版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
人教版七年級數(shù)學下冊期末解答題復習卷及答案一、解答題1.(1)小麗計劃在母親節(jié)那天送份禮物媽媽,特設計一個表面積為12dm2的正方體紙盒,則這個正方體的棱長是.(2)為了增加小區(qū)的綠化面積,幸福公園準備修建一個面積121πm2的草坪,草坪周圍用籬笆圍繞.現(xiàn)從對稱美的角度考慮有甲,乙兩種方案,甲方案:建成正方形;乙方案:建成圓形的.如果從節(jié)省籬笆費用的角度考慮,你會選擇哪種方案?請說明理由;(3)在(2)的方案中,審批時發(fā)現(xiàn)修如此大的草坪,目的是親近自然,若按上方案就沒達到目的,因此建議用如圖的設計方案:正方形里修三條小路,三條小路的寬度是一樣,這樣草坪的實際面積就減少了21πm2,請你根據(jù)此方案求出各小路的寬度(π取整數(shù)).2.如圖,8塊相同的小長方形地磚拼成一個大長方形,(1)每塊小長方形地磚的長和寬分別是多少?(要求列方程組進行解答)(2)小明想用一塊面積為7平方米的正方形桌布,沿著邊的方向裁剪出一塊新的長方形桌布,用來蓋住這塊長方形木桌,你幫小明算一算,他能剪出符合要求的桌布嗎?3.如圖,用兩個邊長為15的小正方形拼成一個大的正方形,(1)求大正方形的邊長?(2)若沿此大正方形邊的方向剪出一個長方形,能否使剪出的長方形紙片的長寬之比為4:3,且面積為720cm2?4.小麗想用一塊面積為400cm2的正方形紙片,沿著邊的方向裁處一塊面積為300cm2的長方形紙片.(1)請幫小麗設計一種可行的裁剪方案;(2)若使長方形的長寬之比為3:2,小麗能用這塊紙片裁處符合要求的紙片嗎?若能,請幫小麗設計一種裁剪方案,若不能,請簡要說明理由.5.小麗想用一塊面積為的正方形紙片,如圖所示,沿著邊的方向裁出一塊面積為的長方形紙片,使它的長是寬的2倍.她不知能否裁得出來,正在發(fā)愁.小明見了說:“別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片.”你同意小明的說法嗎?你認為小麗能用這塊紙片裁出符合要求的紙片嗎?為什么?二、解答題6.已知直線AB//CD,點P、Q分別在AB、CD上,如圖所示,射線PB按逆時針方向以每秒12°的速度旋轉(zhuǎn)至PA便立即回轉(zhuǎn),并不斷往返旋轉(zhuǎn);射線QC按逆時針方向每秒3°旋轉(zhuǎn)至QD停止,此時射線PB也停止旋轉(zhuǎn).(1)若射線PB、QC同時開始旋轉(zhuǎn),當旋轉(zhuǎn)時間10秒時,PB'與QC'的位置關系為;(2)若射線QC先轉(zhuǎn)15秒,射線PB才開始轉(zhuǎn)動,當射線PB旋轉(zhuǎn)的時間為多少秒時,PB′//QC′.7.如圖1,點在直線、之間,且.(1)求證:;(2)若點是直線上的一點,且,平分交直線于點,若,求的度數(shù);(3)如圖3,點是直線、外一點,且滿足,,與交于點.已知,且,則的度數(shù)為______(請直接寫出答案,用含的式子表示).8.如圖,∠EBF=50°,點C是∠EBF的邊BF上一點.動點A從點B出發(fā)在∠EBF的邊BE上,沿BE方向運動,在動點A運動的過程中,始終有過點A的射線AD∥BC.(1)在動點A運動的過程中,(填“是”或“否”)存在某一時刻,使得AD平分∠EAC?(2)假設存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之間有何數(shù)量關系?并請說明理由;(3)當AC⊥BC時,直接寫出∠BAC的度數(shù)和此時AD與AC之間的位置關系.9.已知,.點在上,點在上.(1)如圖1中,、、的數(shù)量關系為:;(不需要證明);如圖2中,、、的數(shù)量關系為:;(不需要證明)(2)如圖3中,平分,平分,且,求的度數(shù);(3)如圖4中,,平分,平分,且,則的大小是否發(fā)生變化,若變化,請說明理由,若不變化,求出么的度數(shù).10.問題情境:(1)如圖1,,,.求度數(shù).小穎同學的解題思路是:如圖2,過點作,請你接著完成解答.問題遷移:(2)如圖3,,點在射線上運動,當點在、兩點之間運動時,,.試判斷、、之間有何數(shù)量關系?(提示:過點作),請說明理由;(3)在(2)的條件下,如果點在、兩點外側(cè)運動時(點與點、、三點不重合),請你猜想、、之間的數(shù)量關系并證明.三、解答題11.將兩塊三角板按如圖置,其中三角板邊,,,.(1)下列結論:正確的是_______.①如果,則有;②;③如果,則平分.(2)如果,判斷與是否相等,請說明理由.(3)將三角板繞點順時針轉(zhuǎn)動,直到邊與重合即停止,轉(zhuǎn)動的過程中當兩塊三角板恰有兩邊平行時,請直接寫出所有可能的度數(shù).12.已知,將一副三角板中的兩塊直角三角板如圖1放置,,,,.(1)若三角板如圖1擺放時,則______,______.(2)現(xiàn)固定的位置不變,將沿方向平移至點E正好落在上,如圖2所示,與交于點G,作和的角平分線交于點H,求的度數(shù);(3)現(xiàn)固定,將繞點A順時針旋轉(zhuǎn)至與直線首次重合的過程中,當線段與的一條邊平行時,請直接寫出的度數(shù).13.已知射線射線CD,P為一動點,AE平分,CE平分,且AE與CE相交于點E.(注意:此題不允許使用三角形,四邊形內(nèi)角和進行解答)(1)在圖1中,當點P運動到線段AC上時,.直接寫出的度數(shù);(2)當點P運動到圖2的位置時,猜想與之間的關系,并加以說明;(3)當點P運動到圖3的位置時,(2)中的結論是否還成立?若成立,請說明理由:若不成立,請寫出與之間的關系,并加以證明.14.綜合與探究綜合與實踐課上,同學們以“一個含角的直角三角尺和兩條平行線”為背景開展數(shù)學活動,如圖,已知兩直線,,且,三角形是直角三角形,,,操作發(fā)現(xiàn):(1)如圖1.,求的度數(shù);(2)如圖2.創(chuàng)新小組的同學把直線向上平移,并把的位置改變,發(fā)現(xiàn),請說明理由.實踐探究:(3)填密小組在創(chuàng)新小組發(fā)現(xiàn)的結論的基礎上,將圖2中的圖形繼續(xù)變化得到圖3,平分,此時發(fā)現(xiàn)與又存在新的數(shù)量關系,請寫出與的數(shù)量關系并說明理由.15.如圖,已知AM∥BN,∠A=64°.點P是射線AM上一動點(與點A不重合),BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點C,D.(1)①∠ABN的度數(shù)是;②∵AM∥BN,∴∠ACB=∠;(2)求∠CBD的度數(shù);(3)當點P運動時,∠APB與∠ADB之間的數(shù)量關系是否隨之發(fā)生變化?若不變化,請寫出它們之間的關系,并說明理由:若變化,請寫出變化規(guī)律;(4)當點P運動到使∠ACB=∠ABD時,∠ABC的度數(shù)是.四、解答題16.(生活常識)射到平面鏡上的光線(入射光線)和變向后的光線(反射光線)與平面鏡所夾的角相等.如圖1,MN是平面鏡,若入射光線AO與水平鏡面夾角為∠1,反射光線OB與水平鏡面夾角為∠2,則∠1=∠2.(現(xiàn)象解釋)如圖2,有兩塊平面鏡OM,ON,且OM⊥ON,入射光線AB經(jīng)過兩次反射,得到反射光線CD.求證AB∥CD.(嘗試探究)如圖3,有兩塊平面鏡OM,ON,且∠MON=55,入射光線AB經(jīng)過兩次反射,得到反射光線CD,光線AB與CD相交于點E,求∠BEC的大小.(深入思考)如圖4,有兩塊平面鏡OM,ON,且∠MONα,入射光線AB經(jīng)過兩次反射,得到反射光線CD,光線AB與CD所在的直線相交于點E,∠BED=β,α與β之間滿足的等量關系是.(直接寫出結果)17.在中,,,點在直線上運動(不與點、重合),點在射線上運動,且,設.(1)如圖①,當點在邊上,且時,則__________,__________;(2)如圖②,當點運動到點的左側(cè)時,其他條件不變,請猜想和的數(shù)量關系,并說明理由;(3)當點運動到點的右側(cè)時,其他條件不變,和還滿足(2)中的數(shù)量關系嗎?請在圖③中畫出圖形,并給予證明.(畫圖痕跡用黑色簽字筆加粗加黑)18.如果三角形的兩個內(nèi)角與滿足,那么我們稱這樣的三角形是“準互余三角形”.(1)如圖1,在中,,是的角平分線,求證:是“準互余三角形”;(2)關于“準互余三角形”,有下列說法:①在中,若,,,則是“準互余三角形”;②若是“準互余三角形”,,,則;③“準互余三角形”一定是鈍角三角形.其中正確的結論是___________(填寫所有正確說法的序號);(3)如圖2,,為直線上兩點,點在直線外,且.若是直線上一點,且是“準互余三角形”,請直接寫出的度數(shù).19.如圖,,點A、B分別在直線MN、GH上,點O在直線MN、GH之間,若,.(1)=;(2)如圖2,點C、D是、角平分線上的兩點,且,求的度數(shù);(3)如圖3,點F是平面上的一點,連結FA、FB,E是射線FA上的一點,若,,且,求n的值.20.已知,如圖1,直線l2⊥l1,垂足為A,點B在A點下方,點C在射線AM上,點B、C不與點A重合,點D在直線11上,點A的右側(cè),過D作l3⊥l1,點E在直線l3上,點D的下方.(1)l2與l3的位置關系是;(2)如圖1,若CE平分∠BCD,且∠BCD=70°,則∠CED=°,∠ADC=°;(3)如圖2,若CD⊥BD于D,作∠BCD的角平分線,交BD于F,交AD于G.試說明:∠DGF=∠DFG;(4)如圖3,若∠DBE=∠DEB,點C在射線AM上運動,∠BDC的角平分線交EB的延長線于點N,在點C的運動過程中,探索∠N:∠BCD的值是否變化,若變化,請說明理由;若不變化,請直接寫出比值.【參考答案】一、解答題1.(1)dm;(2)從節(jié)省籬笆費用的角度考慮,選擇乙方案建成圓形;(3)根據(jù)此方案求出小路的寬度為【分析】(1)先求得正方體的一個面的面積,然后依據(jù)算術平方根的定義求解即可;(2)根據(jù)正方形的周解析:(1)dm;(2)從節(jié)省籬笆費用的角度考慮,選擇乙方案建成圓形;(3)根據(jù)此方案求出小路的寬度為【分析】(1)先求得正方體的一個面的面積,然后依據(jù)算術平方根的定義求解即可;(2)根據(jù)正方形的周長公式以及圓形的周長公式即可求出答案;(3)根據(jù)圖形的平移求解.【詳解】解:(1)∵正方體有6個面且每個面都相等,∴正方體的一個面的面積=2dm2.∴正方形的棱長=dm;故答案為:dm;(2)甲方案:設正方形的邊長為xm,則x2=121∴x=11∴正方形的周長為:4x=44m乙方案:設圓的半徑rm為,則r2==121∴r=11∴圓的周長為:2=22m∴442222(2-∵4>∴2∴∴正方形的周長比圓的周長大故從節(jié)省籬笆費用的角度考慮,選擇乙方案建成圓形;(3)依題意可進行如圖所示的平移,設小路的寬度為ym,則(11–y)2=12121∴11–y=10∴y=∵取整數(shù)∴y=答:根據(jù)此方案求出小路的寬度為;【點睛】本題主要考查的是算術平方根的定義,熟練掌握正方形的性質(zhì)以及平移的性質(zhì)是解題的關鍵;2.(1)長是1.5m,寬是0.5m.;(2)不能.【解析】【分析】(1)設每塊小長方形地磚的長為xm,寬為ym,列方程組求解即可;(2)把正方形的邊長與大長方形的長比較即可.【詳解】解:解析:(1)長是1.5m,寬是0.5m.;(2)不能.【解析】【分析】(1)設每塊小長方形地磚的長為xm,寬為ym,列方程組求解即可;(2)把正方形的邊長與大長方形的長比較即可.【詳解】解:(1)設每塊小長方形地磚的長為xm,寬為ym,由題意得:
,
解得:,
∴長是1.5m,寬是0.5m.(2)∵正方形的面積為7平方米,∴正方形的邊長是米,∵<3,∴他不能剪出符合要求的桌布.【點睛】本題考查了二元一次方程組的應用,算術平方根的應用,找出等量關系列出方程組是解(1)的關鍵,求出正方形的邊長是解(2)的關鍵.3.(1)30;(2)不能.【解析】【分析】(1)根據(jù)已知正方形的面積求出大正方形的面積,即可求出邊長;(2)先求出長方形的邊長,再判斷即可.【詳解】解:(1)∵大正方形的面積是:∴大正解析:(1)30;(2)不能.【解析】【分析】(1)根據(jù)已知正方形的面積求出大正方形的面積,即可求出邊長;(2)先求出長方形的邊長,再判斷即可.【詳解】解:(1)∵大正方形的面積是:∴大正方形的邊長是:=30;(2)設長方形紙片的長為4xcm,寬為3xcm,則4x?3x=720,解得:x=,4x==>30,所以沿此大正方形邊的方向剪出一個長方形,不能使剪出的長方形紙片的長寬之比為4:3,且面積為720cm2.故答案為(1)30;(2)不能.【點睛】本題考查算術平方根,解題的關鍵是能根據(jù)題意列出算式.4.(1)可以以正方形一邊為長方形的長,在其鄰邊上截取長為15cm的線段作為寬即可裁出符合要求的長方形;(2)不能,理由見解析.【解析】(1)解:設面積為400cm2的正方形紙片的邊長為acm∴解析:(1)可以以正方形一邊為長方形的長,在其鄰邊上截取長為15cm的線段作為寬即可裁出符合要求的長方形;(2)不能,理由見解析.【解析】(1)解:設面積為400cm2的正方形紙片的邊長為acm∴a2=400又∵a>0∴a=20又∵要裁出的長方形面積為300cm2∴若以原正方形紙片的邊長為長方形的長,則長方形的寬為:300÷20=15(cm)∴可以以正方形一邊為長方形的長,在其鄰邊上截取長為15cm的線段作為寬即可裁出符合要求的長方形(2)∵長方形紙片的長寬之比為3:2∴設長方形紙片的長為3xcm,則寬為2xcm∴6x2=300∴x2=50又∵x>0∴x=∴長方形紙片的長為又∵>202即:>20∴小麗不能用這塊紙片裁出符合要求的紙片5.不同意,理由見解析【分析】先求得正方形的邊長,然后設設長方形寬為,長為,然后依據(jù)矩形的面積為20列方程求得的值,從而得到矩形的邊長,從而可作出判斷.【詳解】解:不同意,因為正方形的面積為,解析:不同意,理由見解析【分析】先求得正方形的邊長,然后設設長方形寬為,長為,然后依據(jù)矩形的面積為20列方程求得的值,從而得到矩形的邊長,從而可作出判斷.【詳解】解:不同意,因為正方形的面積為,故邊長為設長方形寬為,則長為長方形面積∴,解得(負值舍去)長為即長方形的長大于正方形的邊長,所以不能裁出符合要求的長方形紙片【點睛】本題主要考查的是算術平方根的性質(zhì),熟練掌握算術平方根的性質(zhì)是解題的關鍵.二、解答題6.(1)PB′⊥QC′;(2)當射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時,∠BPB′和∠CQC′的度數(shù),設PB′與QC′交于O,過O作OE∥AB,根解析:(1)PB′⊥QC′;(2)當射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時,∠BPB′和∠CQC′的度數(shù),設PB′與QC′交于O,過O作OE∥AB,根據(jù)平行線的性質(zhì)求得∠POE和∠QOE的度數(shù),進而得結論;(2)分三種情況:①當0<t≤15時,②當15<t≤30時,③當30<t<45時,根據(jù)平行線的性質(zhì),得出角的關系,列出t的方程便可求得旋轉(zhuǎn)時間.【詳解】解:(1)如圖1,當旋轉(zhuǎn)時間30秒時,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,過O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案為:PB′⊥QC′;(2)①當0<t≤15時,如圖,則∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②當15<t≤30時,如圖,則∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③當30<t≤45時,如圖,則∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;綜上,當射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′.【點睛】本題主要考查了平行線的性質(zhì),第(1)題關鍵是作平行線,第(2)題關鍵是分情況討論,運用方程思想解決幾何問題.7.(1)見解析;(2)10°;(3)【分析】(1)過點E作EF∥CD,根據(jù)平行線的性質(zhì),兩直線平行,內(nèi)錯角相等,得出結合已知條件,得出即可證明;(2)過點E作HE∥CD,設由(1)得AB∥CD解析:(1)見解析;(2)10°;(3)【分析】(1)過點E作EF∥CD,根據(jù)平行線的性質(zhì),兩直線平行,內(nèi)錯角相等,得出結合已知條件,得出即可證明;(2)過點E作HE∥CD,設由(1)得AB∥CD,則AB∥CD∥HE,由平行線的性質(zhì),得出再由平分,得出則,則可列出關于x和y的方程,即可求得x,即的度數(shù);(3)過點N作NP∥CD,過點M作QM∥CD,由(1)得AB∥CD,則NP∥CD∥AB∥QM,根據(jù)和,得出根據(jù)CD∥PN∥QM,DE∥NB,得出即根據(jù)NP∥AB,得出再由,得出由AB∥QM,得出因為,代入的式子即可求出.【詳解】(1)過點E作EF∥CD,如圖,∵EF∥CD,∴∴∵,∴∴EF∥AB,∴CD∥AB;(2)過點E作HE∥CD,如圖,設由(1)得AB∥CD,則AB∥CD∥HE,∴∴又∵平分,∴∴即解得:即;(3)過點N作NP∥CD,過點M作QM∥CD,如圖,由(1)得AB∥CD,則NP∥CD∥AB∥QM,∵NP∥CD,CD∥QM,∴,又∵,∴∵,∴∴又∵PN∥AB,∴∵,∴又∵AB∥QM,∴∴∴.【點睛】本題考查平行線的性質(zhì),角平分線的定義,解決問題的關鍵是作平行線構造相等的角,利用兩直線平行,內(nèi)錯角相等,同位角相等來計算和推導角之間的關系.8.(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD解析:(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當∠ACB=∠B時,有AD平分∠EAC;(2)根據(jù)角平分線可得∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,則可求∠BAC=40°,由平行線的性質(zhì)可得AC⊥AD.【詳解】解:(1)是,理由如下:要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當∠ACB=∠B時,有AD平分∠EAC;故答案為:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【點睛】此題考查了角平分線和平行線的性質(zhì),熟練掌握角平分線和平行線的有關性質(zhì)是解題的關鍵.9.(1)∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.【分析】(1)過E作EHAB,易得EHABCD,根據(jù)平行線的性質(zhì)解析:(1)∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.【分析】(1)過E作EHAB,易得EHABCD,根據(jù)平行線的性質(zhì)可求解;過F作FHAB,易得FHABCD,根據(jù)平行線的性質(zhì)可求解;(2)根據(jù)(1)的結論及角平分線的定義可得2(∠BME+∠END)+∠BMF?∠FND=180°,可求解∠BMF=60°,進而可求解;(3)根據(jù)平行線的性質(zhì)及角平分線的定義可推知∠FEQ=∠BME,進而可求解.【詳解】解:(1)過E作EHAB,如圖1,∴∠BME=∠MEH,∵ABCD,∴HECD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN?∠END.如圖2,過F作FHAB,∴∠BMF=∠MFK,∵ABCD,∴FHCD,∴∠FND=∠KFN,∴∠MFN=∠MFK?∠KFN=∠BMF?∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF?∠FND=180°,∴2∠BME+2∠END+∠BMF?∠FND=180°,即2∠BMF+∠FND+∠BMF?∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQNP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN?∠NEQ=(∠BME+∠END)?∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點睛】本題主要考查平行線的性質(zhì)及角平分線的定義,作輔助線是解題的關鍵.10.(1)見解析;(2),理由見解析;(3)①當在延長線時(點不與點重合),;②當在之間時(點不與點,重合),.理由見解析【分析】(1)過P作PE∥AB,構造同旁內(nèi)角,利用平行線性質(zhì),可得∠APC=解析:(1)見解析;(2),理由見解析;(3)①當在延長線時(點不與點重合),;②當在之間時(點不與點,重合),.理由見解析【分析】(1)過P作PE∥AB,構造同旁內(nèi)角,利用平行線性質(zhì),可得∠APC=113°;(2)過過作交于,,推出,根據(jù)平行線的性質(zhì)得出,即可得出答案;(3)畫出圖形(分兩種情況:①點P在BA的延長線上,②當在之間時(點不與點,重合)),根據(jù)平行線的性質(zhì)即可得出答案.【詳解】解:(1)過作,,,,,,,,;(2),理由如下:如圖3,過作交于,,,,,,,又;(3)①當在延長線時(點不與點重合),;理由:如圖4,過作交于,,,,,,,,又,;②當在之間時(點不與點,重合),.理由:如圖5,過作交于,,,,,,,,又.【點睛】本題考查了平行線的性質(zhì)的應用,主要考查學生的推理能力,解決問題的關鍵是作輔助線構造內(nèi)錯角以及同旁內(nèi)角.三、解答題11.(1)②③;(2)相等,理由見解析;(3)30°或45°或75°或120°或135°【分析】(1)根據(jù)平行線的判定和性質(zhì)分別判定即可;(2)利用角的和差,結合∠CAB=∠DAE=90°進行判斷解析:(1)②③;(2)相等,理由見解析;(3)30°或45°或75°或120°或135°【分析】(1)根據(jù)平行線的判定和性質(zhì)分別判定即可;(2)利用角的和差,結合∠CAB=∠DAE=90°進行判斷;(3)依據(jù)這兩塊三角尺各有一條邊互相平行,分五種情況討論,即可得到∠EAB角度所有可能的值.【詳解】解:(1)①∵∠BFD=60°,∠B=45°,∴∠BAD+∠D=∠BFD+∠B=105°,∴∠BAD=105°-30°=75°,∴∠BAD≠∠B,∴BC和AD不平行,故①錯誤;②∵∠BAC+∠DAE=180°,∴∠BAE+∠CAD=∠BAE+∠CAE+∠DAE=180°,故②正確;③若BC∥AD,則∠BAD=∠B=45°,∴∠BAE=45°,即AB平分∠EAD,故③正確;故答案為:②③;(2)相等,理由是:∵∠CAD=150°,∴∠BAE=180°-150°=30°,∴∠BAD=60°,∵∠BAD+∠D=∠BFD+∠B,∴∠BFD=60°+30°-45°=45°=∠C;(3)若AC∥DE,則∠CAE=∠E=60°,∴∠EAB=90°-60°=30°;若BC∥AD,則∠B=∠BAD=45°,∴∠EAB=45°;若BC∥DE,則∠E=∠AFB=60°,∴∠EAB=180°-60°-45°=75°;若AB∥DE,則∠D=∠DAB=30°,∴∠EAB=30°+90°=120°;若AE∥BC,則∠C=∠CAE=45°,∴∠EAB=45°+90°=135°;綜上:∠EAB的度數(shù)可能為30°或45°或75°或120°或135°.【點睛】本題考查了平行線的判定和性質(zhì),角平分線的定義,解題的關鍵是理解題意,分情況畫出圖形,學會用分類討論的思想思考問題.12.(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根據(jù)平行線的性質(zhì)和三角板的角的度數(shù)解答即可;(2)根據(jù)平行線的性質(zhì)和角平分線的定義解答即可;(3)分當B解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根據(jù)平行線的性質(zhì)和三角板的角的度數(shù)解答即可;(2)根據(jù)平行線的性質(zhì)和角平分線的定義解答即可;(3)分當BC∥DE時,當BC∥EF時,當BC∥DF時,三種情況進行解答即可.【詳解】解:(1)作EI∥PQ,如圖,∵PQ∥MN,則PQ∥EI∥MN,∴∠α=∠DEI,∠IEA=∠BAC,∴∠DEA=∠α+∠BAC,∴α=DEA-∠BAC=60°-45°=15°,∵E、C、A三點共線,∴∠β=180°-∠DFE=180°-30°=150°;故答案為:15°;150°;(2)∵PQ∥MN,∴∠GEF=∠CAB=45°,∴∠FGQ=45°+30°=75°,∵GH,F(xiàn)H分別平分∠FGQ和∠GFA,∴∠FGH=37.5°,∠GFH=75°,∴∠FHG=180°-37.5°-75°=67.5°;(3)當BC∥DE時,如圖1,∵∠D=∠C=90,∴AC∥DF,∴∠CAE=∠DFE=30°,∴∠BAM+∠BAC=∠MAE+∠CAE,∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°;當BC∥EF時,如圖2,此時∠BAE=∠ABC=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°;當BC∥DF時,如圖3,此時,AC∥DE,∠CAN=∠DEG=15°,∴∠BAM=∠MAN-∠CAN-∠BAC=180°-15°-45°=120°.綜上所述,∠BAM的度數(shù)為30°或90°或120°.【點睛】本題考查了角平分線的定義,平行線性質(zhì)和判定:兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結合思想與方程思想的應用,理清各角度之間的關系是解題的關鍵,也是本題的難點.13.(1);(2),證明見解析;(3),證明見解析.【分析】(1)過點作,先根據(jù)平行線的性質(zhì)、平行公理推論可得,從而可得,再根據(jù)平行線的性質(zhì)可得,然后根據(jù)角平分線的定義可得,最后根據(jù)角的和差即可得;解析:(1);(2),證明見解析;(3),證明見解析.【分析】(1)過點作,先根據(jù)平行線的性質(zhì)、平行公理推論可得,從而可得,再根據(jù)平行線的性質(zhì)可得,然后根據(jù)角平分線的定義可得,最后根據(jù)角的和差即可得;(2)過點作,過點作,先根據(jù)(1)可得,再根據(jù)(1)同樣的方法可得,由此即可得出結論;(3)過點作,過點作,先根據(jù)(1)可得,再根據(jù)平行線的性質(zhì)、平行公理推論可得,然后根據(jù)角的和差、等量代換即可得出結論.【詳解】解:(1)如圖,過點作,,,,,,又,且點運動到線段上,,平分,平分,,;(2)猜想,證明如下:如圖,過點作,過點作,由(1)已得:,同理可得:,;(3),證明如下:如圖,過點作,過點作,由(1)已得:,即,,,即,,,,即,,,,,即.【點睛】本題考查了平行線的性質(zhì)、平行公理推論、角平分線的定義等知識點,熟練掌握平行線的性質(zhì)是解題關鍵.14.(1);(2)理由見解析;(3),理由見解析.【分析】(1)由平角定義求出∠3=42°,再由平行線的性質(zhì)即可得出答案;(2)過點B作BD∥a.由平行線的性質(zhì)得∠2+∠ABD=180°,∠1=∠解析:(1);(2)理由見解析;(3),理由見解析.【分析】(1)由平角定義求出∠3=42°,再由平行線的性質(zhì)即可得出答案;(2)過點B作BD∥a.由平行線的性質(zhì)得∠2+∠ABD=180°,∠1=∠DBC,則∠ABD=∠ABC?∠DBC=60°?∠1,進而得出結論;(3)過點C作CP∥a,由角平分線定義得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行線的性質(zhì)得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出結論.【詳解】解:(1)如圖1,,,,;圖1(2)理由如下:如圖2.過點作,圖2,,,,,,;(3),圖3理由如下:如圖3,過點作,平分,,,又,,,,,又,,.【點睛】本題是三角形綜合題目,考查了平移的性質(zhì)、直角三角形的性質(zhì)、平行線的判定與性質(zhì)、角平分線定義、平角的定義等知識;本題綜合性強,熟練掌握平移的性質(zhì)和平行線的性質(zhì)是解題的關鍵.15.(1)①②;(2);(3)不變,,理由見解析;(4)【分析】(1)①由平行線的性質(zhì),兩直線平行,同旁內(nèi)角互補可直接求出;②由平行線的性質(zhì),兩直線平行,內(nèi)錯角相等可直接寫出;(2)由角平分線的解析:(1)①②;(2);(3)不變,,理由見解析;(4)【分析】(1)①由平行線的性質(zhì),兩直線平行,同旁內(nèi)角互補可直接求出;②由平行線的性質(zhì),兩直線平行,內(nèi)錯角相等可直接寫出;(2)由角平分線的定義可以證明∠CBD=∠ABN,即可求出結果;(3)不變,∠APB:∠ADB=2:1,證∠APB=∠PBN,∠PBN=2∠DBN,即可推出結論;(4)可先證明∠ABC=∠DBN,由(1)∠ABN=116°,可推出∠CBD=58°,所以∠ABC+∠DBN=58°,則可求出∠ABC的度數(shù).【詳解】解:(1)①∵AM//BN,∠A=64°,∴∠ABN=180°﹣∠A=116°,故答案為:116°;②∵AM//BN,∴∠ACB=∠CBN,故答案為:CBN;(2)∵AM//BN,∴∠ABN+∠A=180°,∴∠ABN=180°﹣64°=116°,∴∠ABP+∠PBN=116°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=116°,∴∠CBD=∠CBP+∠DBP=58°;(3)不變,∠APB:∠ADB=2:1,∵AM//BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;(4)∵AM//BN,∴∠ACB=∠CBN,當∠ACB=∠ABD時,則有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN∴∠ABC=∠DBN,由(1)∠ABN=116°,∴∠CBD=58°,∴∠ABC+∠DBN=58°,∴∠ABC=29°,故答案為:29°.【點睛】本題考查了角平分線的定義,平行線的性質(zhì)等,解題關鍵是能熟練運用平行線的性質(zhì)并能靈活運用角平分線的定義等.四、解答題16.【現(xiàn)象解釋】見解析;【嘗試探究】BEC70;【深入思考】2.【分析】[現(xiàn)象解釋]根據(jù)平面鏡反射光線的規(guī)律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【現(xiàn)象解釋】見解析;【嘗試探究】BEC70;【深入思考】2.【分析】[現(xiàn)象解釋]根據(jù)平面鏡反射光線的規(guī)律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可證得AB∥CD;[嘗試探究]根據(jù)三角形內(nèi)角和定理求得∠2+∠3=125°,根據(jù)平面鏡反射光線的規(guī)律得∠1=∠2,∠3=∠4,再利用平角的定義得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根據(jù)三角形內(nèi)角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定義得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性質(zhì)∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可證得β=2α.【詳解】[現(xiàn)象解釋]如圖2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【嘗試探究】如圖3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如圖4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【點睛】本題考查了平行線的判定,三角形外角的性質(zhì)以及三角形內(nèi)角和定理,熟練掌握三角形的性質(zhì)是解題的關鍵.17.(1)60,30;(2)∠BAD=2∠CDE,證明見解析;(3)成立,∠BAD=2∠CDE,證明見解析【分析】(1)如圖①,將∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,證明見解析;(3)成立,∠BAD=2∠CDE,證明見解析【分析】(1)如圖①,將∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,根據(jù)三角形外角的性質(zhì)得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形內(nèi)角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如圖②,在△ABC和△ADE中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根據(jù)三角形外角的性質(zhì)得出∠CDE=∠ACB-∠AED=,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,從而得出結論∠BAD=2∠CDE;(3)如圖③,在△ABC和△ADE中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根據(jù)三角形外角的性質(zhì)得出∠CDE=∠ACD-∠AED=,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,從而得出結論∠BAD=2∠CDE.【詳解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案為60,30.(2)∠BAD=2∠CDE,理由如下:如圖②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-=,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如圖③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=,∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD-∠AED=140°-=,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【點睛】本題考查了三角形內(nèi)角和定理,三角形外角的性質(zhì),從圖形中得出相關角度之間的關系是解題的關鍵.18.(1)見解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準互余三角形”的定義逐個判斷即可;(3)根據(jù)“準互余三角解析:(1)見解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準互余三角形”的定義逐個判斷即可;(3)根據(jù)“準互余三角形”的定義,分類討論:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形內(nèi)角和定理和外角的性質(zhì)結合“準互余三角形”的定義,即可求出答案.【詳解】(1)證明:∵在中,,∴,∵BD是的角平分線,∴,∴,∴是“準互余三角形”;(2)①∵,∴,∴是“準互余三角形”,故①正確;②∵,,∴,∴不是“準互余三角形”,故②錯誤;③設三角形的三個內(nèi)角分別為,且,∵三角形是“準互余三角形”,∴或,∴,∴,∴“準互余三角形”一定是鈍角三角形,故③正確;綜上所述,①③正確,故答案為:①③;(3)∠APB的度數(shù)是10°或20°或40°或110°;如圖①,當2∠A+∠ABC=90°時,△ABP是“準直角三角形”,∵∠ABC=50°,∴∠A=20°,∴∠APB=110°;如圖②,當∠A+2∠APB=90°時,△ABP是“準直角三角形”,∵∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 初三英語教師年度總結范文
- 醫(yī)療廢棄物收集運輸安全操作規(guī)程
- 2026年新能源車輛電池技術革新與市場趨勢報告
- 命案預防應急預案(3篇)
- 執(zhí)行應急處理預案(3篇)
- 中檔商鋪施工方案(3篇)
- ab樁施工方案(3篇)
- 中秋活動策劃方案汽修(3篇)
- 園區(qū)漢服活動策劃方案(3篇)
- 前黃橋施工方案(3篇)
- 學??剌z保學工作流程及四書一表一單
- 塔吊拆除應急預案
- 20052-2024電力變壓器能效限定值及能效等級
- 2025年環(huán)境衛(wèi)生學與消毒滅菌效果監(jiān)測試卷(附答案)
- 冷渣機調(diào)整課件
- 地埋式生活污水處理工藝技術方案
- 2025年小學六年級數(shù)學試題探究題
- 通信冬季應急預案
- 五年級上冊科學全套單元測試卷含答案(一)蘇教版
- 人工智能賦能循證教學研究
- 貴州能發(fā)高山礦業(yè)有限公司煤礦新建90萬噸-年跳汰洗選加工建設項目環(huán)評報告
評論
0/150
提交評論