2026屆陜西省西安市第25中學(xué)高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第1頁
2026屆陜西省西安市第25中學(xué)高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第2頁
2026屆陜西省西安市第25中學(xué)高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第3頁
2026屆陜西省西安市第25中學(xué)高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第4頁
2026屆陜西省西安市第25中學(xué)高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆陜西省西安市第25中學(xué)高二上數(shù)學(xué)期末統(tǒng)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在棱長均為1的平行六面體中,,則()A. B.3C. D.62.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為,如.如圖所示的程序框圖的算法源于我國古代聞名中外的“中國剩余定理”.執(zhí)行該程序框圖,則輸出的i等于()A.7 B.10C.13 D.163.已知平面的一個法向量為=(2,-2,4),=(-1,1,-2),則AB所在直線l與平面的位置關(guān)系為()A.l⊥ B.C.l與相交但不垂直 D.l∥4.已知函數(shù)的圖象如圖所示,則其導(dǎo)函數(shù)的圖象大致形狀為()A. B.C. D.5.已知是拋物線上的點,F(xiàn)是拋物線C的焦點,若,則()A1011 B.2020C.2021 D.20226.已知橢圓的中心為,一個焦點為,在上,若是正三角形,則的離心率為()A. B.C. D.7.已知等比數(shù)列中,,則由此數(shù)列的奇數(shù)項所組成的新數(shù)列的前項和為()A. B.C. D.8.已知命題若直線與拋物線有且僅有一個公共點,則直線與拋物線相切,命題若,則方程表示橢圓.下列命題是真命題的是A. B.C. D.9.已知直線在兩個坐標(biāo)軸上的截距之和為7,則實數(shù)m的值為()A.2 B.3C.4 D.510.在等比數(shù)列中,,則等于()A. B.C. D.11.直線被橢圓截得的弦長是A. B.C. D.12.已知點,,直線與線段相交,則實數(shù)的取值范圍是()A.或 B.或C. D.二、填空題:本題共4小題,每小題5分,共20分。13.?dāng)?shù)列中,,則______14.橢圓(a>b>0)的左、右頂點分別是A,B,左、右焦點分別是F1,F(xiàn)2.若|AF1|,|F1F2|,|F1B|成等比數(shù)列,則此橢圓的離心率為___________15.已知雙曲線的焦點,過F且斜率為1的直線與雙曲線有且只有一個交點,則雙曲線的方程為_________16.若,滿足約束條件,則的最小值為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,底面為正方形,底面,,點,,分別為,,的中點,平面棱(1)試確定的值,并證明你的結(jié)論;(2)求平面與平面夾角的余弦值18.(12分)已知拋物線的焦點為F,點是拋物線上的點,且.(1)求拋物線方程;(2)直線與拋物線交于、兩點,且.求△OPQ面積的最小值.19.(12分)已知三棱柱中,,,平面ABC,,E為AB中點,D為上一點(1)求證:;(2)當(dāng)D為中點時,求平面ADC與平面所成角的正弦值20.(12分)已知函數(shù)(1)討論函數(shù)的單調(diào)性;(2)若對任意的,都有成立,求的取值范圍21.(12分)在平面直角坐標(biāo)系中,已知直線(t為參數(shù)).以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程;(2)設(shè)點的直角坐標(biāo)為,直線與曲線的交點為,求的值.22.(10分)已知函數(shù),且(1)求曲線在點處的切線方程;(2)求函數(shù)在區(qū)間上的最小值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設(shè),,,利用結(jié)合數(shù)量積的運算即可得到答案.【詳解】設(shè),,,由已知,得,,,,所以,所以.故選:C2、C【解析】根據(jù)“中國剩余定理”,進而依次執(zhí)行循環(huán)體,最后求得答案.【詳解】由題意,第一步:,余數(shù)不為1;第二步:,余數(shù)不為1;第三步:,余數(shù)為1,執(zhí)行第二個判斷框,余數(shù)不為2;第四步:,執(zhí)行第一個判斷框,余數(shù)為1,執(zhí)行第二個判斷框,余數(shù)為2.輸出的i值為13.故選:C.3、A【解析】由向量與平面法向量的關(guān)系判斷直線與平面的位置關(guān)系【詳解】因為,所以,所以故選:A4、A【解析】利用f(x)先單調(diào)遞增的速度由快到慢,再由慢到快,結(jié)合導(dǎo)數(shù)的幾何意義判斷即可.【詳解】由f(x)的圖象可知,函數(shù)f(x)先單調(diào)遞增的速度由快到慢,再由慢到快,由導(dǎo)數(shù)的幾何意義可知,先減后增,且恒大于0,故符合題意的只有選項A.故選:A.5、C【解析】結(jié)合向量坐標(biāo)運算以及拋物線的定義求得正確答案.【詳解】設(shè),因為是拋物線上的點,F(xiàn)是拋物線C的焦點,所以,準(zhǔn)線為:,因此,所以,即,由拋物線的定義可得,所以故選:C6、D【解析】根據(jù)是正三角形可得的坐標(biāo),代入方程后可求離心率.【詳解】不失一般性,可設(shè)橢圓的方程為:,為半焦距,為右焦點,因為且,故,故,,整理得到,故,故選:D.7、B【解析】確實新數(shù)列是等比數(shù)列及公比、首項后,由等比數(shù)列前項和公式計算,【詳解】由題意,新數(shù)列為,所以,,前項和為故選:B.8、B【解析】若直線與拋物線的對稱軸平行,滿足條件,此時直線與拋物線相交,可判斷命題為假;當(dāng)時,,命題為真,根據(jù)復(fù)合命題的真假關(guān)系,即可得出結(jié)論.【詳解】若直線與拋物線的對稱軸平行,直線與拋物線只有一個交點,直線與拋物不相切,可得命題是假命題,當(dāng)時,,方程表示橢圓命題是真命題,則是真命題.故選:B.【點睛】本題考查復(fù)合命題真假的判斷,屬于基礎(chǔ)題.9、C【解析】求出直線方程在兩坐標(biāo)軸上的截距,列出方程,求出實數(shù)m的值.【詳解】當(dāng)時,,故不合題意,故,,令得:,令得:,故,解得:.故選:C10、C【解析】根據(jù),然后與,可得,最后簡單計算,可得結(jié)果.【詳解】在等比數(shù)列中,由所以,又,所以所以故選:C【點睛】本題考查等比數(shù)列的性質(zhì),重在計算,當(dāng),在等差數(shù)列中有,在等比數(shù)列中,靈活應(yīng)用,屬基礎(chǔ)題.11、A【解析】直線y=x+1代入,得出關(guān)于x的二次方程,求出交點坐標(biāo),即可求出弦長【詳解】將直線y=x+1代入,可得,即5x2+8x﹣4=0,∴x1=﹣2,x2,∴y1=﹣1,y2,∴直線y=x+1被橢圓x2+4y2=8截得的弦長為故選A【點睛】本題查直線與橢圓的位置關(guān)系,考查弦長的計算,屬于基礎(chǔ)題12、B【解析】由可求出直線過定點,作出圖象,求出和,數(shù)形結(jié)合可得或,即可求解.【詳解】由可得:,由可得,所以直線:過定點,作出圖象如圖所示:,,若直線與線段相交,則或,所以實數(shù)的取值范圍是或,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】根據(jù)可得,則,所以可得數(shù)列是以6為周期周期數(shù)列,再由計算出的值,再利用對數(shù)的運算性質(zhì)可求得結(jié)果【詳解】因為,所以,所以,所以數(shù)列是以6為周期的周期數(shù)列,因為,,所以,所以,所以所以,故答案為:114、【解析】本題著重考查等比中項的性質(zhì),以及橢圓的離心率等幾何性質(zhì),同時考查了函數(shù)與方程,轉(zhuǎn)化與化歸思想.利用橢圓及等比數(shù)列的性質(zhì)解題.由橢圓的性質(zhì)可知:,,.又已知,,成等比數(shù)列,故,即,則.故.即橢圓的離心率為.【點評】求雙曲線的離心率一般是通過已知條件建立有關(guān)的方程,然后化為有關(guān)的齊次式方程,進而轉(zhuǎn)化為只含有離心率的方程,從而求解方程即可.體現(xiàn)考綱中要求掌握橢圓的基本性質(zhì).來年需要注意橢圓的長軸,短軸長及其標(biāo)準(zhǔn)方程的求解等.15、【解析】根據(jù)直線與雙曲線只有一個交點可知直線與雙曲線平行,由漸近線斜率可列出的齊次方程,利用齊次方程求解.【詳解】直線與雙曲線有且只有一個交點,且焦點,直線與雙曲線漸近線平行,,即,,即,.則雙曲線的方程為故答案為:16、【解析】作出線性約束條件的可行域,再利用截距的幾何意義求最小值;【詳解】約束條件的可行域,如圖所示:目標(biāo)函數(shù)在點取得最小值,即.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),證明見解析(2)【解析】(1),利用線面平行的判定和性質(zhì)可得答案;(2)以為原點,所在直線分別為的正方向建立空間直角坐標(biāo)系,求出平面的法向量和平面的法向量由向量夾角公式可得答案.【小問1詳解】.證明如下:在△中,因為點分別為的中點,所以//.又平面,平面,所以//平面.因為平面,平面平面,所以//所以//.在△中,因為點為的中點,所以點為的中點,即.【小問2詳解】因為底面為正方形,所以.因為底面,所以,.如圖,建立空間直角坐標(biāo)系,則,,,因為分別為的中點,所以.所以,.設(shè)平面的法向量,則即令,于.又因為平面的法向量為,所以所以平面與平面夾角的余弦值為.18、(1);(2).【解析】(1)根據(jù)拋物線的定義列方程,由此求得,進而求得拋物線方程.(2)聯(lián)立直線的方程和拋物線方程,寫出根與系數(shù)關(guān)系,結(jié)合求得的值,求得三角形面積的表達(dá)式,進而求得面積的最小值.【詳解】(1)依題意.(2)與聯(lián)立得,,得,又,又m>0,m=4.且,,當(dāng)k=0時,S最小,最小值為.19、(1)證明見解析;(2).【解析】(1)利用線面垂直的性質(zhì)定理及線面垂直的判定定理即證;(2)利用坐標(biāo)法即求.【小問1詳解】∵,E為AB中點,∴,∵平面ABC,平面ABC,∴,又,,∴平面,平面,∴;【小問2詳解】以C點為坐標(biāo)原點,CA,CB,分別為x,y,z軸建立空間直角坐標(biāo)系,不妨設(shè),則平面的法向量為,設(shè)平面ADC法向量為,則,∴,即,令,則∴平面ADC與平面所成角的余弦值為,所以平面ADC與平面所成角的正弦值.20、(1)答案見解析;(2).【解析】(1)求,分別討論不同范圍下的正負(fù),分別求單調(diào)性;(2)由(1)所求的單調(diào)性,結(jié)合,分別求出的范圍再求并集即可.【詳解】解:(1)由已知定義域為,當(dāng),即時,恒成立,則在上單調(diào)遞增;當(dāng),即時,(舍)或,所以在上單調(diào)遞減,在上單調(diào)遞增.所以時,在上單調(diào)遞增;時,在上單調(diào)遞減,在上單調(diào)遞增.(2)由(1)可知,當(dāng)時,在上單調(diào)遞增,若對任意的恒成立,只需,而恒成立,所以成立;當(dāng)時,若,即,則在上單調(diào)遞增,又,所以成立;若,則在上單調(diào)遞減,在上單調(diào)遞增,又,所以,,不滿足對任意的恒成立.所以綜上所述:.21、(1);(2)3.【解析】(1)把展開得,兩邊同乘得,再代極坐標(biāo)公式得曲線的直角坐標(biāo)方程.(2)將代入曲線C的直角坐標(biāo)方程得,再利用直線參數(shù)方程t的幾何意義和韋達(dá)定理求解.【詳解】(1)把展開得,兩邊同乘得①將代入①,即得曲線的直角坐標(biāo)方程為②(2)將代入②式,得,點M的直角坐標(biāo)為(0,3),設(shè)這個方程的兩個實數(shù)根分別為t1,t2,則∴t1<0,t2<0則

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論