版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
南寧市八年級數學試卷易錯易錯壓軸選擇題精選:勾股定理選擇題練習題(含答案)一、易錯易錯壓軸選擇題精選:勾股定理選擇題1.如圖,已知△ABC中,∠ABC=90°,AB=BC,三角形的頂點在相互平行的三條直線l1,l2,l3上,且l1,l2之間的距離為2,l2,l3之間的距離為3,則AC的長是()A. B. C.4 D.72.我國古代偉大的數學家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個正方形和兩對全等的直角三角形,得到一個恒等式.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的矩形由兩個這樣的圖形拼成,若a=3,b=4,則該矩形的面積為(
)A.20 B.24 C. D.3.在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分線,交AC于點D,若CD=1,則AB的長是()A.2 B. C. D.44.如圖,是一長、寬都是3cm,高BC=9cm的長方體紙箱,BC上有一點P,PC=BC,一只螞蟻從點A出發(fā)沿紙箱表面爬行到點P的最短距離是()A.6cm B.3cm C.10cm D.12cm5.如圖,在中,,的平分線與邊相交于點,,垂足為,若的周長為6,則的面積為().A.36 B.18 C.12 D.96.如圖,在中,cm,cm,點D、E分別在AC、BC上,現將沿DE翻折,使點C落在點處,連接,則長度的最小值()A.不存在 B.等于1cmC.等于2cm D.等于2.5cm7.如圖,在等邊△ABC中,AB=15,BD=6,BE=3,點P從點E出發(fā)沿EA方向運動,連結PD,以PD為邊,在PD右側按如圖方式作等邊△DPF,當點P從點E運動到點A時,點F運動的路徑長是()A.8 B.10 C. D.128.△ABC中,AB=15,AC=13,高AD=12,則△ABC的周長為()A.42 B.32 C.42或32 D.37或339.如圖,已知中,的垂直平分線分別交于連接,則的長為()A. B. C. D.10.如圖,在△ABC中,AC=BC,∠ACB=90°,點D在BC上,BD=6,DC=2,點P是AB上的動點,則PC+PD的最小值為()A.8 B.10 C.12 D.1411.已知長方體的長2cm、寬為1cm、高為4cm,一只螞蟻如果沿長方體的表面從A點爬到B′點,那么沿哪條路最近,最短的路程是()A.cm B.5cm C.cm D.4.5cm12.如圖,點的坐標是,若點在軸上,且是等腰三角形,則點的坐標不可能是()A.(2,0) B.(4,0)C.(-,0) D.(3,0)13.如圖,已知中,,,在BC邊上取一點P(點P不與點B、C重合),使得成為等腰三角形,則這樣的點P共有().A.1個 B.2個 C.3個 D.4個14.一個直角三角形兩邊長分別是和,則第三邊的長是()A. B.或 C.或 D.15.甲、乙兩艘輪船同時從港口出發(fā),甲以16海里/時的速度向北偏東的方向航行,它們出發(fā)1.5小時后,兩船相距30海里,若乙以12海里/時的速度航行,則它的航行方向為()A.北偏西 B.南偏西75°C.南偏東或北偏西 D.南偏西或北偏東16.如圖,有一張直角三角形紙片,兩直角邊AC=6cm,BC=8cm,D為BC邊上的一點,現將直角邊AC沿直線AD折疊,使AC落在斜邊AB上,且與AE重合,則CD的長為()A.2cm B.2.5cm C.3cm D.4cm17.在中,,,,則()A. B. C. D.18.三邊長為a、b、c,則下列條件能判斷是直角三角形的是()A.a=7,b=8,c=10 B.a=,b=4,c=5C.a=,b=2,c= D.a=3,b=4,c=619.已知是的三邊,且滿足,則是()A.直角三角形 B.等邊三角形C.等腰直角三角形 D.等腰三角形或直角三角形20.如圖,在數軸上點所表示的數為,則的值為()A. B. C. D.21.已知,為正數,且,如果以,的長為直角邊作一個直角三角形,那么以這個直角三角形的斜邊為邊長的正方形的面積為()A.5 B.25 C.7 D.1522.如圖,已知AB是線段MN上的兩點,MN=12,MA=3,MB>3,以A為中心順時針旋轉點M,以點B為中心順時針旋轉點N,使M、N兩點重合成一點C,構成△ABC,當△ABC為直角三角形時AB的長是()A.3 B.5 C.4或5 D.3或5123.如圖,在中,,,邊上的中線,請試著判定的形狀是()A.直角三角形 B.等邊三角形 C.等腰三角形 D.以上都不對24.以下列各組數為邊長,不能構成直角三角形的是()A.3,4,5 B.1,1,C.8,12,13 D.、、25.如圖,在矩形ABCD中,BC=6,CD=3,將△BCD沿對角線BD翻折,點C落在點處,B交AD于點E,則線段DE的長為()A.3 B. C.5 D.26.如圖,正方體的棱長為4cm,A是正方體的一個頂點,B是側面正方形對角線的交點.一只螞蟻在正方體的表面上爬行,從點A爬到點B的最短路徑是()A.9 B. C. D.1227.如圖,正方形ABCD和正方形CEFG邊長分別為a和b,正方形CEFG繞點C旋轉,給出下列結論:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正確結論有()A.0個 B.1個 C.2個 D.3個28.如圖,中,有一點在上移動.若,則的最小值為()A.8 B.8.8 C.9.8 D.1029.由下列條件不能判定△ABC為直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:3:2C.a=2,b=3,c=4 D.(b+c)(b-c)=a230.已知三組數據:①2,3,4;②3,4,5;③1,2,,分別以每組數據中的三個數為三角形的三邊長,能構成直角三角形的是()A.② B.①② C.①③ D.②③【參考答案】***試卷處理標記,請不要刪除一、易錯易錯壓軸選擇題精選:勾股定理選擇題1.A解析:A【解析】試題解析:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根據勾股定理,得BC=,在Rt△ABC中,根據勾股定理,得AC=.故選A.考點:1.勾股定理;2.全等三角形的性質;3.全等三角形的判定.2.B解析:B【分析】設小正方形的邊長為x,則矩形的一邊長為(a+x),另一邊為(b+x),根據矩形的面積的即等于兩個三角形的面積之和,也等于長乘以寬,列出方程,化簡再代入a,b的值,得出x2+7x=12,再根據矩形的面積公式,整體代入即可.【詳解】設小正方形的邊長為x,則矩形的一邊長為(a+x),另一邊為(b+x),根據題意得:2(ax+x2+bx)=(a+x)(b+x),化簡得:ax+x2+bx-ab=0,又∵a=3,b=4,∴x2+7x=12;∴該矩形的面積為=(a+x)(b+x)=(3+x)(4+x)=x2+7x+12=24.故答案為B.【點睛】本題考查了勾股定理的證明以及運用和一元二次方程的運用,求出小正方形的邊長是解題的關鍵.3.B解析:B【分析】根據30°直角三角形的性質,求出∠ABC的度數,然后根據角平分線的性質求出∠CBD=30°,再根據30°角所對的直角三角形性質,30°角所對的直角邊等于斜邊的一半,求解即可.【詳解】如圖∵∠C=90°,∠A=30°,∴∠ABC=90°-30°=60°,∵BD平分∠ABC,∴∠ABD=∠ABC=×60°=30°,∵CD=1,∠CDB=30°∴BD=2根據勾股定理可得BC=∵∠A=30°∴AB=2故選B.【點睛】此題主要考查了30°角直角三角形的性質的應用,關鍵是根據題意畫出圖形,再利用30°角所對直角邊等于斜邊的一半求解.4.A解析:A【解析】【分析】將圖形展開,可得到安排AP較短的展法兩種,通過計算,得到較短的即可.【詳解】解:(1)如圖1,AD=3cm,DP=3+6=9cm,在Rt△ADP中,AP==3cm((2)如圖2,AC=6cm,CP=6cm,Rt△ADP中,AP==cm綜上,螞蟻從點A出發(fā)沿紙箱表面爬行到點P的最短距離是cm.故選A.【點睛】題考查了平面展開--最短路徑問題,熟悉平面展開圖是解題的關鍵.5.D解析:D【分析】利用角平分定理得到DE=AD,根據三角形內角和得到∠BDE=∠BDA,再利用角平分線定理得到BE=AB=AC,根據的周長為6求出AB=6,再根據勾股定理求出,即可求得的面積.【詳解】∵,∴AB⊥AD,∵,平分,∴DE=AD,∠BED=,∴∠BDE=∠BDA,∴BE=AB=AC,∵的周長為6,∴DE+CD+CE=AC+CE=BC=6,∵∴,∴,,∴的面積=,故選:D.【點睛】此題考查角平分線定理的運用,勾股定理求邊長,在利用角平分線定理時必須是兩個垂直一個平分同時運用,得到到角兩邊的距離相等的結論.6.C解析:C【分析】當C′落在AB上,點B與E重合時,AC'長度的值最小,根據勾股定理得到AB=5cm,由折疊的性質知,BC′=BC=3cm,于是得到結論.【詳解】解:當C′落在AB上,點B與E重合時,AC'長度的值最小,∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm,由折疊的性質知,BC′=BC=3cm,∴AC′=AB-BC′=2cm.故選:C.【點睛】本題考查了翻折變換(折疊問題),勾股定理,熟練掌握折疊的性質是解題的關鍵.7.D解析:D【分析】首先利用等邊三角形的性質和含30°直角三角形的運用,判定△DPE≌△FDH,△DF2Q≌△ADE,然后利用全等三角形的性質,得出點F運動的路徑長.【詳解】∵△ABC為等邊三角形,∴∠B=60°,過D點作DE′⊥AB,過點F作FH⊥BC于H,如圖所示:則BE′=BD=3,∴點E′與點E重合,∴∠BDE=30°,DE=BE=3,∵△DPF為等邊三角形,∴∠PDF=60°,DP=DF,∴∠EDP+∠HDF=90°∵∠HDF+∠DFH=90°,∴∠EDP=∠DFH,在△DPE和△FDH中,,∴△DPE≌△FDH(AAS),∴FH=DE=3,∴點P從點E運動到點A時,點F運動的路徑為一條線段,此線段到BC的距離為3,當點P在E點時,作等邊三角形DEF1,∠BDF1=30°+60°=90°,則DF1⊥BC,當點P在A點時,作等邊三角形DAF2,作F2Q⊥BC于Q,則四邊形DF1F2Q是矩形,∵∠BDE=30°,∠ADF2=60°,∴∠ADE+∠F2DQ=180°﹣30°﹣60°=90°,∵∠ADE+∠DAE=90°,∴∠F2DQ=∠DAE,在△DF2Q和△ADE中,,∴△DF2Q≌△ADE(AAS),∴DQ=AE=AB﹣BE=15﹣3=12,∴F1F2=DQ=12,∴當點P從點E運動到點A時,點F運動的路徑長為12,故選:D.【點睛】此題主要考查等邊三角形的性質以及全等三角形的判定與性質,解題關鍵是作好輔助線.8.C解析:C【分析】存在2種情況,△ABC是銳角三角形和鈍角三角形時,高AD分別在△ABC的內部和外部【詳解】情況一:如下圖,△ABC是銳角三角形∵AD是高,∴AD⊥BC∵AB=15,AD=12∴在Rt△ABD中,BD=9∵AC=13,AD=12∴在Rt△ACD中,DC=5∴△ABC的周長為:15+12+9+5=42情況二:如下圖,△ABC是鈍角三角形在Rt△ADC中,AD=12,AC=13,∴DC=5在Rt△ABD中,AD=12,AB=15,∴DB=9∴BC=4∴△ABC的周長為:15+13+4=32故選:C【點睛】本題考查勾股定理,解題關鍵是多解,注意當幾何題型題干未提供圖形時,往往存在多解情況.9.C解析:C【分析】先根據勾股定理的逆定理證明△ABC是直角三角形,根據垂直平分線的性質證得AD=BD,由此根據勾股定理求出CD.【詳解】∵AB=10,AC=8,BC=6,∴,∴△ABC是直角三角形,且∠C=90°,∵DE垂直平分AB,∴AD=BD,在Rt△BCD中,,∴,解得CD=,故選:C.【點睛】此題考查勾股定理及其逆定理,線段垂直平分線的性質,題中證得△ABC是直角三角形,且∠C=90°是解題的關鍵,再利用勾股定理求解.10.B解析:B【分析】過點C作CO⊥AB于O,延長CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP,此時DP+CP=DP+PC′=DC′的值最?。蒁C=2,BD=6,得到BC=8,連接BC′,由對稱性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根據勾股定理即可得到結論.【詳解】解:過點C作CO⊥AB于O,延長CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP.此時DP+CP=DP+PC′=DC′的值最?。逥C=2,BD=6,∴BC=8,連接BC′,由對稱性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=8,根據勾股定理可得DC′=.故選:B.【點睛】此題考查了軸對稱﹣線路最短的問題,確定動點P為何位置時PC+PD的值最小是解題的關鍵.11.B解析:B【分析】要求長方體中兩點之間的最短路徑,最直接的作法,就是將長方體展開,然后利用兩點之間線段最短解答.【詳解】解:根據題意,如圖所示,最短路徑有以下三種情況:(1)沿,,,剪開,得圖;(2)沿,,,,,剪開,得圖;(3)沿,,,,,剪開,得圖;綜上所述,最短路徑應為(1)所示,所以,即.故選:B.【點睛】此題考查最短路徑問題,將長方體從不同角度展開,是解決此類問題的關鍵,注意不要漏解.12.D解析:D【詳解】解:(1)當點P在x軸正半軸上,①以OA為腰時,∵A的坐標是(2,2),∴∠AOP=45°,OA=,∴P的坐標是(4,0)或(,0);②以OA為底邊時,∵點A的坐標是(2,2),∴當點P的坐標為:(2,0)時,OP=AP;(2)當點P在x軸負半軸上,③以OA為腰時,∵A的坐標是(2,2),∴OA=,∴OA=AP=∴P的坐標是(-,0).故選D.13.B解析:B【分析】在BC邊上取一點P(點P不與點B、C重合),使得成為等腰三角形,分三種情況分析:、、;根據等腰三角形的性質分別對三種情況逐個分析,即可得到答案.【詳解】根據題意,使得成為等腰三角形,分、、三種情況分析:當時,點P位置再分兩種情況分析:第1種:點P在點O右側,于點O∴設∴∵∴∴∴∴,不符合題意;第2種:點P在點O左側,于點O設∴∴∴∴,點P存在,即;當時,,點P存在;當時,,即點P和點C重合,不符合題意;∴符合題意的點P共有:2個故選:B.【點睛】本題考查了等腰三角形、勾股定理、一元一次方程的知識;解題的關鍵是熟練掌握等腰三角形、勾股定理、一元一次方程的性質,從而完成求解.14.C解析:C【分析】記第三邊為c,然后分c為直角三角形的斜邊和直角邊兩種情況,利用勾股定理求解即可.【詳解】解:記第三邊為c,若c為直角三角形的斜邊,則;若c為直角三角形的直角邊,則.故選:C.【點睛】本題考查了勾股定理,屬于基本題目,正確分類、熟練掌握勾股定理是解題的關鍵.15.C解析:C【分析】先求出出發(fā)1.5小時后,甲乙兩船航行的路程,進而可根據勾股定理的逆定理得出乙船的航行方向與甲船的航行方向垂直,進一步即可得出答案.【詳解】解:出發(fā)1.5小時后,甲船航行的路程是16×1.5=24海里,乙船航行的路程是12×1.5=18海里;∵,∴乙船的航行方向與甲船的航行方向垂直,∵甲船的航行方向是北偏東75°,∴乙船的航行方向是南偏東15°或北偏西15°.故選:C.【點睛】本題考查了勾股定理的逆定理和方位角,屬于??碱}型,正確理解題意、熟練掌握勾股定理的逆定理是解題的關鍵.16.C解析:C【分析】首先由勾股定理求得AB=10,然后由翻折的性質求得BE=4,設DC=,則BD=,在△BDE中,利用勾股定理列方程求解即可.【詳解】在Rt△ABC中,由勾股定理可知:AB=,由折疊的性質可知:DC=DE,AC=AE=6,∠DEA=∠C=90°,∴BE=AB-AE=10-6=4,∠DEB=90°,設DC=x,則BD=8-x,DE=x,在Rt△BED中,由勾股定理得:BE2+DE2=BD2,即42+x2=(8-x)2,解得:x=3,∴CD=3.故選:C.【點睛】本題主要考查了勾股定理與折疊問題,熟練掌握翻折的性質和勾股定理是解決問題的關鍵.17.D解析:D【分析】根據直角三角形的性質求出BC,根據勾股定理計算,得到答案.【詳解】解:∵∠C=90°,∠A=30°,∴BC=AB=6,由勾股定理得,AC=,故選:D.【點睛】本題考查的是直角三角形的性質、勾股定理,掌握在直角三角形中,30°角所對的直角邊等于斜邊的一半是解題的關鍵.18.B解析:B【分析】根據勾股定理逆定理對每個選項一一判斷即可.【詳解】A、∵72+82≠102,∴△ABC不是直角三角形;B、∵52+42=()2,∴△ABC是直角三角形;C、∵22+()2≠()2,∴△ABC不是直角三角形;D、∵32+42≠62,∴△ABC不是直角三角形;故選:B.【點睛】本題主要考查勾股定理逆定理,熟記定理是解題關鍵.19.D解析:D【分析】由(a-b)(a2-b2-c2)=0,可得:a-b=0,或a2-b2-c2=0,進而可得a=b或a2=b2+c2,進而判斷△ABC的形狀為等腰三角形或直角三角形.【詳解】解:∵(a-b)(a2-b2-c2)=0,∴a-b=0,或a2-b2-c2=0,即a=b或a2=b2+c2,∴△ABC的形狀為等腰三角形或直角三角形.故選:D.【點睛】本題考查了勾股定理的逆定理以及等腰三角形的判定,解題時注意:有兩邊相等的三角形是等腰三角形,滿足a2+b2=c2的三角形是直角三角形.20.A解析:A【分析】首先根據勾股定理得出圓弧的半徑,然后得出點A的坐標.【詳解】解:∴由圖可知:點A所表示的數為:故選:A【點睛】本題主要考查的就是數軸上點所表示的數,屬于基礎題型.解決這個問題的關鍵就是求出斜邊的長度.在數軸上兩點之間的距離是指兩點所表示的數的差的絕對值.21.C解析:C【分析】本題可根據兩個非負數相加和為0,則這兩個非負數的值均為0解出x、y的值,然后運用勾股定理求出斜邊的長.斜邊長的平方即為正方形的面積.【詳解】依題意得:,∴,斜邊長,所以正方形的面積.故選C.考點:本題綜合考查了勾股定理與非負數的性質點評:解這類題的關鍵是利用直角三角形,用勾股定理來尋求未知系數的等量關系.22.C解析:C【分析】設AB=x,則BC=9-x,根據三角形兩邊之和大于第三邊,得到x的取值范圍,再利用分類討論思想,根據勾股定理列方程,計算解答.【詳解】解:∵在△ABC中,AC=AM=3,設AB=x,BC=9-x,由三角形兩邊之和大于第三邊得:,解得3<x<6,①AC為斜邊,則32=x2+(9-x)2,即x2-9x+36=0,方程無解,即AC為斜邊不成立,②若AB為斜邊,則x2=(9-x)2+32,解得x=5,滿足3<x<6,③若BC為斜邊,則(9-x)2=32+x2,解得x=4,滿足3<x<6,∴x=5或x=4;故選C.【點睛】本題考查三角形的三邊關系,勾股定理等,分類討論和方程思想是解答的關鍵.23.C解析:C【分析】利用勾股定理的逆定理可以推導出是直角三角形.再利用勾股定理求出AC,可得出AB=AC,即可判斷.【詳解】解:由已知可得CD=BD=5,即,是直角三角形,,故是等腰三角形.故選C【點睛】本題考查了勾股定理和它的逆定理,熟練掌握定理是解題關鍵.24.C解析:C【分析】根據勾股定理的逆定理,只要驗證兩小邊的平方和是否等于最長邊的平方即可作出判斷.【詳解】A.32+42=52,能構成直角三角形,故不符合題意;B.12+12=()2,能構成直角三角形,故不符合題意;C.82+122≠132,不能構成直角三角形,故符合題意;D.()2+()2=()2,能構成直角三角形,故不符合題意,故選C.【點睛】本題考查了勾股定理的逆定理,在應用勾股定理的逆定理時,應先認真分析所給邊的大小關系,確定最大邊后,再驗證兩條較小邊的平方和與最大邊的平方之間的關系,進而作出判斷.25.B解析:B【分析】首先根據題意得到BE=DE,然后根據勾股定理得到關于線段AB、AE、BE的方程,解方程即可解決問題.【詳解】解:設ED=x,則AE=6-x,∵四邊形ABCD為矩形,∴AD∥BC,∴∠EDB=∠DBC;由題意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6-x)2,解得:x=,∴ED=.故選:B.【點睛】本題主要考查了幾何變換中的翻折變換及其應用問題;解題的關鍵是根據翻折變換的性質,結合全等三角形的判定及其性質、勾股定理等幾何知識,靈活進行判斷、分析、推理或解答.26.B解析:B【分析】將正方體的左側面與前面展開,構成一個長方形,用勾股定理求出距離即可.【詳解】解:如圖,AB=.故選:B.【點睛】此題求最短路徑,我們將平面展開,組成一個直角三角形,利用勾股定理求出斜邊就可以了.27.D解析:D【解析】分析:由四邊形ABCD與四邊形EFGC都為正方形,得到四條邊相等,四個角為直角,利用SAS得到三角形BCE與三角形DCG全等,利用全等三角形對應邊相等即可得到BE=DG,利用全等三角形對應角相等得到∠CBM=∠MDO,利用等角的余角相等及直角的定義得到∠BOD為直角,利用勾股定理求出所求式子的值即可.詳解:①∵四邊形ABCD和EFGC都為正方形,∴CB=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCD+∠DCE=∠ECG+∠DCE,即∠BCE=∠DCG.在△BCE和△DCG中,CB=CD,∠BCE=∠DCG,CE=CG,∴△BCE≌△DCG,∴BE=DG,故結論①正確.②如圖所示,設BE交DC于點M,交DG于點O.由①可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年大理護理職業(yè)學院單招職業(yè)技能測試題庫及答案詳解1套
- 2026年廈門軟件職業(yè)技術學院單招職業(yè)適應性考試題庫及參考答案詳解
- 2026年榆林能源科技職業(yè)學院單招綜合素質考試題庫及參考答案詳解1套
- 2026年西安歐亞學院單招職業(yè)傾向性測試題庫及答案詳解1套
- 2026年山西林業(yè)職業(yè)技術學院單招職業(yè)適應性考試題庫帶答案詳解
- 鐵路職工考試面試題及答案
- (一調)樂山市高中2023級高三第一次調查研究考試化學試卷
- 【歷 史】2025-2026學年八年級歷史上冊手繪筆記課件
- 2025年西安外國語大學第二批專任教師崗位公開招聘34人的備考題庫及答案詳解參考
- 2025年心血管內科科研助理招聘備考題庫帶答案詳解
- 帶隙基準電路的設計
- 2025年《廣告策劃與創(chuàng)意》知識考試題庫及答案解析
- 壓力管道安裝交叉作業(yè)方案
- 2025年副高消化內科試題及答案
- 九年級上冊《道德與法治》期中必背大題
- 2025年幼兒教育政策和法規(guī)試題(卷)附答案
- 協助老年人洗浴
- 2025年骨質疏松知識考試練習題及答案
- 【語文】上海市小學二年級上冊期末試卷(含答案)
- 2025 小學語文期末復習課件
- DB44∕T 2583-2024 無人水面艇和小型智能船舶海上測試管理規(guī)范
評論
0/150
提交評論