版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2026屆柳州鐵路第一中學(xué)高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線C的離心率為,,是C的兩個(gè)焦點(diǎn),P為C上一點(diǎn),,若△的面積為,則雙曲線C的實(shí)軸長(zhǎng)為()A.1 B.2C.4 D.62.有6個(gè)相同的球,分別標(biāo)有數(shù)字1,2,3,4,5,6,從中有放回的隨機(jī)取兩次,每次取1個(gè)球.甲表示事件“第一次取出的球的數(shù)字是1”,乙表示事件“第二次取出的球的數(shù)字是6”,丙表示事件“兩次取出的球的數(shù)字之和是5”,丁表示事件“兩次取出的球的數(shù)字之和是偶數(shù)”,則下列判斷正確的是()A.甲與丙是互斥事件 B.乙與丙是對(duì)立事件C.甲與丁是對(duì)立事件 D.丙與丁是互斥事件3.橢圓的長(zhǎng)軸長(zhǎng)是()A.3 B.4C.6 D.84.已知是橢圓兩個(gè)焦點(diǎn),P在橢圓上,,且當(dāng)時(shí),的面積最大,則橢圓的標(biāo)準(zhǔn)方程為()A. B.C. D.5.函數(shù)的極大值點(diǎn)為()A. B.C. D.不存在6.?dāng)?shù)列滿足,且,是函數(shù)的極值點(diǎn),則的值是()A.2 B.3C.4 D.57.已知是雙曲線的左焦點(diǎn),,是雙曲線右支上的動(dòng)點(diǎn),則的最小值為()A.9 B.8C.7 D.68.盤子里有肉餡、素餡和豆沙餡的包子共個(gè),從中隨機(jī)取出個(gè),若是肉餡包子的概率為,不是豆沙餡包子的概率為,則素餡包子的個(gè)數(shù)為()A. B.C. D.9.設(shè)數(shù)列的前項(xiàng)和為,且,則()A. B.C. D.10.如圖,在三棱錐中,兩兩垂直,且,點(diǎn)E為中點(diǎn),若直線與所成的角為,則三棱錐的體積等于()A. B.C.2 D.11.中國(guó)剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點(diǎn)生活或配合其他民俗活動(dòng)的民間藝術(shù).如圖所示的圓形剪紙中,正六邊形的所有頂點(diǎn)都在該圓上,若在該圓形剪紙的內(nèi)部投擲一點(diǎn),則該點(diǎn)恰好落在正六邊形內(nèi)部的概率為()A. B.C. D.12.直線:和圓的位置關(guān)系是()A.相離 B.相切或相交C.相交 D.相切二、填空題:本題共4小題,每小題5分,共20分。13.桌面排列著100個(gè)乒乓球,兩個(gè)人輪流拿球裝入口袋,能拿到第100個(gè)乒乓球人為勝利者.條件是:每次拿走球的個(gè)數(shù)至少要拿1個(gè),但最多又不能超過(guò)5個(gè),這個(gè)游戲中,先手是有必勝策略的,請(qǐng)問(wèn):如果你是最先拿球的人,為了保證最后贏得這個(gè)游戲,你第一次該拿走_(dá)__個(gè)球14.已知函數(shù)有三個(gè)零點(diǎn),則正實(shí)數(shù)a的取值范圍為_(kāi)________15.若實(shí)數(shù)x,y滿足約束條件,則的最大值是_________.16.古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個(gè)定點(diǎn)A、B的距離之比為定值(且)的點(diǎn)的軌跡是圓”.后來(lái)人們將這個(gè)圓以他的名字命名,稱為阿波羅尼斯圓,簡(jiǎn)稱阿氏圓,在平面直角坐標(biāo)系中,,,點(diǎn)滿足,則點(diǎn)P的軌跡方程為_(kāi)_________.(答案寫成標(biāo)準(zhǔn)方程),的最小值為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)公差不為0的等差數(shù)列中,,且成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),數(shù)列的前n項(xiàng)和為.若,求的取值范圍18.(12分)已知函數(shù),.(1)若在單調(diào)遞增,求的取值范圍;(2)若,求證:.19.(12分)要設(shè)計(jì)一種圓柱形、容積為500mL的一體化易拉罐金屬包裝,如何設(shè)計(jì)才能使得總成本最低?20.(12分)已知函數(shù)的圖象在處的切線方程為.(1)求的解析式;(2)若關(guān)于的方程在上有解,求的取值范圍.21.(12分)已知數(shù)列是等差數(shù)列,其前項(xiàng)和為,且,.(1)求;(2)記數(shù)列的前項(xiàng)和為,求當(dāng)取得最小值時(shí)的的值.22.(10分)如圖,三棱柱的所有棱長(zhǎng)都是,平面,為的中點(diǎn),為的中點(diǎn)(1)證明:直線平面;(2)求平面與平面夾角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由已知條件可得,,,再由余弦定理得,進(jìn)而求其正弦值,最后利用三角形面積公式列方程求參數(shù)a,即可知雙曲線C的實(shí)軸長(zhǎng).【詳解】由題意知,點(diǎn)P在右支上,則,又,∴,,又,∴,則在△中,,∴,故,解得,∴實(shí)軸長(zhǎng)為,故選:C.2、D【解析】根據(jù)互斥事件和對(duì)立事件的定義判斷【詳解】當(dāng)?shù)谝淮稳〕?,第二次取出4時(shí),甲丙同時(shí)發(fā)生,不互斥不對(duì)立;第二次取出的球的數(shù)字是6與兩次取出的球的數(shù)字之和是5不可能同時(shí)發(fā)生,但可以同時(shí)不發(fā)生,不對(duì)立,當(dāng)?shù)谝淮稳〕?,第二次取出3時(shí),甲與丁同時(shí)發(fā)生,不互斥不對(duì)立,兩次取出的球的數(shù)字之和是5與兩次取出的球的數(shù)字之和是偶數(shù)不可以同時(shí)發(fā)生,但可以同時(shí)不發(fā)生,因此是互斥不對(duì)立故選:D3、D【解析】根據(jù)橢圓方程可得到a,從而求得長(zhǎng)軸長(zhǎng).【詳解】橢圓方程為,故,所以橢圓長(zhǎng)軸長(zhǎng)為,故選:D.4、A【解析】由題意知c=3,當(dāng)△F1PF2的面積最大時(shí),點(diǎn)P與橢圓在y軸上的頂點(diǎn)重合,即可解出【詳解】由題意知c=3,當(dāng)△F1PF2的面積最大時(shí),點(diǎn)P與橢圓在y軸上的頂點(diǎn)重合,∵時(shí),△F1PF2的面積最大,∴a==,b=∴橢圓的標(biāo)準(zhǔn)方程為故選:A5、B【解析】求導(dǎo),令導(dǎo)數(shù)等于0,然后判斷導(dǎo)數(shù)符號(hào)可得,或者根據(jù)對(duì)勾函數(shù)圖象可解.【詳解】令,得,因?yàn)闀r(shí),,時(shí),,所以時(shí)有極大值;當(dāng)時(shí),,時(shí),,所以時(shí)有極小值.故選:B6、C【解析】利用導(dǎo)數(shù)即可求出函數(shù)的極值點(diǎn),再利用等差數(shù)列的性質(zhì)及其對(duì)數(shù)的運(yùn)算性質(zhì)求解即可【詳解】由,得,因?yàn)?,是函?shù)的極值點(diǎn),所以,是方程兩個(gè)實(shí)根,所以,因?yàn)閿?shù)列滿足,所以,所以數(shù)列為等差數(shù)列,所以,所以,故選:C7、A【解析】由雙曲線方程求出,再根據(jù)點(diǎn)在雙曲線的兩支之間,結(jié)合可求得答案【詳解】由,得,則,所以左焦點(diǎn)為,右焦點(diǎn),則由雙曲線的定義得,因?yàn)辄c(diǎn)在雙曲線的兩支之間,所以,所以,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí)取等號(hào),所以的最小值為9,故選:A8、C【解析】計(jì)算出肉餡包子和豆沙餡包子的個(gè)數(shù),即可求得素餡包子的個(gè)數(shù).【詳解】由題意可知,肉餡包子的個(gè)數(shù)為,從中隨機(jī)取出個(gè),不是豆沙餡包子的概率為,則該包子是豆沙餡包子的概率為,所以,豆沙餡包子的個(gè)數(shù)為,因此,素餡包子的個(gè)數(shù)為.故選:C.9、C【解析】利用,把代入中,即可求出答案.【詳解】當(dāng)時(shí),.當(dāng)時(shí),.故選:C.10、D【解析】由題意可證平面,取BD的中點(diǎn)F,連接EF,則為直線與所成的角,利用余弦定理求出,根據(jù)三棱錐體積公式即可求得體積【詳解】如圖,∵,點(diǎn)為的中點(diǎn),∴,,∵,,兩兩垂直,,∴平面,取BD的中點(diǎn)F,連接EF,∴為直線與所成的角,且,由題意可知,,設(shè),連接AF,則,在中,由余弦定理,得,即,解得,即∴三棱錐的體積故選:11、D【解析】設(shè)圓的半徑,求出圓的面積與正六邊形的面積,再根據(jù)幾何概型的概率公式計(jì)算可得;【詳解】解:設(shè)圓的半徑,則,則,所以,所以在該圓形剪紙的內(nèi)部投擲一點(diǎn),則該點(diǎn)恰好落在正六邊形內(nèi)部的概率;故選:D12、C【解析】直線l:y﹣1=k(x﹣1)恒過(guò)點(diǎn)(1,1),且點(diǎn)(1,1)在圓上,直線的斜率存在,故可知直線l:y﹣1=k(x﹣1)和圓C:x2+y2﹣2y=0的關(guān)系【詳解】圓C:x2+y2﹣2y=0可化為x2+(y﹣1)2=1∴圓心為(0,1),半徑為1∵直線l:y﹣1=k(x﹣1)恒過(guò)點(diǎn)(1,1),且點(diǎn)(1,1)在圓上且直線的斜率存在∴直線l:y﹣1=k(x﹣1)和圓C:x2+y2﹣2y=0的關(guān)系是相交,故選C【點(diǎn)睛】本題考查的重點(diǎn)是直線與圓的位置關(guān)系,解題的關(guān)鍵是確定直線恒過(guò)定點(diǎn),此題易誤選B,忽視直線的斜率存在二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】根據(jù)題意,由游戲規(guī)則,結(jié)合余數(shù)的性質(zhì),分析可得答案【詳解】解:根據(jù)題意,第一次該拿走4個(gè)球,以后的取球過(guò)程中,對(duì)方取個(gè),自己取個(gè),由于,則自己一定可以取到第100個(gè)球.故答案為:414、【解析】求導(dǎo)易得函數(shù)有兩個(gè)極值點(diǎn)和,根據(jù)題意,由求解.【詳解】由,可得函數(shù)有兩個(gè)極值點(diǎn)和,,,若函數(shù)有三個(gè)零點(diǎn),必有解得或故答案為:15、##【解析】畫出可行域,通過(guò)平移基準(zhǔn)直線到可行域邊界位置,由此求得的最大值.【詳解】,畫出可行域如下圖所示,由圖可知,平移基準(zhǔn)直線到點(diǎn)時(shí),取得最大值為.故答案為:16、①.②.【解析】設(shè)點(diǎn)P坐標(biāo),然后用直接法可求;根據(jù)軌跡方程和數(shù)量積的坐標(biāo)表示對(duì)化簡(jiǎn),結(jié)合軌跡方程可得x的范圍,然后可解.【詳解】設(shè)P點(diǎn)坐標(biāo)為,則由,得,化簡(jiǎn)得,即.因?yàn)?,所以因?yàn)辄c(diǎn)P在圓上,故所以,故的最小值為.故答案為:,三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)利用等比數(shù)列的定義以及等差數(shù)列的性質(zhì),列出方程即可得到答案;(2)先求出的通項(xiàng),再利用的單調(diào)性即可得到的最小值,從而求得的取值范圍【小問(wèn)1詳解】依題意,,,所以,設(shè)等差數(shù)列的公差為,則,解得,所以【小問(wèn)2詳解】,則數(shù)列是遞增數(shù)列,,所以,若,則.18、(1);(2)證明見(jiàn)解析.【解析】(1)由函數(shù)在上單調(diào)遞增,則在上恒成立,由求解.(2)由(1)的結(jié)論,取,有,即在上恒成立,然后令,有求解.【詳解】(1)因?yàn)楹瘮?shù)在上單調(diào)遞增,所以在上恒成立,則有在上恒成立,即.令函數(shù),,所以時(shí),,在上單調(diào)遞增,所以,所以有,即,因此.(2)由(1)可知當(dāng)時(shí),為增函數(shù),不妨取,則有在上單調(diào)遞增,所以,即有在上恒成立,令,則有,所以,所以,因此.【點(diǎn)睛】方法點(diǎn)睛:(1)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的關(guān)鍵在于準(zhǔn)確判定導(dǎo)數(shù)的符號(hào),當(dāng)f(x)含參數(shù)時(shí),需依據(jù)參數(shù)取值對(duì)不等式解集的影響進(jìn)行分類討論.(2)若可導(dǎo)函數(shù)f(x)在指定的區(qū)間D上單調(diào)遞增(減),求參數(shù)范圍問(wèn)題,可轉(zhuǎn)化為f′(x)≥0(或f′(x)≤0)恒成立問(wèn)題,從而構(gòu)建不等式,要注意“=”是否可以取到19、當(dāng)圓柱底面半徑為,高為時(shí),總成本最底.【解析】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,進(jìn)而根據(jù)體積得到,然后求出表面積,進(jìn)而運(yùn)用導(dǎo)數(shù)的方法求得表面積的最小值,此時(shí)成本最小.【詳解】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,每平方厘米金屬包裝造價(jià)為元,由題意得:,則,表面積造價(jià),,令,得,令,得,的單調(diào)遞減區(qū)間為,遞增區(qū)間為,當(dāng)圓柱底面半徑為,高為時(shí),總成本最底.20、(1)(2)【解析】(1)求,由條件可得,得出關(guān)于的方程組,求解可得;(2)令,注意,所以在具有單調(diào)性時(shí),則方程無(wú)解,求,對(duì)分類討論,求出單調(diào)區(qū)間,結(jié)合函數(shù)值的變化趨勢(shì),即可求得結(jié)論.【詳解】解:(1),因?yàn)?,所以,解得,,所?(2)令,則.令,則在上單調(diào)遞增.當(dāng),即時(shí),,所以單調(diào)遞增,又,所以;當(dāng),即時(shí),則存在,使得,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又,則.當(dāng)時(shí),,所以在上有解.綜上,的取值范圍為.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義求參數(shù),考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到單調(diào)區(qū)間、函數(shù)零點(diǎn)的問(wèn)題,考查分類討論思想,屬于較難題.21、(1)(2)10或11【解析】(1)利用通項(xiàng)公式以及求和公式列出方程組得出;(2)先求出數(shù)列通項(xiàng)公式,再根據(jù)得出取得最小值時(shí)的的值.【小問(wèn)1詳解】設(shè)等差數(shù)列的公差為,則由得解得所以.【小問(wèn)2詳解】因?yàn)椋?,則.令,解得,由于,故或,故當(dāng)前項(xiàng)和取得最小值時(shí)的值為10或11
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 機(jī)械安裝安全培訓(xùn)教材課件
- 陜西省2025八年級(jí)物理上冊(cè)第五章物體的運(yùn)動(dòng)第一節(jié)長(zhǎng)度與時(shí)間的測(cè)量第2課時(shí)特殊長(zhǎng)度和時(shí)間的測(cè)量課件新版蘇科版
- 機(jī)房用電安全管理培訓(xùn)課件
- 安全培訓(xùn)記錄資料模式課件
- 老年人營(yíng)養(yǎng)膳食與制作實(shí)務(wù)
- 鼻部手術(shù)患者睡眠護(hù)理
- 安全培訓(xùn)記錄成績(jī)表課件
- 護(hù)理專業(yè)法律問(wèn)題
- 呼吸系統(tǒng)疾病患者的心理護(hù)理
- 骨折患者自理能力受損護(hù)理診斷
- 國(guó)際貿(mào)易UCP600條款中英文對(duì)照版
- (正式版)DB15∕T 3463-2024 《雙爐連續(xù)煉銅工藝技術(shù)規(guī)范》
- 律師團(tuán)隊(duì)合作規(guī)范及管理辦法
- 【中國(guó)信通院】2025年軟件工程智能化標(biāo)準(zhǔn)體系建設(shè)指南
- 臨床微生物標(biāo)本采集運(yùn)送及處理
- GB/T 20863.3-2025起重機(jī)分級(jí)第3部分:塔式起重機(jī)
- 產(chǎn)業(yè)發(fā)展規(guī)劃編制方案
- 腎病科出科考試題及答案
- 感術(shù)行動(dòng)培訓(xùn)課件
- 2025年脫毒馬鈴薯新品種示范基地建設(shè)工作方案
- 客運(yùn)企業(yè)事故管理制度
評(píng)論
0/150
提交評(píng)論