西安外國(guó)語(yǔ)大學(xué)《游戲場(chǎng)景與角色設(shè)計(jì)》2025-2026學(xué)年第一學(xué)期期末試卷_第1頁(yè)
西安外國(guó)語(yǔ)大學(xué)《游戲場(chǎng)景與角色設(shè)計(jì)》2025-2026學(xué)年第一學(xué)期期末試卷_第2頁(yè)
西安外國(guó)語(yǔ)大學(xué)《游戲場(chǎng)景與角色設(shè)計(jì)》2025-2026學(xué)年第一學(xué)期期末試卷_第3頁(yè)
西安外國(guó)語(yǔ)大學(xué)《游戲場(chǎng)景與角色設(shè)計(jì)》2025-2026學(xué)年第一學(xué)期期末試卷_第4頁(yè)
西安外國(guó)語(yǔ)大學(xué)《游戲場(chǎng)景與角色設(shè)計(jì)》2025-2026學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線第1頁(yè),共3頁(yè)西安外國(guó)語(yǔ)大學(xué)《游戲場(chǎng)景與角色設(shè)計(jì)》2025-2026學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、人工智能中的計(jì)算機(jī)視覺技術(shù)能夠讓計(jì)算機(jī)理解和分析圖像和視頻內(nèi)容。假設(shè)要開發(fā)一個(gè)能夠?qū)崟r(shí)監(jiān)測(cè)交通流量和識(shí)別車輛類型的系統(tǒng),需要在不同的天氣和光照條件下準(zhǔn)確地檢測(cè)和分類車輛。以下哪種計(jì)算機(jī)視覺技術(shù)或方法在這種復(fù)雜場(chǎng)景下具有更好的魯棒性和準(zhǔn)確性?()A.傳統(tǒng)的圖像處理方法B.基于特征提取的方法C.深度學(xué)習(xí)中的目標(biāo)檢測(cè)算法D.光流法2、在人工智能的聯(lián)邦學(xué)習(xí)中,假設(shè)多個(gè)參與方需要在保護(hù)數(shù)據(jù)隱私的前提下共同訓(xùn)練一個(gè)模型。以下哪種技術(shù)或機(jī)制能夠確保數(shù)據(jù)的安全性和隱私性?()A.加密技術(shù),對(duì)數(shù)據(jù)和模型參數(shù)進(jìn)行加密傳輸和計(jì)算B.數(shù)據(jù)匿名化,去除數(shù)據(jù)中的敏感信息C.建立可信的第三方機(jī)構(gòu)進(jìn)行數(shù)據(jù)管理D.不采取任何措施,直接共享原始數(shù)據(jù)3、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用具有很大潛力。假設(shè)要利用人工智能技術(shù)實(shí)現(xiàn)農(nóng)作物的病蟲害監(jiān)測(cè),以下關(guān)于這種應(yīng)用的描述,正確的是:()A.可以通過分析農(nóng)作物的圖像和傳感器數(shù)據(jù),及時(shí)發(fā)現(xiàn)病蟲害的跡象B.人工智能系統(tǒng)能夠完全替代農(nóng)民的經(jīng)驗(yàn)和判斷,獨(dú)立完成病蟲害的防治工作C.由于農(nóng)作物生長(zhǎng)環(huán)境的復(fù)雜性,人工智能在病蟲害監(jiān)測(cè)中的應(yīng)用效果有限D(zhuǎn).安裝在農(nóng)田中的監(jiān)測(cè)設(shè)備越多,人工智能病蟲害監(jiān)測(cè)系統(tǒng)的準(zhǔn)確性就越高4、在人工智能的對(duì)話系統(tǒng)中,假設(shè)需要根據(jù)用戶的上下文和歷史對(duì)話信息生成連貫且有針對(duì)性的回復(fù)。以下哪種方法能夠更好地利用上下文信息?()A.使用循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)或長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM)捕捉序列信息B.只關(guān)注當(dāng)前輸入的文本,不考慮歷史信息C.對(duì)上下文信息進(jìn)行簡(jiǎn)單的統(tǒng)計(jì)分析D.隨機(jī)生成回復(fù),不依賴上下文5、在人工智能的發(fā)展中,倫理和社會(huì)問題日益受到關(guān)注。例如,自動(dòng)駕駛汽車在面臨不可避免的事故時(shí),需要做出決策以最小化傷亡。這種情況下,以下哪種觀點(diǎn)是需要重點(diǎn)考慮的?()A.優(yōu)先保護(hù)乘客的生命安全B.隨機(jī)選擇保護(hù)對(duì)象C.按照預(yù)設(shè)的規(guī)則進(jìn)行決策,不考慮具體情況D.綜合考慮多種因素,如法律、道德和社會(huì)影響6、在人工智能的圖像超分辨率重建任務(wù)中,例如將低分辨率圖像恢復(fù)為高分辨率圖像,以下哪種技術(shù)和網(wǎng)絡(luò)結(jié)構(gòu)可能會(huì)發(fā)揮重要作用?()A.殘差網(wǎng)絡(luò)B.注意力機(jī)制C.對(duì)抗生成網(wǎng)絡(luò)D.以上都是7、人工智能在法律領(lǐng)域的輔助決策中具有一定作用。假設(shè)要利用人工智能協(xié)助法官判斷案件,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.分析大量的法律案例和條文,提供相關(guān)的參考和建議B.利用數(shù)據(jù)挖掘技術(shù)發(fā)現(xiàn)案件中的潛在規(guī)律和模式C.人工智能的判斷結(jié)果可以直接作為最終的法律裁決,無(wú)需法官審查D.幫助法官提高決策的效率和準(zhǔn)確性,但最終決策權(quán)仍在法官手中8、人工智能在自動(dòng)駕駛領(lǐng)域有重要的應(yīng)用。假設(shè)一輛自動(dòng)駕駛汽車在行駛過程中需要做出決策,以下關(guān)于自動(dòng)駕駛中的人工智能決策的描述,正確的是:()A.自動(dòng)駕駛汽車的決策完全依賴于預(yù)先設(shè)定的規(guī)則和算法,不具備自主學(xué)習(xí)和適應(yīng)能力B.復(fù)雜的交通環(huán)境和意外情況不會(huì)對(duì)自動(dòng)駕駛汽車的決策造成困難,因?yàn)槠渚哂型昝赖母兄皖A(yù)測(cè)能力C.自動(dòng)駕駛汽車在決策時(shí)需要綜合考慮多種因素,如交通規(guī)則、行人行為和車輛狀態(tài)等D.人類駕駛員的干預(yù)對(duì)自動(dòng)駕駛汽車的決策沒有任何幫助,反而可能導(dǎo)致系統(tǒng)混亂9、在人工智能的推薦系統(tǒng)中,為用戶提供個(gè)性化的推薦服務(wù)。假設(shè)我們要構(gòu)建一個(gè)電影推薦系統(tǒng),以下關(guān)于推薦算法的選擇,哪一項(xiàng)是不準(zhǔn)確的?()A.基于內(nèi)容的推薦B.協(xié)同過濾推薦C.隨機(jī)推薦D.混合推薦10、人工智能中的模型評(píng)估指標(biāo)對(duì)于衡量模型的性能至關(guān)重要。假設(shè)我們訓(xùn)練了一個(gè)分類模型,以下哪個(gè)評(píng)估指標(biāo)在類別不平衡的情況下可能不太適用?()A.準(zhǔn)確率B.召回率C.F1值D.混淆矩陣11、在人工智能的機(jī)器人控制領(lǐng)域,假設(shè)要讓一個(gè)機(jī)器人通過學(xué)習(xí)來(lái)適應(yīng)不同的環(huán)境和任務(wù),以下關(guān)于機(jī)器人學(xué)習(xí)的描述,正確的是:()A.機(jī)器人可以通過預(yù)先編程來(lái)應(yīng)對(duì)所有可能的情況,無(wú)需學(xué)習(xí)能力B.強(qiáng)化學(xué)習(xí)是機(jī)器人學(xué)習(xí)的唯一有效方法,其他學(xué)習(xí)方法不適用C.機(jī)器人在學(xué)習(xí)過程中可以通過與環(huán)境的交互和試錯(cuò)來(lái)不斷改進(jìn)自己的行為D.機(jī)器人的學(xué)習(xí)能力受到硬件限制,無(wú)法達(dá)到與人類相似的學(xué)習(xí)效果12、人工智能中的機(jī)器學(xué)習(xí)算法可以分為監(jiān)督學(xué)習(xí)、無(wú)監(jiān)督學(xué)習(xí)和強(qiáng)化學(xué)習(xí)等。假設(shè)要對(duì)一組未標(biāo)記的數(shù)據(jù)進(jìn)行分類,以下哪種學(xué)習(xí)算法可能最為適用?()A.監(jiān)督學(xué)習(xí)中的線性回歸算法,通過擬合數(shù)據(jù)的線性關(guān)系進(jìn)行分類B.無(wú)監(jiān)督學(xué)習(xí)中的K-Means聚類算法,自動(dòng)將數(shù)據(jù)分為不同的簇C.強(qiáng)化學(xué)習(xí)中的Q-Learning算法,通過與環(huán)境交互學(xué)習(xí)最優(yōu)策略D.以上算法都不適合對(duì)未標(biāo)記數(shù)據(jù)進(jìn)行分類13、人工智能中的遷移學(xué)習(xí)是一種有效的技術(shù)手段。以下關(guān)于遷移學(xué)習(xí)的描述,不正確的是()A.遷移學(xué)習(xí)可以利用已有的預(yù)訓(xùn)練模型和知識(shí),在新的任務(wù)和數(shù)據(jù)上進(jìn)行微調(diào)B.遷移學(xué)習(xí)能夠減少新任務(wù)中的數(shù)據(jù)標(biāo)注工作量和訓(xùn)練時(shí)間C.遷移學(xué)習(xí)只能在相似的領(lǐng)域和任務(wù)中應(yīng)用,無(wú)法跨越不同的領(lǐng)域D.合理運(yùn)用遷移學(xué)習(xí)可以提高模型的泛化能力和性能14、人工智能中的可解釋性是一個(gè)重要的研究方向。假設(shè)要解釋一個(gè)深度學(xué)習(xí)模型的決策過程和輸出結(jié)果,以下關(guān)于模型可解釋性的描述,正確的是:()A.深度學(xué)習(xí)模型的內(nèi)部運(yùn)作非常復(fù)雜,無(wú)法進(jìn)行任何形式的解釋B.特征重要性分析可以幫助理解模型對(duì)輸入特征的依賴程度C.可視化技術(shù)只能展示模型的結(jié)構(gòu),不能解釋模型的決策邏輯D.模型可解釋性對(duì)于實(shí)際應(yīng)用沒有太大意義,只要模型性能好就行15、在人工智能的自然語(yǔ)言生成任務(wù)中,需要生成連貫和有意義的文本。假設(shè)要開發(fā)一個(gè)能夠自動(dòng)生成新聞報(bào)道的系統(tǒng),以下關(guān)于自然語(yǔ)言生成的描述,正確的是:()A.隨機(jī)生成單詞和句子的組合就能夠產(chǎn)生有邏輯和可讀性的新聞報(bào)道B.僅僅依靠語(yǔ)言模型的概率預(yù)測(cè),不考慮語(yǔ)義和上下文信息,也能生成高質(zhì)量的文本C.利用深度學(xué)習(xí)模型學(xué)習(xí)大量的新聞文本數(shù)據(jù),并結(jié)合語(yǔ)義理解和規(guī)劃,可以生成較為準(zhǔn)確和流暢的新聞報(bào)道D.自然語(yǔ)言生成系統(tǒng)不需要考慮語(yǔ)言的風(fēng)格和體裁,能夠生成通用的文本16、在人工智能的發(fā)展中,倫理和社會(huì)問題受到越來(lái)越多的關(guān)注。假設(shè)一個(gè)城市正在考慮大規(guī)模部署自動(dòng)駕駛汽車。以下關(guān)于人工智能倫理問題的描述,哪一項(xiàng)是錯(cuò)誤的?()A.自動(dòng)駕駛汽車在面臨道德困境時(shí),如選擇保護(hù)乘客還是行人,需要制定明確的決策規(guī)則B.人工智能的應(yīng)用可能導(dǎo)致部分工作崗位的消失,但同時(shí)也會(huì)創(chuàng)造新的就業(yè)機(jī)會(huì)C.只要人工智能技術(shù)能夠帶來(lái)便利和效率,就無(wú)需考慮其可能產(chǎn)生的倫理和社會(huì)影響D.數(shù)據(jù)隱私和安全是人工智能應(yīng)用中需要重點(diǎn)關(guān)注的倫理問題,需要采取措施保護(hù)用戶的個(gè)人信息17、在人工智能的應(yīng)用場(chǎng)景中,比如醫(yī)療診斷領(lǐng)域,要開發(fā)一個(gè)能夠根據(jù)患者的癥狀、檢查結(jié)果和病史準(zhǔn)確預(yù)測(cè)疾病的系統(tǒng)。為了實(shí)現(xiàn)高精度的預(yù)測(cè),以下哪種因素可能起到?jīng)Q定性作用?()A.數(shù)據(jù)的質(zhì)量和數(shù)量B.算法的復(fù)雜度C.計(jì)算資源的多少D.模型的訓(xùn)練時(shí)間18、機(jī)器學(xué)習(xí)是人工智能的重要分支,其中監(jiān)督學(xué)習(xí)是一種常見的學(xué)習(xí)方式。以下關(guān)于監(jiān)督學(xué)習(xí)的描述,不正確的是()A.監(jiān)督學(xué)習(xí)需要有標(biāo)記的訓(xùn)練數(shù)據(jù),即輸入數(shù)據(jù)和對(duì)應(yīng)的期望輸出B.常見的監(jiān)督學(xué)習(xí)算法包括決策樹、支持向量機(jī)和神經(jīng)網(wǎng)絡(luò)等C.監(jiān)督學(xué)習(xí)的目標(biāo)是通過學(xué)習(xí)訓(xùn)練數(shù)據(jù)中的模式和規(guī)律,對(duì)新的未知數(shù)據(jù)進(jìn)行準(zhǔn)確的預(yù)測(cè)或分類D.監(jiān)督學(xué)習(xí)只能處理數(shù)值型數(shù)據(jù),對(duì)于文本、圖像等非數(shù)值型數(shù)據(jù)無(wú)法處理19、人工智能中的“膠囊網(wǎng)絡(luò)(CapsuleNetwork)”的主要優(yōu)勢(shì)是?()A.對(duì)姿態(tài)和變形的魯棒性B.減少參數(shù)數(shù)量C.提高訓(xùn)練速度D.增強(qiáng)可解釋性20、人工智能中的圖像超分辨率技術(shù)可以將低分辨率圖像轉(zhuǎn)換為高分辨率圖像。假設(shè)要在保持圖像細(xì)節(jié)的同時(shí)提高超分辨率效果,以下哪個(gè)因素是最關(guān)鍵的?()A.神經(jīng)網(wǎng)絡(luò)的深度B.訓(xùn)練數(shù)據(jù)的質(zhì)量C.損失函數(shù)的選擇D.優(yōu)化器的性能21、在人工智能的語(yǔ)音識(shí)別任務(wù)中,環(huán)境噪聲和口音的多樣性會(huì)影響識(shí)別效果。假設(shè)要開發(fā)一個(gè)能夠在嘈雜環(huán)境和多種口音下準(zhǔn)確識(shí)別語(yǔ)音的系統(tǒng),以下哪種技術(shù)或方法在提高系統(tǒng)的適應(yīng)性方面最為關(guān)鍵?()A.聲學(xué)模型的優(yōu)化B.語(yǔ)言模型的融合C.多模態(tài)信息的利用D.以上方法結(jié)合使用22、當(dāng)利用人工智能進(jìn)行文本摘要生成,從長(zhǎng)篇文章中提取關(guān)鍵信息并形成簡(jiǎn)潔的摘要,以下哪種策略和算法可能是有效的?()A.基于抽取的方法B.基于生成的方法C.融合抽取和生成的方法D.以上都是23、在人工智能的倫理和法律問題中,算法偏見是一個(gè)需要關(guān)注的重點(diǎn)。假設(shè)一個(gè)招聘用的人工智能系統(tǒng)由于數(shù)據(jù)偏差導(dǎo)致對(duì)某些特定群體的不公平篩選。以下哪種方法在發(fā)現(xiàn)和糾正算法偏見方面最為重要?()A.算法審計(jì)B.數(shù)據(jù)清洗和預(yù)處理C.引入多樣化的數(shù)據(jù)集D.以上方法綜合運(yùn)用24、在人工智能的語(yǔ)音識(shí)別領(lǐng)域,假設(shè)要開發(fā)一個(gè)能夠準(zhǔn)確識(shí)別不同口音和背景噪聲下的語(yǔ)音識(shí)別系統(tǒng),以下關(guān)于語(yǔ)音識(shí)別技術(shù)的描述,正確的是:()A.語(yǔ)音識(shí)別系統(tǒng)只需要對(duì)清晰、標(biāo)準(zhǔn)的語(yǔ)音進(jìn)行訓(xùn)練,就能應(yīng)對(duì)各種復(fù)雜情況B.增加訓(xùn)練數(shù)據(jù)中的口音和噪聲樣本可以提高系統(tǒng)在復(fù)雜環(huán)境下的識(shí)別能力C.語(yǔ)音識(shí)別的準(zhǔn)確率只取決于聲學(xué)模型,與語(yǔ)言模型無(wú)關(guān)D.現(xiàn)有的語(yǔ)音識(shí)別技術(shù)已經(jīng)能夠達(dá)到100%的準(zhǔn)確率,無(wú)需進(jìn)一步改進(jìn)25、人工智能在醫(yī)療領(lǐng)域的應(yīng)用越來(lái)越廣泛。假設(shè)一個(gè)醫(yī)療人工智能系統(tǒng)被用于疾病診斷,它通過分析大量的醫(yī)療影像和患者數(shù)據(jù)來(lái)給出診斷建議。以下關(guān)于這種應(yīng)用的描述,正確的是:()A.該系統(tǒng)能夠完全替代醫(yī)生的診斷,因?yàn)槠浠诖髷?shù)據(jù)的分析結(jié)果更準(zhǔn)確B.醫(yī)生仍需對(duì)系統(tǒng)的診斷結(jié)果進(jìn)行最終判斷和綜合考量,因?yàn)榇嬖跀?shù)據(jù)偏差和模型局限性C.這種系統(tǒng)只適用于常見疾病的診斷,對(duì)于罕見病無(wú)能為力D.醫(yī)療人工智能系統(tǒng)的診斷結(jié)果不受數(shù)據(jù)質(zhì)量和算法選擇的影響26、人工智能在圖像識(shí)別領(lǐng)域取得了顯著的成果。假設(shè)要開發(fā)一個(gè)能夠識(shí)別水果種類的圖像識(shí)別系統(tǒng),需要考慮多種因素。以下關(guān)于圖像數(shù)據(jù)預(yù)處理的步驟,哪一項(xiàng)是最關(guān)鍵的?()A.對(duì)圖像進(jìn)行裁剪和旋轉(zhuǎn),以統(tǒng)一圖像的大小和方向B.將圖像轉(zhuǎn)換為灰度圖像,減少數(shù)據(jù)量C.對(duì)圖像進(jìn)行增強(qiáng)和去噪處理,提高圖像質(zhì)量D.隨機(jī)打亂圖像的順序,增加數(shù)據(jù)的多樣性27、在人工智能的文本分類任務(wù)中,例如將新聞文章分類為政治、經(jīng)濟(jì)、體育等類別。假設(shè)數(shù)據(jù)集存在類別不平衡的問題,某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)多于其他類別。為了提高分類模型在這種情況下的性能,以下哪種方法是有效的?()A.對(duì)少數(shù)類進(jìn)行過采樣,增加其數(shù)量B.對(duì)多數(shù)類進(jìn)行欠采樣,減少其數(shù)量C.使用不平衡數(shù)據(jù)直接訓(xùn)練模型,不做處理D.只關(guān)注樣本數(shù)量多的類別,忽略少數(shù)類別28、當(dāng)利用人工智能進(jìn)行智能醫(yī)療影像診斷,例如檢測(cè)腫瘤或病變,以下哪種挑戰(zhàn)和問題可能是需要重點(diǎn)解決的?()A.數(shù)據(jù)標(biāo)注的準(zhǔn)確性和一致性B.模型的泛化能力和魯棒性C.結(jié)果的解釋和臨床可接受性D.以上都是29、在人工智能的自然語(yǔ)言生成任務(wù)中,如何生成連貫、有邏輯的文本是一個(gè)挑戰(zhàn)。假設(shè)要開發(fā)一個(gè)能夠自動(dòng)撰寫新聞報(bào)道的系統(tǒng),需要考慮文章的結(jié)構(gòu)、語(yǔ)法和語(yǔ)義的一致性。以下哪種方法或技術(shù)在提高文本生成質(zhì)量方面最為關(guān)鍵?()A.預(yù)訓(xùn)練語(yǔ)言模型B.強(qiáng)化學(xué)習(xí)中的獎(jiǎng)勵(lì)機(jī)制C.語(yǔ)法規(guī)則約束D.以上方法結(jié)合使用30、在人工智能的語(yǔ)音識(shí)別任務(wù)中,需要將人類的語(yǔ)音轉(zhuǎn)換為文字。假設(shè)要處理不同口音、語(yǔ)速和背景噪音下的語(yǔ)音,為了提高語(yǔ)音識(shí)別的準(zhǔn)確率,以下哪種方法是有效的?()A.使用大量的標(biāo)注語(yǔ)音數(shù)據(jù)進(jìn)行訓(xùn)練B.采用簡(jiǎn)單的聲學(xué)模型,減少計(jì)算復(fù)雜度C.忽略背景噪音,只關(guān)注語(yǔ)音的主要部分D.不進(jìn)行任何預(yù)處理,直接對(duì)原始語(yǔ)音進(jìn)行識(shí)別二、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)運(yùn)用深度學(xué)習(xí)框架構(gòu)建一個(gè)自然語(yǔ)言問答系統(tǒng),支持復(fù)雜問題的回答和推理,提高回答的準(zhǔn)確性和深度。2、(本題5分)在PyTorch中,構(gòu)建一個(gè)基于注意力機(jī)制的視頻分類模型。分析注意力在不同幀上的分布,提高視頻分類的準(zhǔn)確性。3、(本題5分)通過強(qiáng)化學(xué)習(xí)訓(xùn)練一個(gè)智能體在模擬的環(huán)境中進(jìn)行資源分配和調(diào)度,提高資源利用效率和系統(tǒng)性能。4、(本題5分)通過強(qiáng)化學(xué)習(xí)訓(xùn)練一個(gè)智能體在模擬的環(huán)境中進(jìn)行探索和學(xué)習(xí),提高其適應(yīng)能力和智能水平。5、(本題5分)利用Python的PyTorch庫(kù),構(gòu)建一個(gè)多層卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型,對(duì)街景圖像數(shù)據(jù)中的交通標(biāo)志進(jìn)行檢測(cè)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論