版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
BISWorkingPapersNo1309
Makingsuptechwork:
evidenceonthekeydriversofadoption
byLeonardoGambacorta,NicoLauridsen,SamirKiuhan-VásquezandJermyPrenio
MonetaryandEconomicDepartment
November2025
JELclassification:G28,O33,C25
Keywords:suptech,financialsupervision,technologyadoption,financialauthorities
BISWorkingPapersarewrittenbymembersoftheMonetaryandEconomicDepartmentoftheBankforInternationalSettlements,andfromtimetotimebyothereconomists,andarepublishedbytheBank.Thepapersareonsubjectsoftopicalinterestandaretechnicalincharacter.TheviewsexpressedinthispublicationarethoseoftheauthorsanddonotnecessarilyreflecttheviewsoftheBISoritsmembercentralbanks.
ThispublicationisavailableontheBISwebsite(
).
?BankforInternationalSettlements2025.Allrightsreserved.Briefexcerptsmaybereproducedortranslatedprovidedthesourceisstated.
ISSN1020-0959(print)
ISSN1682-7678(online)
1
MakingSuptechWork:EvidenceontheKeyDriversofAdoption
LeonardoGambacorta,NicoLauridsen,SamirKiuhan-VásquezandJermyPrenio*
AbstractThispaperexaminestheinstitutionaldriversofadoptingsupervisorytechnology(suptech)byfinancialauthoritiesworldwide.Usingsurveydatafrom
112financialauthoritiesacross97countriesfromtheStateofSupTechReport,weanalysehoworganisationalcharacteristicsandstrategicframeworksshapetheadoptionofsuptechinitiatives.Theanalysisemploysatwo-stagehurdlemodeltotrackadoptionfromproofofconcepttoprototype,andfinallytofulldeployment.
Wefindthatauthoritieswithinstitution-widestrategiesfordigitaltransformation,datagovernance,andsuptechdeploymentuse,onaverage,about20additionalapplicationsandfacefewerdesignandimplementationchallenges.Furthermore,whileanauthority)ssizeandinstitutionalmandatearesignificantfactorsininitiatingadvancedprojects,theestablishmentofadedicatedsuptechunitisthemostcriticalfactorinincreasingthenumberofdeployedapplications.Finally,wefindthatpubliccloudadoptionisassociatedwithahigherprobabilityofimplementingAItools,whilerelianceonin-housedevelopmentisstronglyassociatedwithearly-stageAIexperimentation.
JELCodes:G28,O33,C25
Keywords:suptech,financialsupervision,technologyadoption,financialauthorities
*LeonardoGambacorta(email:
leonardo.gambacorta@
)iswiththeBankforInternationalSettlements(BIS)andaresearchfellowofCEPR.JermyPrenio(email:
jermy.prenio@
)iswiththeBIS.NicoLauridsen(email:
nico.lauridsen@eui.eu
)iswiththeFlorenceSchoolofBankingandFinance(FBF)attheEuropeanUniversityInstitute(EUI).SamirKiuhan-Vásquez(email:
samir.kiuhan@eui.eu
)iswithFBFattheEUIandtheCambridgeSupTechLabattheUniversityofCambridgeJudgeBusinessSchool.WethankSimonediCastriforhelpfulcommentsandsuggestions.WearealsogratefultotheCambridgeSupTechLabandDigitalTransformationSolutions(DTS)forprovidingthedatafortheanalysis.TheviewsexpressedinthispaperarethoseoftheauthorsanddonotnecessarilyreflectthoseoftheBIS,theEUI,ortheCambridgeSupTechLab.
2
1Introduction
Financialsupervisionhelpskeepfinancialmarketssafeandstablebypreventingproblemssuchasinformationgaps,moralhazard,andtheabuseoffinancialfirms’marketpositions(Pigou,1932;Akerlof,1970;Stiglitz&Weiss,1981;Jensen&Meckling,1976).Supervisorssetrulesforfinancialinstitutionsandmakesurethoserulesarefollowed,whichwouldbetoocostlyandcomplicatedforconsumerstodoindividually(Llewellyn,1999).Asfinancialmarketsbecomemoredigital,creatingrapidlygrowingvolumesofdataandinformation,newrisksemerge,suchascyberthreatsandclimaterisks.Traditionalsupervisionmethods,designedforsimplertimes,struggletokeeppace.
Thisiswheresupervisorytechnology(suptech)playsacrucialrole.Suptechreferstofinancialsupervisors’useofadvancedtechnologies,suchasartificialintelligence(AI),includingmachinelearning(ML),andcloudcomputing,toimprovehowtheymonitorthemarket,collectdata,anddetectrisks.Aftertheglobalfinancialcrisisandtheriseoffintech,thereisagreaterneedforagile,data-driven,andeffectivesupervision.Suptechhelpssupervisorsidentifyemergingrisks,reduceinformationasymmetries,andstrengthencompliance.However,suptechadoptionhasbeenslowandunevenacrossjurisdictionsandinstitutionaltypesoffinancialauthorities.Manyauthoritieshavestartedsuptechprojects,butfewhavefullyintegratedthesetechnologiesintotheirdailyworkduetobarrierssuchasoutdatedITsystems,alackofclearstrategiesorskilledstaff,andconcernsaboutdatasecurity.
Thispaperaimstobridgesacademicresearchandpolicypracticetoinvestigatethefactorsthatdrivetheadoptionofsuptechbyfinancialsupervisoryauthorities.Toanalysethisphenomenon,weusetheStateofSuptechReport,collectedbytheCambridgeSupTechLabandDigitalTransformationSolutions(DTS)in2024.Thisglobaldatasetcombinesinformationonsuptechadoptionwithorganisationalcharacteristicsandjurisdictionalfactors.Usingahurdlemodel,weexaminehowfeaturessuchasthetypeofauthority,thepresenceofadedicatedsuptechunit,andtheimplementationofstrategicframeworksfordigitaltransformation,datagovernance,andsuptechinfluenceadoptionacrossdifferentstagesofthesuptechlifecycle.WealsoinvestigatetheroleofcloudcomputingasanenablingtechnologyfordevelopingAI-basedsuptechtools.
Ourfindingshighlightthatimplementinginstitution-widestrategiesfordigitaltransfor-mation,datagovernance,orsuptechisstronglyassociatedwithincreasedadoption.Indeed,financialauthoritiesthathaveadoptedallthreestrategiesuse,onaverage,20moresuptechtoolsthanthosethathavenot.Thishighlightsthesignificanceofstrategicframeworksthatactivelyguideandallocateresourcesfortechnologicalinnovationacrossallsupervisoryfunctions.Ourresultssuggestthatestablishingdedicatedsuptechunitsisparticularlyeffectiveintranslatingstrategicintentintotangibleprogress.Theseunitscanfostertechnologicaladoptionbycentralisingexpertise,aligninginnovation
3
withinstitutionalobjectives,andovercomingorganisationalinertia.Investingincloudinfrastructureisparticularlycrucial,asitprovidesthescalabilityandcomputationalpowerneededforadvancedanalyticsandAI-driventools,whileenablingauthoritiestomoderniseITsystems.However,cloudadoptionmustbecarefullypursued,payingspecialattentiontodatasecurity.Additionally,authoritiesshouldprioritisecapacitybuildingandskillsdevelopmenttoaddressinternaltalentshortagesandensurethesustainableintegrationofsuptech.Itisalsoimportanttonotethatsuptechdeploymentlagsinemergingsupervisoryareas,suchasclimate/ESG,cyberrisks,anddigitalassets.
Thispapercontributestotheliteraturebyprovidingaclearoverviewofthecurrentstateoftheartinglobalsuptech(Eisenbachetal.,2022;Degryseetal.,2025;Brynjolfsson&Kazinnik,2025).Ithighlightskeyfactorsthatcouldassistfinancialauthoritiesinadvancingthedevelopmentofnewsupervisorytoolsandtransformingtheirorganisationstoenhancesupervisorycapacity.
Theremainderofthepaperisstructuredasfollows.Section2linksourpaperwiththreestrandsoftheliterature:financialsupervision,technologyadoption,andinstitutionalcapacity.Section3outlinesananalyticalframeworkforsuptechadoption,describingthestagesofthesuptechlifecycleandthemaindriversoftechnologicaldevelopment.Section4describesthedatacollectionprocessandthedataset.Section5detailstheconstructionoftheprimaryvariablesandprovidessomedescriptiveanalysis.Section6outlinestheempiricalstrategy,basedonhurdlemodels.Section7presentsthemainresults,andSection8concludesbydiscussingpolicyimplicationsandavenuesforfutureresearch.
2Linkswithexistingpolicyandacademicliterature
Thissectionexamineshowfinancialsupervisionisevolvingthroughtechnologyfromaneconomicandpolicyperspective.Financialsupervisionisessentialforaddressingmarketfailuresthatcreaterisksrelatedtoprudentialconductwithinthefinancialsystem.Theseissuesincludeexternalities,asymmetricinformation,moralhazard,andprincipal-agentproblems(Pigou,1932;Akerlof,1970;Stiglitz&Weiss,1981;Jensen&Meckling,1976).Ifleftunaddressed,thesedistortionscanunderminemarketintegrityandstability.Financialregulationsestablishrulesofbehaviourtomitigatetheserisksanddefineacceptableoutcomesforfirms.Supervisioncomplementsregulationbyensuringthatfirmscomplywiththeserulesandinterveningwhentheiractionsthreatenregulatoryobjectives.Thisoversight,performedbycompetentauthorities,helpsresolvecollectiveactionproblemsandreinforcesthefinancialsystem’sstability.Llewellyn(1999)describesthisasconsumersdelegatingmonitoringresponsibilitiestotheseauthoritiestoreapthebenefitsofexpertiseandeconomiesofscale.Otherwise,consumerswouldfindmonitoringoffinancialfirmscostlyandwouldlikelycreatea‘freerider’problem.
Theacademicliteratureonfinancialsupervisioninthebankingsectorisquitelimited
4
duetodataavailabilityandconfidentialityissues.Thisliteratureservesasourreferencepointforstudyingthesuptechphenomenonanditsimpactontheorganisationalstructureoffinancialauthorities.Onestrandaddressesthedeterminantsofsupervisorypractices,focusingontheinternalinformationflowsthatshapemonitoringandreportingactivities,whicharefundamentaltosupervisoryactionssuchasenforcement.Anotherstrandexaminestheeffectsofenforcementactionsonmarketrisk-takingbehaviour.Ultimately,thefocuswillshifttotechnology’simpactonsupervisorypractices.
Supervisors’willandabilitytoactareessentialtoeffectivefinancialsupervision(Adrianetal,2023).Clarityofmandate,strongoperationalindependenceandaccountability,adequateresources,andlegalprotectionforsupervisorsenablethiswillandabilitytoact.ThesefactorsarecapturedinthefirsttwoCorePrinciplesforEffectiveBankingSupervisiondevelopedbytheBaselCommitteeonBankingSupervision(BCBS)andtheInsuranceCorePrinciplesdevelopedbytheInternationalAssociationofInsuranceSupervisors(IAIS).Theseprinciplesserveasminimumstandardsforbankingandinsurancesupervision.Studiesshowthatthesupervisoryarchitectureandgovernance,whichdetermineindependenceandaccountability,influencetheeffectivenessoffinancialsupervision(Masciandaroetal.,2008;Dincer&Eichengreen,2012).
Theliteratureshowstheimpactofenforcementactionsonbanks’risk-taking.Stringentsupervisionthroughenforcementactionanddirecton-siteinspectionsreducesbanks’fragilityandriskexposure(Bassettetal.,2015).Delisetal.(2019)andDelietal.(2011,2016)showthatenforcementactionsagainstbankscanstrengthentheirfinancialstabilitybyreducingrisk-weightedassetsandnonperformingloanratios.Whilethereisnoobservedincreaseinthelevelofregulatorycapital,theresultssuggestthatenforcementactionsimprovebanks’overallhealth.Evensupervisoryscrutiny,actionsthatfallshortofenforcementactions,reducesbankrisk-taking(Degryseetal.,2025).
Financialsupervisorsmusthaveabasisforconductingenforcementactionsorintroducingpreventivemeasures.Supervisors’monitoringactivitiesprovidethatbasis,andtheireffectivenessdependsonhowauthoritiesdeployresources,particularlytheskills,processes,technologies,techniques,andtoolsavailabletothem.Eisenbachetal.(2022)demonstratethattheallocationofsupervisoryresourcesscalesalmostproportionallywithbanksize.Theydiscussthepotentialbenefitsoftechnologicaleconomiesofscaleandscopeinsupervision.Thedeploymentofsupervisoryresourcesshouldenablemonitoringactivitiestoprovidetimelyandreliableinformationaboutfinancialinstitutions’conditionandriskprofile.Traditionally,suchinformationwasobtainedfromregulatoryreports,publicdisclosures,andon-siteexaminations.Forinstance,HirtleandLopez(1999)showthatthefrequencyofon-siteexaminationsshoulddependonhowquicklyprivatesupervisoryinformationerodesinvalue.Now,supervisorsalsousealternativesourcesofinformation,suchasmarketdata,newsarticles,andsocialmedia(Alonso-Robiscoetal.,2025).
Financialauthoritiesareconstantlyimprovingtheirmonitoringactivitiestoenhance
5
thequalityandtimelinessofinformationandimprovetheinsightsavailabletothem.Thisinvolvescontinuouslydevelopingsupervisorystaffcapacity(Crisantoetal.,2022),usingnewtechnologiestoenhanceregulatoryreportinganddatacollection(Crisantoetal.,2020),andupgradingITinfrastructureanddataarchitecture(diCastrietal.,2019).Authoritieshavealsoexplored,developed,anddeployednewtechnologiestobenefitfromadvancesindataanalytics(Coelhoetal.,2019;Beermanetal.,2021;GarciaOcampoetal.,2022).Forexample,supervisorsincreasinglyuseMLtoanalyselargevolumesofstructuredandunstructureddata.Inthiscontext,Brynjolfsson&Kazinnik(2025)proposeacomprehensiveframeworktounderstandhowAI,especiallylargelanguagemodels(LLMs),canenhancesupervisoryauthorities’strategicandoperationalcapabilities.AItoolscantransformsupervisoryworkflowsbyimprovingdatacollection,speedingupsignalextraction,andenablingmoreaccurateandtimelyriskassessments.Empiricalanalysisindicatesthatthesetoolscouldenhanceasignificantportionofsupervisorytasks,particularlythoseinvolvinganalyticalanddecision-makingfunctions.However,
thistransformationrequiresinvestmentindatainfrastructure,workforceupskilling,androbustgovernancemechanismstomanagetherisksofintegratingAIintosupervisoryprocesses.
Theterm"suptech",shortforsupervisorytechnology,wascoinedbytheMonetaryAuthorityofSingaporein2017todescribeitsstrategicadoptionoffinancialtechnology.Adualobjectivedrovetheinitiative:toenhancetheeffectivenessofitssupervisoryprocesseswhilesimultaneouslyreducingthecomplianceburdenimposedonregulatedfirms(Menon,2017).BroedersandPrenio(2018)laterformalisedthetermwiththenowwidelyuseddefinitionofsuptech:supervisoryauthorities’useofinnovativetechnologiestosupportsupervision.Theemphasisoninnovativetechnologiesiscrucial,asitpositionssuptechasthesupervisoryequivalentoffintechintheprivatesector.Thisdistinguishesitfromthemore“l(fā)egacy-based”systemssupervisorshavelongused,andinsteadrefersspecificallytomoderntoolsinvolvingAI/MLandbigdata(diCastrietal.,2019).
Supervisoryauthoritiesworldwideareactivelypursuingsuptechinitiativestoaddresscommonsupervisionchallenges,suchasthegrowingcomplexityofrisksandlimitedsupervisorycapacity(Prenioetal.,2024).Globaladoptionofsuptechisexpandingrapidly,with171financialauthoritiesacross107countriesreportingliveimplementationsby2024,upfromjust54agenciesin2022(Barasaetal.,2025).However,onlyafewauthoritieshavereportedthatsuptechhasbecomeintegraltotheirsupervisoryprocesses(Prenio,2024).Severalfactorsaffectthesuccessofsuptechinitiatives.Strongboardandseniormanagementsupportiskey,asthisshapesresourceallocation.Supportfromtopmanagementalsoenablesthedevelopmentofinstitution-widestrategiesforsuptechadoptionandthegovernancearrangementsneededtoimplementthem.
6
3AnanalyticalframeworkforSuptechadoption
Suptechadoptionhasbeenheterogeneousacrosscountriesanddifferenttypesoforganisatio-ns.Inthisbroadinstitutionalcontext,thispaperseekstoanswertheresearchquestion:whatarethekeydriversthatfacilitatetheadoptionofsuptechbyfinancialauthorities?Tostudythefactorsandmechanismsbehindtheadoptionofsuptech,wetakeamicroapproach,lookingatthelifecycleoftechnologicaldevelopment.Thisperspectiveallowsforamoregranularunderstandingofhowinstitutionaldynamics,resourceavailability,andstrategicpolicyframeworksaffectthetrajectoryofsuptechimplementation.
Figure1illustratesfinancialauthorities’lifecycleofsuptechadoption,mappedalongatypicaltechnologydiffusioncurvewithintheorganisation.Itdistinguishesthreelevelsofsuptechactivity:ProofofConcept(PoC),whichexploresthetechnicalfeasibilityofaproposedtoolorapplication;WorkingPrototype(WP),whereafunctionalmodeldemonstratesatool’sdesign,features,anduserinterface;andDeployedSolutions(DP),indicatingfullyimplementedandoperationaltools/applicationswithinsupervisoryprocesses.Thefigurehighlightshowdesignchallengesdominatetheearlystages,whileimplementationchallengesbecomemoresignificantastoolsmovetowardfulldeployment. SuptechadoptiontypicallybeginsatthePoCstage,whereauthoritiesfacefeasibilitychallengessuchastechnologicalconstraints,dataavailability,legalconstraints,andinternalcapacitylimitations.PoCsareprimarilyusedtoidentifypotentialapplicationareas,assesspossibleefficiencygainswithinorganisationalprocesses,andevaluatetheresourcesneededtoscalesolutions.AssolutionsevolvefromWPstoDPs,adoptionacceleratessignificantly.
However,implementationchallenges,suchasdataquality,shortagesofpersonnelwithadequatetechnicalskills,andbudgetconstraints,becomemoreprominentandoftenrepresenttheprimarybarrierstosuptechadoption(Barasaetal.,2024).
1
Severalregulatorybodiesaretransitioningfromisolatedpilotprojectstocomprehensivestrategiesthatprovideaunifiedvisionandinstitutionalcoherence.Byembeddingdigitalinitiativeswithinbroadergovernancestructures,financialauthoritiescanenhanceoperationalconsistency,supportworkforcedevelopment,andensuretechnologicalalignmenttoovercomechallengessuchasculturalinertia,siloedoperations,fragmenteddatasystems,andlimitedtechnicalcapacity.Digitaltransformation,datagovernance,andsuptechstrategiesthusrepresentthreedistinctyetinterdependentpillarsofmodernsupervisorypractice.Eachcontributesuniquelytothedevelopmentofeffective,technology-enabledoversight.
1Toanalysethemechanismsunderlyingtheinstitutionalfactorsthatdrivetheadoptionofsuptechbyfinancialauthorities,weconsiderseveraldimensions:i)idiosyncraticcharacteristics(i.e.,sizeandtypeofthefinancialauthority,thecountrywheretheyoperate),ii)theadoptionofstrategicframeworksforenablinginnovation,iii)organisationalmodelsfordesigning,developing,anddeployingapplicationsandiv)thepresenceofcomplementarytechnologiesthathelpscaleadoption.
7
Figure1:Suptechlifecycle
AsdescribedinBarasaetal.(2024),thejourneytowardeffectivesuptechadoptionisbuiltuponthreedistinctyetinterdependentstrategicpillars.First,aninstitution-widedigitaltransformationstrategyprovidesaroadmapformodernisingoperations,infrastructure,andworkforcecapabilities,integratingtechnology,data,andhumancapitalunderaunifiedinstitutionalvision.Itoftenservesasanumbrellaframeworkforsuptechanddatagovernancestrategies,fosteringagilityandcoherenceinresponsetoevolvingmarketandtechnologicalconditions.Second,aninstitution-widedatagovernancestrategyestablishesprotocolsfordatamanagement,quality,security,andethicaluseacrossallfunctions,supportingAI-readinessandsuptechdeploymentthroughrobustarchitectureandstewardshipframeworks.Overseenbyseniordataleaders,thedatagovernancestrategypromotesinteroperabilityandsafeguardsprivacyandfairness.Third,asuptechstrategyprovidesstructuredplansforharnessingnewtechnologiestoenhancesupervisoryefficiencyandeffectiveness.Prenio(2024)arguesthatasuccessfulsuptechstrategycoveringexperimentation,development,anddeployment-relatedissuesismorelikelytosucceed.Byoutlininghowtoolswillberolledout,buildinguserskills,andensuringseamlessintegrationwithexistingsupervisorysystems,thesestrategiescanovercomecommonbarrierstoadoption.
Theinteractionamongthesestrategicelementsissynergistic:i)digitaltransformationremovestechnological,structural,andculturalbarrierstoinnovation;ii)datagovernanceensureshigh-integrityinputs;andiii)suptechdeliversmeasurableimprovements,reinforcingthecaseforcontinuedreform.Together,theyformareinforcingcyclethatsupportsresilient,scalable,andfuture-readysupervisoryinnovation.Financialauthoritiesmaypursuedifferentstrategicapproaches:astandalonesuptechstrategywithaclearroadmapforintegratingadvancedtechnologiesintosupervisoryoperations;embeddingsuptechwithinbroaderinstitutionalstrategiesfordatagovernanceordigitaltransformation.A
8
datagovernancestrategy,forexample,mayfocusonmanaginginstitutionaldataeffectivelywhileenablingadvancedanalyticsforsupervisorypurposes.Thesestrategiesarenotmutuallyexclusivebutcomplementary,offeringmultipleviablepathwaysforfinancialauthoritiestosupportinnovationandinstitutionaldevelopment.
Totranslatehigh-levelstrategiesintodeployedapplications,financialauthoritiestendtoadoptanoperationalmodelformanaginginnovation.Thismodelreflectsorganisationalconstraintsanddirectlyinfluencesthemanagementofresources,skills,andprocurement.Wefocusonthreeapproaches:Adecentralisedmodelisthemostcommon,whereindividualbusinessunitsdevelopsolutions;thisapproachoffersflexibilityanddomain-specificrelevancebutcanlimitscalabilityandleadtoredundanciesifnotsupportedbypropersuptechstrategies(Beermanetal,2021).Acentralisedhubmodelplacesownershipofallinitiativeswithinasingleunit(e.g.,adedicatedsuptechunitorITunit)toensurestandardisationandalignmentwithinstitutionalgoals.Ahybrid"hub-and-spoke"modelbalancescentraloversightwithdepartmentalexpertisebyallowingeachsupervisionunittoexperimentanddevelopsuptechapplicationsitneeds,supportedbythecentralhub. Finally,weexaminetheroleofcloudcomputingindeployingsuptechtools,particularlyAI-basedones.Cloudservicesoffertheflexibility,scalability,andcomputingpowerrequiredforreal-timeanalytics,forecasting,andautomatedsupervisoryfunctions.Aroundone-thirdoffinancialauthoritiescurrentlyusehybridandpubliccloudservices,indicatingthatadoptionremainscautiousduetoconcernsaboutdataprivacy,cybersecurity,anddatasovereignty(Barasaetal,.2024).ReluctancetochangelegacyITinfrastructures,fragmenteddataarchitectures,andbureaucraticconstraintsalsoimpedetheeffectiveadoptionofAI,eventhoughcloud-basedarchitectures-particularlydatalakesandschema-on-readmodels-offerapromisingpathtowardunified,real-timeaccesstodiversedatasourcesacrossinstitutionalsilos.Despitethesetrade-offs,thegrowingneedforscalableinfrastructureisexpectedtoacceleratecloudadoptionasauthoritiesstrivetobalancesecurity,compliance,andperformancewhilemodernisingsupervisory,policy,andanalyticalfunctions(Araujoetal.,2025;Kazinnik&Brynjolfsson,2025;Prenio,2025).
4Data,variables,anddescriptiveanalysis
Datasources.TheeconometricanalysisinthispaperdrawsonanonymiseddatafromtheCambridgeSupTechLabandDTS,sStateofSupTechSurvey2024
2
.Thissurvey,typicallycompletedbyseniorstaffinfinancialauthoritiesworldwide,isacomprehensive,multi-dimensionaltooldesignedtoprovideaglobaloverviewofsuptechadoptionand
2Thedatausedinthisanalysiswereprovidedexclusivelyforresearchpurposesinaggregatedform,inaccordancewiththeconfidentialitytermsestablishedwithStateofSupTechSurveyparticipants.Noindividualorinstitution-levelresponsesweresharedordisclosed,andallanalyseswereconductedinamannerthatpreservestheanonymityandintegrityofparticipatingauthorities.
9
implementation.Theanalysisisbasedonresponsesfrom112financialauthoritiesacross97countriesandsixcontinents,ensuringadiverseandgloballyrepresentativesample.Theparticipantsincludecentralbanks,banking,insurance,securities,capitalmarketsregulators,andotherfinancialsupervisorybodies.Aroundtwo-thirdsoftherespondentsarefromemergingmarketsanddevelopingeconomies,ensuringallperspectivesfromregionsoftenunderrepresentedinglobaldiscussionsonfinancialsupervisionmodernisation.The56-questionsurveyincludesamixofmultiple-choice,matrix-style,andopen-endedquestions,manyofwhichareconditionalonearlierresponses.
Thesurveywasconductedintwoparts.Thefirstmandatorysectioncollectsessentialdataonthesuptechlandscape,includingstrategiesorroadmapsfordatagovernance,digitaltransformation,andsuptech.Italsoexploresthenumberandtypesofsuptechapplications,theorganisationalmodelssupportingtheirdevelopment,andthechallengesencounteredduringdesignandimplementation.Thissectionfurtheridentifiesthesupervisoryareaswheresuptechisapplied,suchasAML,consumerprotection,digitalassets,andclimaterisksupervision,alongwithquestionsontheeffectivenessoftools,fundingsources,andtheenablingtechnologiesanddatasciencemethodsusedinsupervisoryprocesses.Theoptionalsecondsectionallowsrespondentstoprovidemoredetailedinsightsintogovernancestructures,datamanagementpractices,collaborativeefforts,andstrategicplans.ItincludesquestionsonthelevelofAIandgenerativeAIadoption,ethicalframeworks,Environmental,Social,andGovernance(ESG)oversight,andchallengesinusingbothstructuredandunstructureddata.Italsocoverstheagency’sinternalcapacity-buildingefforts,availableskillsets,andcollaborationwithpeerauthorities.Thetwo-tierapproachofthesurveyenablesustocapturetheinstitutional
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公務(wù)員考試申論熱點(diǎn)與解析
- 零售業(yè)總經(jīng)理候選人必答題集
- 深度解析(2026)《GBT 19361-2021電火花線切割機(jī)床(單向走絲型) 精度檢驗(yàn)》
- 深度解析(2026)《GBT 19263-2003MPEG-2信號(hào)在SDH網(wǎng)絡(luò)中的傳輸技術(shù)規(guī)范》
- 金融分析師的面試考核要點(diǎn)及答案
- 環(huán)境健康素養(yǎng)提升中的暴露認(rèn)知教育策略
- 飛行員航空法規(guī)考核含答案
- 阿里巴產(chǎn)品經(jīng)理面試題目及答案
- 社保綜合柜員業(yè)務(wù)知識(shí)考試題庫含答案
- 側(cè)部背光源建設(shè)項(xiàng)目可行性分析報(bào)告(總投資2000萬元)
- 心衰患者的康復(fù)護(hù)理
- 2026年內(nèi)科護(hù)理工作計(jì)劃范文4篇
- 2025超重和肥胖管理指南課件
- 武警拓展訓(xùn)練方案
- 初中be動(dòng)詞的使用
- 婦產(chǎn)科考試試題及答案
- 光伏電站運(yùn)維人員培訓(xùn)與技能提升方案
- 安全文明施工資料管理方案
- GB/T 46194-2025道路車輛信息安全工程
- 2025年國考《行測》全真模擬試卷一及答案
- 國家開放大學(xué)2025年商務(wù)英語4綜合測試答案
評論
0/150
提交評論