版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
資陽市重點(diǎn)中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知點(diǎn)在橢圓上,與關(guān)于原點(diǎn)對稱,,交軸于點(diǎn),為坐標(biāo)原點(diǎn),,則橢圓的離心率為()A. B.C. D.2.在數(shù)列中,,則()A. B.C.2 D.13.圓C:的圓心坐標(biāo)和半徑分別為()A.和4 B.(-3,2)和4C.和 D.和4.如圖,在棱長為2的正方體中,點(diǎn)P在截面上(含邊界),則線段的最小值等于()A. B.C. D.5.已知點(diǎn)在拋物線上,則點(diǎn)到拋物線焦點(diǎn)的距離為()A.1 B.2C.3 D.46.直線被圓截得的弦長為()A.1 B.C.2 D.37.“x>1”是“x>0”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.?dāng)?shù)列滿足,,,則數(shù)列的前8項(xiàng)和為()A.25 B.26C.27 D.289.已知數(shù)列為等比數(shù)列,則“為常數(shù)列”是“成等差數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件10.已知直線方程為,則其傾斜角為()A.30° B.60°C.120° D.150°11.某校開學(xué)“迎新”活動中要把3名男生,2名女生安排在5個崗位,每人安排一個崗位,每個崗位安排一人,其中甲崗位不能安排女生,則安排方法的種數(shù)為()A.72 B.56C.48 D.3612.若雙曲線的兩個焦點(diǎn)為,點(diǎn)是上的一點(diǎn),且,則雙曲線的漸近線與軸的夾角的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.半徑為的球的表面積為_______14.設(shè),復(fù)數(shù),,若是純虛數(shù),則的虛部為_________.15.?dāng)?shù)學(xué)家歐拉年在其所著的《三角形幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線,已知的頂點(diǎn)、,其歐拉線的方程為,則的外接圓方程為______.16.函數(shù)在上的最大值為______________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,內(nèi)角,,的對邊分別為,,.若,且.(1)求角的大小;(2)若的面積為,求的最大值.18.(12分)已知函數(shù).(1)求函數(shù)在處的切線方程;(2)設(shè)為的導(dǎo)數(shù),若方程的兩根為,且,當(dāng)時(shí),不等式對任意的恒成立,求正實(shí)數(shù)的最小值.19.(12分)已知直線經(jīng)過點(diǎn),,直線經(jīng)過點(diǎn),且.(1)分別求直線,的方程;(2)設(shè)直線與直線的交點(diǎn)為,求外接圓的方程.20.(12分)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)若,且,討論函數(shù)的零點(diǎn)個數(shù).21.(12分)已知橢圓與雙曲線有相同的焦點(diǎn),且的短軸長為(1)求的方程;(2)若直線與交于P,Q兩點(diǎn),,且的面積為,求k22.(10分)已知函數(shù),為的導(dǎo)函數(shù)(1)求的定義域和導(dǎo)函數(shù);(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;(3)若對,都有成立,且存在,使成立,求實(shí)數(shù)a的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由,得到,結(jié)合,得到,進(jìn)而求得,得出,結(jié)合離心率的定義,即可求解.【詳解】設(shè),則,由,可得,所以,因?yàn)椋傻?,又由,兩式相減得,即,即,又因?yàn)?,所以,即又由,所以,解?故選:B.2、A【解析】利用條件可得數(shù)列為周期數(shù)列,再借助周期性計(jì)算得解.【詳解】∵∴,,所以數(shù)列是以3為周期的周期數(shù)列,∴,故選:A.3、C【解析】先將方程化為一般形式,再根據(jù)公式計(jì)算求解即可.【詳解】解:可化為,由圓心為,半徑,易知圓心的坐標(biāo)為,半徑為故選:C4、B【解析】根據(jù)體積法求得到平面的距離即可得【詳解】由題意的最小值就是到平面的距離正方體棱長為2,則,,設(shè)到平面的距離為,由得,解得故選:B5、B【解析】先求出拋物線方程,焦點(diǎn)坐標(biāo),再用兩點(diǎn)間距離公式進(jìn)行求解.【詳解】將代入拋物線中得:,解得:,所以拋物線方程為,焦點(diǎn)坐標(biāo)為,所以點(diǎn)到拋物線焦點(diǎn)的距離為故選:B6、C【解析】利用直線和圓相交所得的弦長公式直接計(jì)算即可.【詳解】由題意可得圓的圓心為,半徑,則圓心到直線的距離,所以由直線和圓相交所得的弦長公式可得弦長為:.故選:C.7、A【解析】根據(jù)充分、必要條件間的推出關(guān)系,判斷“x>1”與“x>0”的關(guān)系.【詳解】“x>1”,則“x>0”,反之不成立.∴“x>1”是“x>0”的充分不必要條件.故選:A.8、C【解析】根據(jù)通項(xiàng)公式及求出,從而求出前8項(xiàng)和.【詳解】當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,則數(shù)列的前8項(xiàng)和為.故選:C9、C【解析】先考慮充分性,再考慮必要性即得解.【詳解】解:如果為常數(shù)列,則成等差數(shù)列,所以“為常數(shù)列”是“成等差數(shù)列”的充分條件;等差數(shù)列,所以,所以數(shù)列為,所以數(shù)列是常數(shù)列,所以“為常數(shù)列”是“成等差數(shù)列”的必要條件.所以“為常數(shù)列”是“成等差數(shù)列”的充要條件.故選:C10、D【解析】由直線方程可得斜率,根據(jù)斜率與傾斜角的關(guān)系即可求傾斜角大小.【詳解】由題設(shè),直線斜率,若直線的傾斜角為,則,∵,∴.故選:D11、A【解析】以位置優(yōu)先法去安排即可解決.【詳解】第一步:安排甲崗位,由3名男生中任選1人,有3種方法;第二步:安排余下的4個崗位,由2名女生和余下的2名男生任意安排即可,有種方法故安排方法的種數(shù)為故選:A12、B【解析】由條件結(jié)合雙曲線的定義可得,然后可得,然后可求出的范圍即可.【詳解】由雙曲線的定義可得,結(jié)合可得當(dāng)點(diǎn)不為雙曲線的頂點(diǎn)時(shí),可得,即當(dāng)點(diǎn)為雙曲線的頂點(diǎn)時(shí),可得,即所以,所以,所以所以雙曲線的漸近線與軸的夾角的取值范圍是故選:B二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】由球的表面積公式計(jì)算【詳解】由題意.故答案為:14、【解析】由復(fù)數(shù)除法的運(yùn)算法則求出,又是純虛數(shù),可求出,從而根據(jù)共軛復(fù)數(shù)及虛部的定義即可求解.【詳解】解:因?yàn)閺?fù)數(shù),,所以,又是純虛數(shù),所以,所以,所以所以的虛部為,故答案:.15、【解析】求出線段的垂直平分線方程,與歐拉線方程聯(lián)立,求出的外接圓圓心坐標(biāo),并求出外接圓的半徑,由此可得出的外接圓方程.【詳解】直線的斜率為,線段的中點(diǎn)為,所以,線段的垂直平分線的斜率為,則線段垂直平分線方程為,即,聯(lián)立,解得,即的外心為,所以,的外接圓的半徑為,因此,的外接圓方程為.故答案為:.【點(diǎn)睛】方法點(diǎn)睛:求圓的方程,主要有兩種方法:(1)幾何法:具體過程中要用到初中有關(guān)圓的一些常用性質(zhì)和定理如:①圓心在過切點(diǎn)且與切線垂直的直線上;②圓心在任意弦的中垂線上;③兩圓相切時(shí),切點(diǎn)與兩圓心三點(diǎn)共線;(2)待定系數(shù)法:根據(jù)條件設(shè)出圓的方程,再由題目給出的條件,列出等式,求出相關(guān)量.一般地,與圓心和半徑有關(guān),選擇標(biāo)準(zhǔn)式,否則,選擇一般式.不論是哪種形式,都要確定三個獨(dú)立參數(shù),所以應(yīng)該有三個獨(dú)立等式16、【解析】對原函數(shù)求導(dǎo)得,令,解得或,且所以原函數(shù)在上的最大值為考點(diǎn):1.函數(shù)求導(dǎo);2.利用導(dǎo)函數(shù)求最值三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由,等式右邊可化為余弦定理形式,根據(jù)求角即可(2)由余弦定理結(jié)合均值不等式可求出的最大值,即可求出三角面積的最大值.【詳解】(1)由得:,即:.∴,又,∴.(2)由,當(dāng)且僅當(dāng)?shù)忍柍闪?得:..【點(diǎn)睛】本題主要考查了余弦定理,均值不等式,三角形面積公式,屬于中檔題.18、(1)(2)1【解析】(1)先求導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義可求得切線方程;(2)將已知方程結(jié)合其兩根,進(jìn)行變式,求得,利用該式再將不等式變形,然后將不等式的恒成立問題變?yōu)楹瘮?shù)的最值問題求解.【小問1詳解】由題意可得,所以切點(diǎn)為,則切線方程為:.【小問2詳解】由題意有:,則,因?yàn)榉謩e是方程的兩個根,即.兩式相減,則,則不等式,可變?yōu)?,兩邊同時(shí)除以得,,令,則在上恒成立.整理可得,在上恒成立,令,則,①當(dāng),即時(shí),在上恒成立,則在上單調(diào)遞增,又,則在上恒成立;②當(dāng),即時(shí),當(dāng)時(shí),,則在上單調(diào)遞減,則,不符合題意.綜上:,所以的最小值為1.19、(1);(2).【解析】(1)根據(jù)兩點(diǎn)式即可求出直線l1的方程,根據(jù)直線垂直的關(guān)系即可求l2的方程;(2)先求出C點(diǎn)坐標(biāo),通過三角形的長度關(guān)系知道三角形是以AC為斜邊長的直角三角形,故AC的中點(diǎn)即為外心,AC即為直徑.解析:(1)∵直線經(jīng)過點(diǎn),,∴,設(shè)直線的方程為,∴,∴.(2),即:,∴,的中點(diǎn)為,∴的外接圓的圓心為,半徑為,∴外接圓的方程為:.點(diǎn)睛:這個題目考查的是已知兩直線位置關(guān)系求參的問題,還考查了三角形外接圓的問題.對于三角形為外接圓,圓心就是各個邊的中垂線的交點(diǎn),鈍角三角形外心在三角形外側(cè),銳角三角形圓心在三角形內(nèi)部,直角三角形圓心在直角三角形斜邊的中點(diǎn)20、(1).(2)答案見解析.【解析】(1)求導(dǎo)函數(shù),求得,,由此可求得曲線在點(diǎn)處的切線方程;(2)求得導(dǎo)函數(shù),分和討論,當(dāng)時(shí),設(shè),求導(dǎo)函數(shù),分析導(dǎo)函數(shù)的符號,得出所令函數(shù)的單調(diào)性,從而得函數(shù)的單調(diào)性,根據(jù)零點(diǎn)存在定理可得答案.【小問1詳解】解:當(dāng)時(shí),,所以,故,,所以曲線在點(diǎn)處的切線方程為.【小問2詳解】解:依題意,則,當(dāng)時(shí),,所以在上單調(diào)遞增;當(dāng)時(shí),設(shè),此時(shí),所以在上單調(diào)遞增,又,,所以存在,使得,且在上單調(diào)遞減,在上單調(diào)遞增.綜上所述,在上單調(diào)遞減,在上單調(diào)遞增.又,所以當(dāng),即時(shí),有唯一零點(diǎn)在區(qū)間上,當(dāng),即時(shí),在上無零點(diǎn);故當(dāng)時(shí),在上有1個零點(diǎn);當(dāng)時(shí),在上無零點(diǎn).21、(1)(2)或k=1.【解析】(1)根據(jù)題意求得雙曲線的焦點(diǎn)即知橢圓焦點(diǎn),結(jié)合橢圓短軸長,可求得橢圓標(biāo)準(zhǔn)方程;(2)將直線方程和橢圓方程聯(lián)立,整理得,從而得到根與系數(shù)的關(guān)系式,然后求出弦長以及到直線PQ的距離,進(jìn)而表示出,由題意得關(guān)于k的方程,解得答案.【小問1詳解】雙曲線即,故雙曲線交點(diǎn)坐標(biāo)為,由此可知橢圓焦點(diǎn)也為,又的短軸長為,故,所以,故橢圓的方程為;【小問2詳解】聯(lián)立,整理得:,其,設(shè),則,所以=,點(diǎn)到直線PQ的距離為,所以=,又的面積為,則=,解得或k=1.22、(1),(2)在單減,也單減,無增區(qū)間(3)【解析】(1)根據(jù)分母不等于0,對數(shù)的真數(shù)大于零即可求得函數(shù)的定義域,根據(jù)基本初等函數(shù)的求導(dǎo)公式及商的導(dǎo)數(shù)公式即可求出函數(shù)的導(dǎo)函數(shù);(2)求出函數(shù)的導(dǎo)函數(shù),再根據(jù)導(dǎo)函數(shù)的符號即可得出答案;(3)若對,都有成立,即,即,令,,只要即可,利用導(dǎo)數(shù)求出函數(shù)的最小值即可求出的范圍,,,求出函數(shù)的值域,根據(jù)存在,使成立,則0在函數(shù)的值域中,從而可得出的范圍,即可得解.【小問1詳解】解:的定義域?yàn)?,?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣西防城港市第二中學(xué)2026年春季學(xué)期臨聘教師招聘備考題庫及參考答案詳解
- 2026陜西西北工業(yè)大學(xué)軟件學(xué)院智能無人控制系統(tǒng)實(shí)驗(yàn)室招聘備考題庫及完整答案詳解一套
- 柴草火災(zāi)應(yīng)急預(yù)案(3篇)
- 2026浙江杭州市西溪中學(xué)教師招聘備考題庫含答案詳解
- 2026福建廈門市人工智能創(chuàng)新中心招聘42人備考題庫及參考答案詳解一套
- 電氣規(guī)范考試題及答案
- 地震演練考試題及答案
- 道具訓(xùn)練考試題及答案
- 企業(yè)員工培訓(xùn)與績效考核標(biāo)準(zhǔn)(標(biāo)準(zhǔn)版)
- 企業(yè)內(nèi)部風(fēng)險(xiǎn)管理管理制度手冊
- GB/T 3672.1-2025橡膠制品的公差第1部分:尺寸公差
- 2025外研社小學(xué)英語三年級下冊單詞表(帶音標(biāo))
- 承包檳榔園合同轉(zhuǎn)讓協(xié)議書
- 鵬城實(shí)驗(yàn)室雙聘管理辦法
- 隧道滲漏檢測技術(shù)-洞察及研究
- x探傷安全管理制度
- 財(cái)政分局對賬管理制度
- 噴水機(jī)車間管理制度
- 云師大附中 2026 屆高三高考適應(yīng)性月考(一)-地理試卷(含答案)
- 商業(yè)銀行反洗錢風(fēng)險(xiǎn)管理自評估制度研究
- 2025年度法院拍賣合同模板:法院拍賣拍賣保證金退還合同
評論
0/150
提交評論