版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
安徽省定遠育才學校2026屆高二上數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在區(qū)間內(nèi)隨機取一個數(shù),則方程表示焦點在軸上的橢圓的概率是A. B.C. D.2.已知奇函數(shù)是定義在R上的可導函數(shù),的導函數(shù)為,當時,有,則不等式的解集為()A. B.C. D.3.若命題為“,”,則為()A., B.,C., D.,4.方程表示的曲線是()A.一個橢圓和一條直線 B.一個橢圓和一條射線C.一條射線 D.一個橢圓5.下列說法錯誤的是()A.“若,則”的逆否命題是“若,則”B.“”的否定是”C.“是"”的必要不充分條件D.“或是"”的充要條件6.如圖所示幾何體的正視圖和側(cè)視圖都正確的是()A. B.C. D.7.已知橢圓C:的左,右焦點,過原點的直線l與橢圓C相交于M,N兩點.其中M在第一象限.,則橢圓C的離心率的取值范圍為()A. B.C. D.8.在空間直角坐標系中,若,,則()A. B.C. D.9.已知數(shù)列的前n項和為,,,則()A. B.C.1025 D.204910.已知點B是A(3,4,5)在坐標平面xOy內(nèi)的射影,則||=()A. B.C.5 D.511.拋物線的焦點坐標是()A. B.C. D.12.下列求導錯誤的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線的傾斜角為_______________.14.已知數(shù)列的通項公式為,記數(shù)列的前項和為,則__________,的最小值為__________15.函數(shù)是R上的單調(diào)遞增函數(shù),則a的取值范圍是______16.在長方體中,設,,則異面直線與所成角的大小為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,圓.(1)試判斷圓C與圓M的位置關系,并說明理由;(2)若過點的直線l與圓C相切,求直線l的方程.18.(12分)已知橢圓的左、右頂點坐標分別是,,短軸長等于焦距.(1)求橢圓的方程;(2)若直線與橢圓相交于兩點,線段的中點為,求.19.(12分)已知橢圓的離心率為,且經(jīng)過點.(1)求橢圓的方程;(2)經(jīng)過點的直線與橢圓交于不同的兩點,,為坐標原點,若的面積為,求直線的方程.20.(12分)在平面直角坐標系中,已知點.點M滿足.記M的軌跡為C.(1)求C的方程;(2)直線l經(jīng)過點,與軌跡C分別交于點M、N,與直線交于點Q,求證:.21.(12分)已知函數(shù).(1)求函數(shù)f(x)的最小正周期;(2)當時,求函數(shù)f(x)的值域.22.(10分)已知數(shù)列中,,且滿足(1)求證數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前n項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】若方程表示焦點在軸上的橢圓,則,解得,,故方程表示焦點在軸上的橢圓的概率是,故選D.2、B【解析】根據(jù)給定的不等式構造函數(shù),再探討函數(shù)的性質(zhì),借助性質(zhì)解不等式作答.【詳解】依題意,令,因是R上的奇函數(shù),則,即是R上的奇函數(shù),當時,,則有在單調(diào)遞增,又函數(shù)在R上連續(xù),因此,函數(shù)在R上單調(diào)遞增,不等式,于是得,解得,所以原不等式的解集是.故選:B3、B【解析】特稱命題的否定是全稱命題,把存在改為任意,把結(jié)論否定.【詳解】“,”的否命題為“,”,故選:B4、A【解析】根據(jù)題意得到或,即可求解.【詳解】由方程,可得或,即或,所以方程表示的曲線為一個橢圓或一條直線.故選:A.5、C【解析】利用逆否命題、命題的否定、充分必要性的概念逐一判斷即可.【詳解】對于A,“若,則”的逆否命題是“若,則”,正確;對于B,“”的否定是”,正確;對于C,“”等價于“或,∴“是"”的充分不必要條件,錯誤;對于D,“或是"”的充要條件,正確.故選:C6、B【解析】根據(jù)側(cè)視圖,沒有實對角線,正視圖實對角線的方向,排除錯誤選項,得到答案.【詳解】側(cè)視時,看到一個矩形且不能有實對角線,故A,D排除而正視時,有半個平面是沒有的,所以應該有一條實對角線,且其對角線位置應從左上角畫到右下角,故C排除.故選:B.7、D【解析】由題設易知四邊形為矩形,可得,結(jié)合已知條件有即可求橢圓C的離心率的取值范圍.【詳解】由橢圓的對稱性知:,而,又,即四邊形為矩形,所以,則且M在第一象限,整理得,所以,又即,綜上,,整理得,所以.故選:D.【點睛】關鍵點點睛:由橢圓的對稱性及矩形性質(zhì)可得,由已知條件得到,進而得到橢圓參數(shù)的齊次式求離心率范圍.8、B【解析】直接利用空間向量的坐標運算求解.【詳解】解:因為,,所以.故選:B9、B【解析】根據(jù)題意得,進而根據(jù)得數(shù)列是等比數(shù)列,公比為,首項為,再根據(jù)等比數(shù)列求和公式求解即可.【詳解】解:因為數(shù)列的前n項和為滿足,所以當時,,解得,當時,,即所以,解得或,因為,所以.所以,,所以當時,,所以,即所以數(shù)列是等比數(shù)列,公比為,首項為,所以故選:B10、C【解析】先求出B(3,4,0),由此能求出||【詳解】解:∵點B是點A(3,4,5)在坐標平面Oxy內(nèi)的射影,∴B(3,4,0),則||==5故選:C11、C【解析】化為標準方程,利用焦點坐標公式求解.【詳解】拋物線的標準方程為,所以拋物線的焦點在軸上,且,所以,所以拋物線的焦點坐標為.故選:C12、B【解析】根據(jù)導數(shù)運算求得正確答案.【詳解】、、運算正確.,B選項錯誤.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由直線的斜率為,得到,即可求解.【詳解】由題意,可知直線的斜率為,設直線的傾斜角為,則,解得,即換線的傾斜角為.【點睛】本題主要考查直線的傾斜角的求解問題,其中解答中熟記直線的傾斜角與斜率的關系,合理準確計算是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.14、①.②.【解析】首先確定的正負,分別在和兩種情況下求得,代入即可求得;由可求得,分別在和兩種情況下結(jié)合一次函數(shù)和對勾函數(shù)單調(diào)性得到最小值,綜合可得最終結(jié)果.【詳解】令,解得:,則當時,;當時,;當時,;當時,;;,當時,;當時,在上單調(diào)遞減,在上單調(diào)遞增,又,,,當時,;綜上所述:.故答案為:;.【點睛】關鍵點點睛:本題考查含絕對值的數(shù)列前項和的求解問題,解題關鍵是能夠確定數(shù)列的變號項,從而以變號項為分類基準進行分類討論得到數(shù)列的前項和;求解數(shù)列中的最值問題的關鍵是能夠利用數(shù)列與函數(shù)的關系,結(jié)合函數(shù)單調(diào)性和來進行求解.15、【解析】對求導,由題設有恒成立,再利用導數(shù)求的最小值,即可求a的范圍.【詳解】由題設,,又在R上的單調(diào)遞增函數(shù),∴恒成立,令,則,∴當時,則遞減;當時,則遞增.∴,故.故答案為:.16、##【解析】建立空間直角坐標系,用向量法即可求出異面直線與所成的角.【詳解】以為原點,所在直線分別為軸,軸,軸,建立空間直角坐標系,則,所以,因為,所以,即,所以異面直線與所成的角為.故答案為:90°.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)圓C與圓M相交,理由見解析(2)或【解析】(1)利用圓心距與半徑的關系即可判斷結(jié)果;(2)討論,當直線l的斜率不存在時則方程為,當直線l的斜率存在時,設其方程為,利用圓心到直線的距離等于半徑計算即可得出結(jié)果.【小問1詳解】把圓M的方程化成標準方程,得,圓心為,半徑.圓C的圓心為,半徑,因為,所以圓C與圓M相交,【小問2詳解】①當直線l的斜率不存在時,直線l的方程為到圓心C距離為2,滿足題意;②當直線l的斜率存在時,設其方程為,由題意得,解得,故直線l的方程為.綜上,直線l的方程為或.18、(1);(2).【解析】(1)由橢圓頂點可知,又短軸長等于焦距可知,求出,即可寫出橢圓方程(2)根據(jù)“點差法”可求直線的斜率,寫出直線方程,聯(lián)立橢圓方程可得,,代入弦長公式即可求解.【詳解】(1)依題意,解得.故橢圓方程為.(2)設的坐標分別為,,直線的斜率顯然存在,設斜率為,則,兩式相減得,整理得.因為線段的中點為,所以,所以直線的方程為,聯(lián)立,得,則,,故.【點睛】本題主要考查了橢圓的標準方程及簡單幾何性質(zhì),“點差法”,弦長公式,屬于中檔題.19、(1);(2)或.【解析】(1)由離心率公式、將點代入橢圓方程得出橢圓的方程;(2)聯(lián)立橢圓和直線的方程,由判別式得出的范圍,再由韋達定理結(jié)合三角形面積公式得出,求出的值得出直線的方程.【詳解】解:(1)因為橢圓的離心率為,所以.①又因為橢圓經(jīng)過點,所以有.②聯(lián)立①②可得,,,所以橢圓的方程為.(2)由題意可知,直線的斜率存在,設直線的方程為.由消去整理得,.因為直線與橢圓交于不同兩點,所以,即,所以設,,則,.由題意得,面積,即.因為的面積為,所以,即.化簡得,,即,解得或,均滿足,所以或.所以直線的方程為或.【點睛】關鍵點睛:在第二問中,關鍵是由韋達定理建立的關系,結(jié)合三角形面積公式求出斜率,得出直線的方程.20、(1)(2)證明見解析【解析】(1)根據(jù)已知得點M的軌跡C為橢圓,根據(jù)橢圓定義可得方程;(2)直線的方程設為,與橢圓方程聯(lián)立,利用韋達定理及線段長公式進行計算即可.【小問1詳解】由橢圓定義得,點M的軌跡C為以點為焦點,長軸長為4的橢圓,設此橢圓的標準方程為,則由題意得,所以C方程為;【小問2詳解】設點的坐標分別為,由題意知直線的斜率一定存在,設為,則直線的方程可設為,與橢圓方程聯(lián)立可得,由韋達定理知,所以,,又因為,所以又由題知,所以,所以,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東省濱州市2025-2026學年高三上學期期末模擬物理試題(含答案)
- 湖南省衡陽市祁東縣2026屆九年級上學期1月期末考試歷史試卷
- 中學教學質(zhì)量保證措施制度
- 養(yǎng)老院突發(fā)事件應急預案制度
- 養(yǎng)老院安全防范與應急處理制度
- 企業(yè)內(nèi)部控制與合規(guī)制度
- 紅河州事業(yè)單位招聘考試綜合知識選擇題
- 化工工藝技術員風險識別測試考核試卷含答案
- 加氣混凝土切割工安全技能強化考核試卷含答案
- 高低壓電器及成套設備裝配工崗前健康知識考核試卷含答案
- 供水公司安全管理制度
- 購銷合同范本(蔬菜肉類專用)
- 飛行汽車課件
- (完整)鋼筋混凝土擋土墻專項施工方案
- 湖南省長沙市2025年新高考適應性一??荚?化學試卷(含答案)
- 警務英語教學課件
- 《醫(yī)學影像診斷報告書寫指南》(2025版)
- 旋挖鉆機進場安全培訓課件
- 2025年高純石墨碳材行業(yè)研究報告及未來行業(yè)發(fā)展趨勢預測
- 2025至2030中國超高鎳正極材料市場經(jīng)營格局與未來銷售前景預測報告
- 2025至2030中國立體定向儀行業(yè)產(chǎn)業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
評論
0/150
提交評論