據(jù)平移的性質即可得到結論;(2)①由點C的坐標為(-3,2).得到BC=3,CD=2,由于點P的橫坐標與縱坐標互為相反數(shù);于是確定點P在線段BC上,有PB=CD,即可得到結果;②當點P在線段BC上時,點P的坐標(-t,2),當點P在線段CD上時,點P的坐標(-3,5-t);③如圖,過P作PF∥BC交AB于F,則PF∥AD,根據(jù)平行線的性質即可得到結論.【詳解】解:(1)根據(jù)題意,可得三角形OAB沿x軸負方向平移3個單位得到三角形DEC,∵點A的坐標是(1,0),∴點E的坐標是(-2,0);故答案為:(-2,0);(2)①∵點C的坐標為(-3,2)∴BC=3,CD=2,∵點P的橫坐標與縱坐標互為相反數(shù);∴點P在線段BC上,∴PB=CD,即t=2;∴當t=2秒時,點P的橫坐標與縱坐標互為相反數(shù);故答案為:2;②當點P在線段BC上時,點P的坐標(-t,2),當點P在線段CD上時,點P的坐標(-3,5-t);③能確定,如圖,過P作PF∥BC交AB于F,則PF∥AD,∠1=∠CBP=x°,∠2=∠DAP=y°,∴∠BPA=∠1+∠2=x°+y°=z°,∴z=x+y.【點睛】本題考查了坐標與圖形的性質,坐標與圖形的變化-平移,平行線的性質,正確的作出輔助線是解題的關鍵.16.(1);(2)①;②;(3).【分析】(1)根據(jù)定義判斷即可;(2)①設直線上與點的“距點”的點的坐標為(a,3),根據(jù)定義列出關于a的方程,解方程即可;②點坐標為,直線上點的縱坐標為b,由題意得,轉化為不等式組,解不等式組即可.(3)分類討論,分別取P與點M重合、P與點N重合討論。當點P與點M重合時,設⊙C左側與x軸交于點Q,則點Q的坐標是(m-,0),根據(jù)定義列出關于m的絕對值方程,解方程,取較小的值;當點P與點N重合時,設⊙C右側與x軸交于點Q,則點Q的坐標是(m+,0),根據(jù)定義列出關于m的絕對值方程,解方程,取較大的值,問題得解.【詳解】解:(1)∵,O(0,0),∴,∴點D與原點互為“距點”;∵,O(0,0),∴,所以點D與原點互為“距點”;∵,O(0,0),∴,所以點D與原點互為“距點”;故答案為:;(2)①設直線上與點的“距點”的點的坐標為(a,3),則,解得a=2故答案為(2,3);②如圖,點坐標為,直線上點的縱坐標為b,設直線上點的坐標為(c,b)則:,∴,∴,∴,即的取值范圍是;(3)如圖(1),當點P與點M重合時,設⊙C左側與x軸交于點Q,則點Q的坐標是(m-,0),∵點P與點Q互為“5-距點",P(1,2),∴,解得:,;∵,∴取.當點P與點N重合時,設⊙C右側與x軸交于點Q,則點Q的坐標是(m+,0),∵點P與點Q互為“5-距點",則P(3,2),∴,解得:,,∵∴取∴.【點睛】本題為新定義題型,關鍵要讀懂題目中給出的新概念,建立模型,并結合所學知識解決即可.17.(1),;(2)或;(3)或【分析】(1)根據(jù)一個數(shù)的平方與絕對值均非負,且其和為0,則可得它們都為0,從而可求得a和b的值;(2)過點P作直線l垂直于x軸,延長交直線于點,設點坐標為,過作交直線于點,根據(jù)面積關系求出Q點坐標,再求出PQ的長度,即可求出n的值;(3)先根據(jù)求出C點坐標,再根據(jù)求出D點坐標,根據(jù)題意可得F點坐標,由得關于t的方程,求出t值即可.【詳解】(1),,且,,(2)過作直線垂直于軸,延長交直線于點,設點坐標為,過作交直線于點,如圖所示∵∴解得,點坐標為∵∴解得:或(3)當或時,有.如圖,延長BA交x軸于點D,過A點作AG⊥x軸于點G,過B點作BN⊥x軸于點N,∵∴解得:∴∵∴解得:∵∴當運動t秒時,∴∵CE=t∴,∵∴解得:或.【點睛】本題主要考查三角形的面積,含絕對值方程解法,熟練掌握直角坐標系的知識,三角形的面積,梯形的面積等知識是解題的關鍵,難點在于對圖形進行割補轉化為易求面積的圖形.18.(1),,;(2)存在,或;(3)存在,或;(4)存在,的縱坐標總是4或.或者:點在平行于軸且與軸的距離等于4的兩條直線上;或者:點在直線或直線上【分析】(1)根據(jù)點的平移規(guī)律,即可得到對應點坐標;(2)由,可以得到,即可得到P點坐標;(3)由,可以得到,結合點C坐標,就可以求得點Q坐標;(4)由,可以AB邊上的高的長度,從而得到點的坐標規(guī)律.【詳解】(1)∵點,點∴向上平移3個單位,再向右平移1個單位之后對應點坐標為,點∴∴(2)存在,理由如下:∵即:=12∴∴或(3)存在,理由如下:∵即:∵∴∵∴或(4)存在:理由如下:∵∴設中,AB邊上的高為h則:∴∴點在直線或直線上【點睛】本題考查直角坐標系中點的坐標平移規(guī)律,由點到坐標軸的距離確定點坐標等知識點,根據(jù)相關內容解題是關鍵.19.(1)白紙有100噸,作業(yè)本有90噸;(2)69520元【分析】(1)設白紙有噸,作業(yè)本有噸,根據(jù)共支出公路運費4200元,鐵路運費26280元.列出二元一次方程組,解之即可;(2)由銷售款(白紙的購進款與運輸費的和),進行計算即可.【詳解】解:(1)設白紙有噸,作業(yè)本有噸,由題意,得,整理得:,解得.答:白紙有100噸,作業(yè)本有90噸;(2)(元).答:這批作業(yè)本的銷售款比白紙的購進款與運輸費的和多69520元.【點睛】本題考查了二元一次方程組的應用,解題的關鍵是找準等量關系,正確列出二元一次方程組.20.(1)方程的正整數(shù)解是或.(只要寫出其中的一組即可);(2)滿足條件x的值有4個:x=3或x=4或x=5或x=8;(3)有兩種購買方案:即購買單價為3元的筆記本5本,單價為5元的鋼筆4支;或購買單價為3元的筆記本10本,單價為5元的鋼筆1支.【解析】(1)---------------------------.(2)C(3)解:設購買單價為3元的筆記本x個,購買單價5元的鋼筆y個,由題意得:3x+5y=35此方程的正整數(shù)解為有兩種購買方案:方案一:購買單價為3元的筆記本5個,購買單價為5元的鋼筆4支.方案二:購買單價為3元的筆記本10個,購買單價為5元的鋼筆1支(1)只要使等式成立即可(2)x-2必須是6的約數(shù)(3)設購買單價為3元的筆記本x個,購買單價5元的鋼筆y個,根據(jù)題意列二元一次方程,去正整數(shù)解求值21.(1)a=60,b=40;(2)①64,38;②x=7,y=12【分析】(1)由圖示利用板材的長列出關于a、b的二元一次方程組求解;(2)①根據(jù)已知和圖示計算出兩種裁法共產(chǎn)生A型板材和B型板材的張數(shù);②根據(jù)豎式與橫式禮品盒所需要的A、B兩種型號板材的張數(shù)列出關于x、y的二元一次方程組,然后求解即可.【詳解】解:(1)由題意得:,解得:,答:圖甲中與的值分別為:60、40;(2)①由圖示裁法一產(chǎn)生型板材為:,裁法二產(chǎn)生型板材為:,所以兩種裁法共產(chǎn)生型板材為(張,由圖示裁法一產(chǎn)生型板材為:,裁法二產(chǎn)生型板材為,,所以兩種裁法共產(chǎn)生型板材為(張,故答案為:64,38;②根據(jù)題意豎式有蓋禮品盒的個,橫式無蓋禮品盒的個,則型板材需要個,型板材需要個,所以,解得.【點睛】本題考查的知識點是二元一次方程組的應用,關鍵是根據(jù)已知先列出二元一次方程組求出a、b的值,根據(jù)圖示列出算式以及關于x、y的二元一次方程組.22.(1)(3,3);(2);(3)(,0)或(,0)【分析】(1)點A既是“健康點”又是“快樂點”,則A坐標應該滿足x-2y+3=0和x+y-6=0,解即可得答案;(2)設直線AB交y軸于D,求出B、C、D的坐標,根據(jù)S△ABC=S△BCD+S△ACD即可求出答案;(3)設點P的坐標為(n,0),根據(jù)△PBC的面積等于△ABC的面積,即,列出方程,解之即可.【詳解】解:(1)點A既是“健康點”又是“快樂點”,則A坐標應該滿足x-2y+3=0和x+y-6=0,解得:,∴A的坐標為(3,3);故答案為:(3,3);(2)設直線AB交y軸于D,如圖:∵B是x軸上的“健康點”,在x-2y+3=0中,令y=0得x=-3,∴B(-3,0),∵C是y軸上的“快樂點”,在x+y-6=0中,令x=0得y=6,∴C(0,6),在x-2y+3=0中,令x=0得y=,∴D(0,),∴CD=,∴S△ABC=S△BCD+S△ACD=CD?|xB|+CD?|xA|==;(3)設點P的坐標為(n,0),則BP=,∵△BPC與△ABC面積相等,∴S△BPC==,∴,∴或,∴點P的坐標為(,0)或(,0).【點睛】本題考查三角形面積,涉及新定義、坐標軸上點坐標特征等知識,解題的關鍵是理解“健康點”、“快樂點”含義.23.(1);(2);(3)當點C在x軸的正半軸上時,;當點C在點A和點O之間時,,理由見解析.【分析】(1)由非負性可得,解方程組可求解a,b的值,即可求解;(2)由平移的性質可得AC=m-(-3)=m+3,OB=2,由三角形的面積公式可求m的取值范圍;(3)由平移的性質可得AD∥BC.分兩種情況:當點C在x軸的正半軸上時;當點C在點A和點O之間時.由平行線的性質可求解.【詳解】解:(1)由題意可知解得所以(2)三角形的面積為由得4<≤7所以;(3)作OF//BC,當點C在x軸的正半軸上時,如圖1,當點C在點A和點O之間時,如圖2,.【點睛】本題是幾何變換綜合題,考查了非負性,二元一次方程組的解法,一元一次不等式組的解法,平移的性質等知識,靈活運用這些性質進行推理計算是本題的關鍵,要注意分類討論.24.(1)2,7,4;(2);(3)①t的內數(shù);②符合條件的最大實心正方形有2個,離原點最遠的格點的坐標有兩個,為.【分析】(1)根據(jù)內數(shù)的定義即可求解;(2)根據(jù)內數(shù)的定義可列不等式,求解即可;(3)①分析可得當時,即t的內數(shù)為2時,;當時,即t的內數(shù)為3時,,當時,即t的內數(shù)為4時,……歸納可得結論;②分析可得當t的內數(shù)為奇數(shù)時,最大實心正方形有2個;當t的內數(shù)為偶數(shù)時,最大實心正方形有1個;且最大實心正方形的邊長為:的內數(shù)-1,即可求解.【詳解】解:(1),所以1的內數(shù)是2;,所以20的內數(shù)是7;,所以6的內數(shù)是4;(2)∵3是x的內數(shù),∴,解得;(3)①當時,即t的內數(shù)為2時,;當時,即t的內數(shù)為3時,,當時,即t的內數(shù)為4時,,……∴t的內數(shù);②當t的內數(shù)為2時,最大實心正方形有1個;當t的內數(shù)為3時,最大實心正方形有2個,當t的內數(shù)為4時,最大實心正方形有1個,……即當t的內數(shù)為奇數(shù)時,最大實心正方形有2個;當t的內數(shù)為偶數(shù)時,最大實心正方形有1個;∴當?shù)膬葦?shù)為9時,符合條件的最大實心正方形有2個,由前幾個例子推理可得最大實心正方形的邊長為:的內數(shù)-1,∴此時最大實心正方形的邊長為8,離原點最遠的格點的坐標有兩個,為.【點睛】本題考查圖形類規(guī)律探究,明確題干中內數(shù)的定義是解題的關鍵.25.(1)4,-7;(2);(3);(4)或或或【分析】(1)根據(jù)表示不超過x的最大整數(shù)的定義及例子直接求解即可;(2)根據(jù)表示不超過x的最大整數(shù)的定義及例子直接求解即可;(3)由材料中“,其中”得出,解不等式,再根據(jù)3x+1為整數(shù),即可計算出具體的值;(4)由材料中的條件可得,由,可求得的范圍,根據(jù)為整數(shù),分情況討論即可求得x的值.【詳解】(1),.故答案為:4,-7.(2)如果.那么x的取值范圍是.故答案為:.(3)如果,那么.解得:∵是整數(shù).∴.故答案為:.(4)∵,其中,∴,∵,∴.∵,∴,∴,∴,0,1,2.當時,,;當時,,;當時,,;當時,,;∴或或或.【點睛】本題考查了新定義下的不等式的應用,關鍵是理解題中的意義,列出不等式求解;最后一問要注意不要漏了情況.26.(1)-2.5,2;(2)k=-8或-6或-4;(3)2,1,-1,-2,【分析】(1)根據(jù)連動數(shù)的定義即可確定;(2)先表示出x,y的值,再根據(jù)連動數(shù)的范圍求解即可;(3)求得不等式的解,根據(jù)連動整數(shù)的概念得到關于a的不等式,解不等式即可求得.【詳解】解:(1)∵點P是線段AB上一動點,點A、點B對應的數(shù)分別是-1,1,又∵|PQ|=2,∴連動數(shù)Q的范圍為:或,∴連動數(shù)有-2.5,2;(2),②×3-①×4得:,①×3-②×2得:,要使x,y均為連動數(shù),或,解得或或,解得或∴k=-8或-6或-4;(3)解得:,∵解集中恰好有4個解是連動整數(shù),∴四個連動整數(shù)解為-2,-1,1,2,∴,∴∴a的取值范圍是.【點睛】本題考查了解一元一次不等式組的整數(shù)解,一元一次方程的解,根據(jù)新定義得到不等式組是解題的關鍵,27.(1)A品牌為210元/盞,B品牌為260元/盞.(2)10盞.【分析】(1)設A品牌護眼燈的銷

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論