2026屆重慶市數(shù)學高一上期末統(tǒng)考試題含解析_第1頁
2026屆重慶市數(shù)學高一上期末統(tǒng)考試題含解析_第2頁
2026屆重慶市數(shù)學高一上期末統(tǒng)考試題含解析_第3頁
2026屆重慶市數(shù)學高一上期末統(tǒng)考試題含解析_第4頁
2026屆重慶市數(shù)學高一上期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆重慶市數(shù)學高一上期末統(tǒng)考試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如果,那么()A. B.C. D.2.在正內(nèi)有一點,滿足等式,,則()A. B.C. D.3.在《九章算術(shù)》中,將底面是直角三角形的直三棱柱稱為“塹堵”.如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某“塹堵”的三視圖,則該“塹堵”的側(cè)面積為()A.48 B.42C.36 D.304.A. B.C. D.5.關(guān)于函數(shù)下列敘述有誤的是A.其圖象關(guān)于直線對稱B.其圖像可由圖象上所有點橫坐標變?yōu)樵瓉淼谋兜玫紺.其圖像關(guān)于點對稱D.其值域為6.已知函數(shù),若對任意,總存在,使得,則實數(shù)的取值范圍是()A. B.C. D.7.函數(shù)的定義域為D,若滿足;(1)在D內(nèi)是單調(diào)函數(shù);(2)存在,使得在上的值域也是,則稱為閉函數(shù);若是閉函數(shù),則實數(shù)的取值范圍是()A. B.C. D.8.函數(shù)的最小值為()A.1 B.C. D.9.若函數(shù)y=|x|(x-1)的圖象與直線y=2(x-t)有且只有2個公共點,則實數(shù)t的所有取值之和為()A.2 B.C.1 D.10.設(shè)為所在平面內(nèi)一點,若,則下列關(guān)系中正確的是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.用二分法求方程x2=2的正實根的近似解(精確度0.001)時,如果我們選取初始區(qū)間是[1.4,1.5],則要達到精確度至少需要計算的次數(shù)是______________12.已知函數(shù),若,則______.13.關(guān)于函數(shù)f(x)=有如下四個命題:①f(x)的圖象關(guān)于y軸對稱②f(x)的圖象關(guān)于原點對稱③f(x)的圖象關(guān)于直線x=對稱④f(x)的最小值為2其中所有真命題的序號是__________14.用二分法研究函數(shù)f(x)=x3+3x-1的零點時,第一次經(jīng)計算,可得其中一個零點x0∈(0,1),那么經(jīng)過下一次計算可得x0∈___________(填區(qū)間).15.集合的非空子集是________________16.已知,,向量與的夾角為,則________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),,.若不等式的解集為(1)求的值及;(2)判斷函數(shù)在區(qū)間上的單調(diào)性,并利用定義證明你的結(jié)論(3)已知且,若.試證:.18.已知函數(shù),且.(1)求函數(shù)的定義域,并判斷函數(shù)的奇偶性.(2)求滿足的實數(shù)x的取值范圍.19.如圖,幾何體EF-ABCD中,四邊形CDEF是正方形,四邊形ABCD為直角梯形,AB∥CD,AD⊥DC,△ACB是腰長為2的等腰直角三角形,平面CDEF⊥平面ABCD(1)求證:BC⊥AF;(2)求幾何體EF-ABCD的體積20.在三棱錐中,和是邊長為的等邊三角形,,分別是的中點.(1)求證:平面;(2)求證:平面;(3)求三棱錐的體積.21.已知函數(shù),.(1)若角滿足,求;(2)若圓心角為,半徑為2的扇形的弧長為,且,,求.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】利用對數(shù)函數(shù)的單調(diào)性,即可容易求得結(jié)果.【詳解】因為是單調(diào)減函數(shù),故等價于故選:D【點睛】本題考查利用對數(shù)函數(shù)的單調(diào)性解不等式,屬基礎(chǔ)題.2、A【解析】過作交于,作交于,則,可得,在中由正弦定理可得答案.【詳解】過作交于,作交于,則,,在中,,,由正弦定理得.故選:A.3、C【解析】由三視圖可知該“塹堵”的高為,其底面是直角邊為,斜邊為的三角形,從而可求出其側(cè)面積.【詳解】解:由三視圖易得該“塹堵”的高為,其底面是直角邊為,斜邊為的三角形,故其側(cè)面積為.故選:C.4、A【解析】,選A.5、C【解析】由已知,該函數(shù)關(guān)于點對稱.故選C.6、C【解析】先將不等式轉(zhuǎn)化為對應(yīng)函數(shù)最值問題:,再根據(jù)函數(shù)單調(diào)性求最值,最后解不等式得結(jié)果.【詳解】因為對任意,總存在,使得,所以,因為當且僅當時取等號,所以,因為,所以.故選:C.【點睛】對于不等式任意或存在性問題,一般轉(zhuǎn)化為對應(yīng)函數(shù)最值大小關(guān)系,即;,7、C【解析】先判定函數(shù)的單調(diào)性,然后根據(jù)條件建立方程組,轉(zhuǎn)化為使方程有兩個相異的非負實根,最后建立關(guān)于的不等式,解之即可.【詳解】因為函數(shù)是單調(diào)遞增函數(shù),所以即有兩個相異非負實根,所以有兩個相異非負實根,令,所以有兩個相異非負實根,令則,解得.故選.【點睛】本題考查了函數(shù)與方程,二次方程實根的分布,轉(zhuǎn)化法,屬于中檔題.8、D【解析】根據(jù)對數(shù)的運算法則,化簡可得,分析即可得答案.【詳解】由題意得,當時,的最小值為.故選:D9、C【解析】可直接根據(jù)題意轉(zhuǎn)化為方程有兩個根,然后利用分類討論思想去掉絕對值再利用判別式即可求得各個t的值【詳解】由題意得方程有兩個不等實根,當方程有兩個非負根時,令時,則方程為,整理得,解得;當時,,解得,故不滿足滿足題意;當方程有一個正跟一個負根時,當時,,,解得,當時,方程為,,解得;當方程有兩個負根時,令,則方程為,解得,當,,解得,不滿足題意綜上,t的取值為和,因此t的所有取值之和為1,故選C【點睛】本題是在二次函數(shù)的基礎(chǔ)上加了絕對值,所以首先需解決絕對值,關(guān)于去絕對值直接用分類討論思想即可;關(guān)于二次函數(shù)根的分布需結(jié)合對稱軸,判別式,進而判斷,必要時可結(jié)合進行判斷10、A【解析】∵∴?=3(?);∴=?.故選A.二、填空題:本大題共6小題,每小題5分,共30分。11、7【解析】設(shè)至少需要計算n次,則n滿足,即,由于,故要達到精確度要求至少需要計算7次12、16或-2【解析】討論和兩種情況討論,解方程,求的值.【詳解】當時,,成立,當時,,成立,所以或.故答案為:或13、②③【解析】利用特殊值法可判斷命題①的正誤;利用函數(shù)奇偶性的定義可判斷命題②的正誤;利用對稱性的定義可判斷命題③的正誤;取可判斷命題④的正誤.綜合可得出結(jié)論.【詳解】對于命題①,,,則,所以,函數(shù)的圖象不關(guān)于軸對稱,命題①錯誤;對于命題②,函數(shù)的定義域為,定義域關(guān)于原點對稱,,所以,函數(shù)的圖象關(guān)于原點對稱,命題②正確;對于命題③,,,則,所以,函數(shù)的圖象關(guān)于直線對稱,命題③正確;對于命題④,當時,,則,命題④錯誤.故答案為:②③.【點睛】本題考查正弦型函數(shù)的奇偶性、對稱性以及最值的求解,考查推理能力與計算能力,屬于中等題.第ⅠⅠ卷14、【解析】根據(jù)零點存在性定理判斷零點所在區(qū)間.【詳解】,,所以下一次計算可得.故答案為:15、【解析】結(jié)合子集的概念,寫出集合A的所有非空子集即可.【詳解】集合的所有非空子集是.故答案為:.16、1【解析】由于.考點:平面向量數(shù)量積;三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)函數(shù)在區(qū)間上的單調(diào)遞增,證明見解析(3)見解析【解析】(1)根據(jù)二次不等式的解集可以得到二次函數(shù)的零點,回代即可求出參數(shù)的值(2)定義法證明單調(diào)性,假設(shè),若,則單調(diào)遞增,若,則單調(diào)遞減(3)單調(diào)性的逆應(yīng)用,可以通過證明函數(shù)值的大小,反推變量的大小,難度較大【小問1詳解】,即,因不等式解集為,所以,解得:,所以【小問2詳解】函數(shù)在區(qū)間上的單調(diào)遞增,證明如下:假設(shè),則,因為,所以,所以,即當時,,所以函數(shù)在區(qū)間上的單調(diào)遞增【小問3詳解】由(2)可得:函數(shù)在區(qū)間上的單調(diào)遞增,在區(qū)間上的單調(diào)遞減,因為,且,,所以,,證明,即證明,即證明,因為,所以即證明,代入解析式得:,即,令,因為在區(qū)間上的單調(diào)遞增,根據(jù)復合函數(shù)同增異減的性質(zhì)可知,在區(qū)間上的單調(diào)遞減,所以單調(diào)遞增,即,所以在區(qū)間上恒成立,即,得證:【點睛】小問1求解析式,較易;小問2考察定義法證明單調(diào)性,按照常規(guī)方法求解即可;小問3難度較大,解題過程中應(yīng)用到以下知識點:(1)可以通過證明函數(shù)值的大小,結(jié)合函數(shù)的單調(diào)性,反推出變量的大小,即若,且單減,則;解題過程(2)單調(diào)性的性質(zhì),復合函數(shù)同增異減以及增函數(shù)減去減函數(shù)為增函數(shù)18、(1)定義域為,奇函數(shù);(2)當時的取值范圍是;當時的取值范圍是【解析】(1)根據(jù)題意,先求出函數(shù)的定義域,進而結(jié)合函數(shù)的解析式可得,即可得結(jié)論;(2)根據(jù)題意,即,分與兩種情況討論可得的取值范圍,綜合即可得答案詳解】解:(1)根據(jù)題意,,則有,解可得,則函數(shù)的定義域為,又由,則是奇函數(shù);(2)由得①當時,,解得;②當時,,解得;當時的取值范圍是;當時的取值范圍是【點睛】本題考查函數(shù)的單調(diào)性與奇偶性的應(yīng)用,注意判斷奇偶性要先求出函數(shù)的定義域,屬于中檔題19、(1)詳見解析;(2).【解析】(1)推導出FC⊥CD,F(xiàn)C⊥BC,AC⊥BC,由此BC⊥平面ACF,從而BC⊥AF(2)推導出AC=BC=2,AB4,從而AD=BCsin∠ABC=22,由V幾何體EF﹣ABCD=V幾何體A﹣CDEF+V幾何體F﹣ACB,能求出幾何體EF﹣ABCD的體積【詳解】(1)因為平面CDEF⊥平面ABCD,平面CDEF∩平面ABCD=CD,又四邊形CDEF是正方形,所以FC⊥CD,F(xiàn)C?平面CDEF,所以FC⊥平面ABCD,所以FC⊥BC因為△ACB是腰長為2的等腰直角三角形,所以AC⊥BC又AC∩CF=C,所以BC⊥平面ACF所以BC⊥AF(2)因為△ABC是腰長為2的等腰直角三角形,所以AC=BC=2,AB==4,所以AD=BCsin∠ABC=2=2,CD=AB=BCcos∠ABC=4-2cos45°=2,∴DE=EF=CF=2,由勾股定理得AE==2,因為DE⊥平面ABCD,所以DE⊥AD又AD⊥DC,DE∩DC=D,所以AD⊥平面CDEF所以V幾何體EF-ABCD=V幾何體A-CDEF+V幾何體F-ACB==+==【點睛】本題考查線線垂直的證明,考查幾何體的體積的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題20、(1)證明見解析;(2)證明見解析;(3).【解析】(1)欲證線面平行,則需證直線與平面內(nèi)的一條直線平行.由題可證,則證得平面;(2)欲證線面垂直,則需證直線垂直于平面內(nèi)的兩條相交直線.連接,可證得,從而可證得平面;(3)由(2)可知,為三棱錐的高,平面為三棱錐的底面,應(yīng)用椎體體積公式即可求解.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論